
Topics in Number theory: Special values of L-functions
Exercise 1 (due on September 26)

Choose 4 out of 8 problems to submit, must including Exercise 1.5 (The problems
are chronically ordered by the materials, not necessarily by difficulties. I do recommend read
all problems.)

Exercise 1.1 (Gauss sums). Let η : (Z/NZ)× → C× be a Dirichlet character of order N ≥ 2,
we define the Gauss sum of η as follows:

(1.1.1) G(η) :=
N−1∑
a=1

η(a)e2πi·a/N ∈ C.

Prove the following properties of the Gauss sum.

(1) If η′ is a Dirichlet character of order N ′ with (N,N ′) = 1, then ηη′ may be viewed as a
Dirichlet character of orderNN ′. Show that in this caseG(ηη′) = η(N ′)η′(N)G(η)G(η′).

(2) If η is primitive, then |G(η)| =
√
N .

(3) When η and η′ are both Dirichlet characters of same order N such that ηη′ is a
primitive Dirichlet character of order N , show that

(1.1.2) G(ηη′) =
G(η)G(η′)

J(η, η′)
,

where J(η, η′) is the Jacobi sum

J(η, η′) :=
∑

a∈Z/NZ

η(a)η′(1− a),

where we use the convention that η(a) = 0 if (a,N) ̸= 1.

Remark 1. It would be interesting to compare Gauss sums with the Gamma functions.
In some sense, the definition of (1.1.1) may be viewed as an integral of the product of an
additive character e2πi(·)/N of Z/NZ and a multiplicative character η of (Z/NZ)×. Similarly,
the definition of Gamma function

Γ(s) =

∫ ∞

0

e−tts
dt

t

can also be viewed as an integral of the product of the additive character e−t and the multi-
plicative character ts.

Analogous to the relation (1.1.2) between Gauss sum and the (finite) Jacobi sum, Gamma
functions satisfy a similar property:

B(s, s′) =
Γ(s)Γ(s′)

Γ(s+ s′)
,

where B(s, s′) is a beta function

B(s, s′) =

∫ 1

0

ts−1(1− t)s
′−1dt.

Exercise 1.2. (Modified Mahler basis) In this problem, we give a different orthonormal basis
of C0(Zp,Zp). Consider the function f(z) = zp−z

p
on Zp.

(1) Show that f ∈ C◦(Zp,Zp).
1
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Consider the following inductively defined functions:

f {0}(z) = z, f {1}(z) = f(z) =
zp − z

p
, f {2}(z) = f {1}

(zp − z

p

)
=

(
zp−z
p

)p − zp−z
p

p
,

f {k+1}(z) = f
(
f {k}(z)

)
, for k ≥ 1.

For n ≥ 0, write n = n0 + n1p + n2p
2 + · · · for the p-adic expansion of n, i.e. each ai ∈

{0, 1, . . . , p− 1}, put

en(z) =
(
f {0}(z)

)n0
(
f {1}(z)

)n1
(
f {2}(z)

)n2 · · ·
We call {en(z)} a modified Mahler basis.

(2) Prove that ep(z) +
(
z
p

)
∈ Zp[z].

(3) Prove that each en(z) may be written as a Zp-linear combination of binomial functions(
z
m

)
’s, and show that the change of basis matrix from the Mahler basis to en(z) is

upper triangular with all entries in Zp and diagonal entries in Z×
p .

(4) Deduce that {en(z) |n ≥ 0} form an orthonormal basis of C0(Zp,Zp).
(5) Assume that p ≥ 3. Recall that Z×

p
∼= µp−1 × (1 + pZp)

×, where µp−1 is the subgroup

of (p − 1)th roots of unity in Qp. The group µp−1 acts naturally on C0(Zp,Zp) such
that for ζ ∈ µp−1, it sends h(z) to h(ζz). Show that each of en(z) is an eigenfunction
for this action.

Remark 2. We call en(z)’s the modified Mahler basis. As (2) suggested, en(z) is essentially
the “leading terms” of

(
z
n

)
up to a constant multiple.

The disadvantage of modified Mahler basis is that it is not compatible with the Amice
transform. However, part (5) shows that the modified Mahler basis are formed by µp−1-
eigenfunctions, which are useful in some applications.

Exercise 1.3. (Orthonormal basis of C0(Zpr ,Zpr)) Let Qpr be the unramified extension of Qp

of degree r, and Zpr be its ring of integers. In this problem, we will produce an orthonormal
basis of C0(Zpr ,Zpr) that is similar to the modified Mahler basis defined in the previous
problem.

Let σ denote the (arithmetic) Frobenius on Zpr , i.e. the automorphism of Zpr whose
reduction modulo p sends x̄ to x̄p. Write z0 : Zpr → Zpr for the identify function, i.e.
z0(a) = a. We then inductively define

zj+1(a) = σ(zj(a)) for j ≥ 0.

Clearly, zj+r = zj for j ≥ 0. It is also clear that Qpr [z0, . . . , zr−1] is a dense subring of
C0(Zpr ,Qpr) (but Zp[z0, . . . , zr−1] is not dense in C0(Zpr ,Zpr)).
We define inductively

f0 := 1, f1 := z0, fp :=
zp0 − z1
p

, fpi+1 = fp ◦ fpr =
fp
pi
− σ(fpi)

p
, with i = 1, 2, . . .

For example, fp2 =

(
zp0−z1

p

)p

− zp1−z2
p

p
.

If m = s0 + ps1 + p2s2 + · · · is the p-adic expansion of a positive integer (with si ∈
{0, . . . , p− 1}), we set

fm := f s0
1 f

s1
p f

s2
p2 · · ·
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Finally, if m = (m0, . . . ,mr−1) ∈ Zr
≥0 is an r-tuple of index, we set

(1.3.1) fm := fm0 · φ(fm1) · · ·φr−1(fmr−1).

(1) Show that each function fm is a continuous function in C0(Zpr ,Zpr), and compute its
leading coefficients, as a polynomial in z0, . . . , zr−1.

(2) Show that fm’s form an orthonormal basis of C0(Zpr ,Zpr).
(Hint: it might be helpful to compare this to a “known” (noncanonical) Mahler

basis: choose a Zp-linear isomorphism

c : Zpr (Zp)
r

a (c∗0(a), . . . , c
∗
r−1(a)).

∼=

Here we may view each c∗j as a function Zpr with values in Zp. Then the functions

um : a 7→
(
c∗0(a)
m0

)
· · ·

(
c∗r−1(a)
mr−1

)
for m ∈ Zr

≥0 form an orthonormal basis of C0(Zpr ,Zpr)

with respect to the maximal norm || · ||. It is then a question to compare the two
bases fm and um.)

Exercise 1.4 (An explicit formula for ψ-operator). Let p be a prime number. Recall that on
ZpJT K, we have defined an operator φ such that φ(T ) = (1 + T )p − 1. There is a left inverse

to φ, given as follows: each F ∈ ZpJT K can be written uniquely as F =
p−1∑
i=0

(1 + T )iφ(Fi);

then ψ(F ) = F0.

(1) Let ζp denote a primitive p-th root of unity. Prove that ψ-operator admits the follow-
ing characterization: for F ∈ ZpJT K, ψ(F ) is the unique power series in ZpJT K such
that

(1.4.1) ψ(F )((1 + T )p − 1) =
1

p

p−1∑
i=0

F ((1 + T )ζ ip − 1).

(2) Show that φ and ψ can be naturally extended to the p-adic completion of Zp((T )),
denoted by AQp .

(3) Show that ψ
( 1

T

)
=

1

T
. (One might find (1.4.1) useful, but there is a “better” proof

without using it.)

Remark 3. (1) Without going into details, let us simply remark that the actions of φ,
ψ, and Γ ∼= Z×

p on ZpJT K and their extensions to AQp defines the most important
ground ring for (φ,Γ)-modules; this is a very useful tool in studying p-adic Hodge
theory of local fields. We may encounter more of these constructions in the future (if
we decide to introduce Coleman’s power series).

(2) The right hand side of formula (1.4.1) may be viewed as taking the trace from ZpJT K
to φ(ZpJT K).

Exercise 1.5 (“Miraculous congruence” encoded in p-adic L-functions). Assume p ≥ 3 for
simplicity. We have constructed p-adic Dirichlet L-functions as p-adic measures on Z×

p that
interpolates special values of (p-modified) Dirichlet L-functions. It is natural to ask: is the
p-adic Dirichlet L-function uniquely determined by these interpolation values? In fact, the
answer is that these values “overdetermine” the p-adic L-functions. (We will discuss this in
lectures at a later stage.) Assume that p ≥ 3 is an odd prime number.
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(1) Let G be a general profinite group and let χ : G → R× be a continuous p-adic
character with values in a p-adically complete ring R, then it induces a continuous
ring homomorphism χ̃ : ZpJGK → R. Alternatively, χ can be viewed as a R-valued
function on G, so one can integrate against a p-adic measure on G.
Prove that we have the following commutative diagram

ZpJGK D0(G,Zp)

R

∼=

η̃ µ7→
∫
G η(g)dµ(g)

(2) Write ∆ := F×
p , which may be viewed as a subgroup of Z×

p via Teichmüller character
ω. Give an canonical isomorphism Φ : ZpJZ×

p K ∼= Zp[∆] ⊗Zp ZpJXK, so that X =

[exp(p)]− 1, where exp(p) = 1 + p+ p2

2!
+ · · · is the formal expansion.

(3) Let η : (Z/prZ)× → Q×
p be a finite character and let n ∈ Z≥0; we may form the p-adic

character

χη,n : Z×
p Q×

p

a η(a)an.

If we denote by χ̄η,n the restriction of χη,n to ∆, then for any µ ∈ D0(Z×
p ,Zp),∫

Z×
p

η(x)xndµ(x) = Φ(µ)|∆=χ̄η,n, T=χη,n(exp(p))−1.

(4) Prove that two p-adic measures µ1, µ2 ∈ D0(Z×
p ,Zp) are equal if for any n ∈ Z≥0,∫

Z×
p

xndµ1(x) =

∫
Z×
p

xndµ2(x).

(Hint: Show that the difference µ1 − µ2 is divisible by some infinite product.)
(5) Prove that two p-adic measures µ1, µ2 ∈ D0(Z×

p ,Zp) are equal if for a fixed n ∈ Z≥0

but for all finite characters η : (Z/prZ)× → Q×
p for all r, we have∫

Z×
p

η(x)xndµ1(x) =

∫
Z×
p

η(x)xndµ2(x).

Exercise 1.6. (Kubota–Leopoldt p-adic L-function) In the second and the third lectures,
we have constructed the p-adic Dirichlet L-function when the (tame) Dirichlet character η
is nontrivial. For the case when η = 1, we should also construct the corresponding p-adic
zeta-function, traditionally called the Kubota–Leopoldt p-adic L-function. Unfortunately,
this will not be a p-adic measure on Z×

p , but only a “quasi-measure”, which is philosophically
related to that ζ-function has a pole at s = 1 (so should the p-adic zeta have). For this, we
need some technical maneuver.

Pick a ∈ Z>1 prime to p. Consider

ζa(s) := (1− a1−s) · ζ(s) =
∑
n≥1

(n,a)=1

1

ns
− a ·

∑
n≥1
a|n

1

ns
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Aa(T ) = (1− aγa)
( 1 + T

1− (1 + T )

)
=

1 + T

1− (1 + T )
− a · (1 + T )a

1− (1 + T )a
,

where γa ∈ Γ = Z×
p is the element corresponds to a ∈ Z×

p , which acts on ZpJT K by sending T
to (1 + T )a − 1.

(1) Show that Aa(T ) ∈ ZpJT K defines a p-adic measure; so is A
{p}
a (T ) := (1−φψ)(Aa(T )).

Define µ
{p}
a to be the p-adic measure associated to A

{p}
a (T ) via Amice transform. For any

primitive character η : (Z/prZ)× → Qalg,×, define

L{p}(η, s) = (1− η(p)p−s) · L(η, s).

L{p}
a (η, s) = (1− a1−s) · L{p}(η, s) =

∑
n≥1

(n,ap)=1

1

ns
− a ·

∑
n≥1

(n,p)=1

1

(an)s

(2) Show that for any character η and any n ∈ Z≥0, we have∫
Z×
p

η(x)xndµ{p}
a (x) = L{p}(η,−n).

(3) Recall the identification ZpJZ×
p K ∼= Zp[∆] ⊗Zp ZpJXK. We may define the Kubota–

Leopoldt p-adic L-function to be the element

µKL :=
µ
{p}
a

(1− a[γa])
∈ Zp[∆]⊗ 1

X
ZpJXK.

Sometimes, this is called a pseudo-measure; show that µKL is independent of the choice

of a ∈ Z×
p . (Hint: We need only to prove that (1−bγb)(µ{p}

a ) = (1−aγa)(µ{p}
b ) for two

different a, b ∈ Z>1 relatively prime to p. One can make use of Exercise 1.5(4)(5).)

Remark 4. Our definition of pseudo-measure slightly differs from that of Jacinto–Williams’
note, who shifted the p-adic Kubota–Leopolds L-function so that the pole is at s = 0.

Exercise 1.7 (A more classical version of p-adic L-function). Historically, there is also an
old version of p-adic L-function which is really just p-adic functions. In this exercise, we
recover the classical p-adic L-function from the p-adic measures, and we will see that the
p-adic measures contains stronger congruence relations than classical p-adic L-functions.
(To avoid talking about pseudo-measures, we again work with p-adic Dirichlet L-functions.)

Let η be a primitive Dirichlet character of conductor N (with p ∤ N). We have constructed

a p-adic measure µ
{p}
η such that∫

Z×
p

xndµ{p}
η (x) = L{p}(η,−n).

(This measure also interpolates Dirichlet L-functions for varying the character at p; we will
not use it here.)

We are interested in understanding the p-adic function ζp,i on Zp for i = 0, 1, . . . , p − 2,
defined by for s ∈ Z such that s ≡ i mod p− 1,

ζp,i(s) :=

∫
Z×
p

xsdµ{p}
η (x) = L{p}(η,−s).

(1) Show that ζp,i(s) extends naturally to a continuous function on s ∈ Zp. (So far, this
is weaker than a function on s ∈ OCp .)
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Now we study these functions ζp,i more carefully. Abstractly by Exercise 1.5, we may view

µ
{p}
η as an element in Zp[∆]⊗Zp ZpJXK, where X = [exp(p)]− 1. (Here we view ∆ = F×

p as a
subgroup of Z×

p via the Teichmüller character ω.) For i = 0, . . . , p− 2, write µη,i(X) ∈ OJXK
for the image of µ

{p}
η under the map ∆ → Z×

p sending x to ω(x)i.

(2) Show that (formally)

(1.7.1) ζp,i(s) = µη,i(exp(ps)).

(3) From (2), deduce that ζp,i(s) extends to a p-adic analytic function for s ∈ p−
p−2
p−1mCp .

Remark 5. One sees from this exercise that the classical p-adic L-function only captures

part of the information provided. Even knowing the convergence of ζp,i(s) for s ∈ p−
p−2
p−1mCp ,

it is far from enough to deduce the integrality of µ
{p}
η . For more discussion in this direction,

see the post
https://mathoverflow.net/questions/435265/why-p-adic-measures.

Exercise 1.8 (Volume of ideles class group versus residue of Dedekind zeta values). Let F
be a number field with r1 real embeddings and r2 pairs of complex embeddings. Let A×

F be

the group of ideles and A×,1
F := {x ∈ A×

F | |x| = 1} be the subgroup of norm one elements.
We have stated (and proved in the quadratic case) of the analytic class number formula, for
the Dedekind zeta function ζF (s) at s = 1:

(1.8.1) lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2 · hFRegF

wF

√
|∆F |

,

where hF is the class number, RegF is the regulator for units of F , wF is the number of roots
of unity contained in F , and ∆F is the discriminant of F .

(1) Using the functional equation of Dedekind zeta function to deduce from (1.8.1) the
following analytic class number formula at s = 0:

lim
s→0

s−r1−r2+1ζF (s) = −hF · RegF
wF

.

(2) Show that the right hand side of (1.8.1) can be interpreted as Vol(A×,1
F /F×), if we

provide the Haar measure on A×,1
F so that under the product decomposition A×

F =

A×,1
F × R× (where R× is provided with the measure dx

x
) admits the following Haar

measure:
• at a real place v of F , the Haar measure on F×

v is dx
|x| ,

• at a complex place v of F , the Haar measure on F×
v ≃ C× is 2dx∧dy

|x2+y2| =
2drdθ

r
,

• at a p-adic place v of F with different ideal dv ⊆ Fv, the Haar measure on F×
v is

so that volume of O×
Fv

is ||dv||−
1
2 , where ||dv|| = #(OFv/dv).


