
CYCLES ON SHIMURA VARIETIES VIA GEOMETRIC SATAKE, EXAMPLE

LIANG XIAO AND XINWEN ZHU

Abstract. This is a part of the forthcoming version of [XZ17+], which aims to provide some
examples and explicit computations of cycles. It will be subsumed into the new version of the
article once it was ready.
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9. Examples

Our main Theorem [XZ17+, Theorem 1.1.4] (and Theorem [XZ17+, Theorem 7.4.6]) was formu-
lated in representation theoretical terms. In this section, we discuss a few concrete examples and
interpret some of our results in more classical terms. Hopefully, some of them will be useful for
other applications. We also provide a few alternative proofs of some concrete statements, when
more direct (and elementary) methods are available. In particular, for a fixed prime p, we will
denote by σp the arithmetic Frobenius in Gal(Qur

p /Qp) and φp = σ−1
p the geometric Frobenius. For

an unramified connected reductive group G over Qp, let (Ĝ, B̂, T̂ ) denote the dual group equipped
with a Borel and a maximal torus. Then φp acts on (Ĝ, B̂, T̂ ).

9.1. Hilbert modular surfaces and quaternionic Shimura varieties. The first examples of
our results are Hilbert modular surfaces and more generally quaternionic Shimura varieties. This
was previously studied by Tian and the first author [TX19].

9.1.1. Hilbert modular surfaces. We first discuss Hilbert modular surfaces. Let F be a real quadratic
field, and p > 2 an inert prime of F . Set G = ResF/Q PGL2 .

1 Take a neat open compact subgroup
K = KpKp ⊆ G(Af ) with Kp = PGL2(Zp). We write ShK(G,X) for the Hilbert modular surface
over Q, which admits an integral model SG,K over Z(p), and let SG,K := SG,K ×Z(p)

Fp2 denote
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the special fiber over Fp2 and ShG,K = S
perf
G,K the perfection. Although ShG,K can be defined over

Fp, it helps our discussion to view it over Fp2 because the group GQp splits over Qp2 . In this case,
the Langlands dual group is Ĝ = SL2 × SL2, on which the Frobenius σp acts by interchanging the
two factors. The weight lattice of Ĝ may be identified with Z2 = {(m,n)}, and σp interchanges m
and n.

The Hodge cocharacter for the Hilbert modular surface is µ = (1, 1). Thus Vµ∗ = std∗ � std∗,
where std∗ is the dual of the standard representation of SL2, and

V Tate
µ∗ = Vµ∗(λ1)⊕ Vµ∗(λ2), with λ1 = (−1, 1) and λ2 = (1,−1).

In addition, for each i = 1, 2 the set of MV-cycles MVµ∗(λi) = {bi} consists of a single element.
We can choose

νb1 = (1, 0), νb2 = (0, 1), and τb1 = τb2 = (0, 0)

so that σ(ν∗bi)− ν
∗
bi

= λi and X
bi,min
µ∗ (1) = (P1)perf .

9.1.2. Description of the cycles via partial Hasse invariants. In our case of Hilbert modular surfaces,
for each i = 1, 2, Xbi := G′(Q)\G′(Af ) ×Xbi,min

µ∗ (1)/K → ShG,K is a closed embedding, giving a
family of (P1)perf ’s. Here G′ denotes the definite group determined by [XZ17+, Lemma 1.1.3] (which
is ResF/QPB

× with B the quaternion algebra over F exactly ramified at the two archimedean
places), and we identify G(Af ) with G′(Af ) using the isomorphism θ from the inner twist.

The family Xbi can be alternatively described as follows (even before taking the perfection).
Set GPEL = {g ∈ ResF/QGL2 | det g ∈ Gm}. Assume that there is an open compact subgroup
KPEL ⊂ GPEL(Af ) whose image in G(Af ) is K. The associated Shimura variety SGPEL,KPEL

is the
moduli space of abelian surfaces with a faithful OF -action, and an OF -linear principal polarization,
and a KPEL-level structure. The Hodge line bundle ω on SGPEL,KPEL

, given by the determinant
of the sheaf of invariant differentials of the universal abelian surface over SGPEL,KPEL

. When base
changed to OF,(p), it admits a decomposition

ω = ω1 ⊗ ω2.

After restricting to the special fiber S GPEL,KPEL
, the usual Hasse invariant h ∈ Hom(ω, ωp) can

be decomposed as the product of two partial Hasse invariants h = h1h2, where h1 : ω1 → ωp2
and h2 : ω2 → ωp1 . Taking the limit over Kp

PEL, the zero loci Z(hi) for each i = 1, 2 on the
limit SGPEL,KPEL,p

is stable under the action of A (GPEL,Z(p)
), and thus, we may perform the usual

operation to transport the subspaces Z(hi) to subspaces

(9.1.1) Zi := Z(hi)×A (GPEL) A (G)

of SG,Kp,Fp . Then (after possibly switching i = 1 and 2), Zi is precisely the image of Xbi . We
also remark that S G,K and S GPEL,KPEL

are in fact defined over Fp, and the nontrivial element in
Gal(Fp2/Fp) interchanges the line bundles ω1 and ω2 and hence interchanges Z1 and Z2.

Let SG′,K = SG′,K ⊗Z(p)
Fp2 denote the special fiber of the Shimura set associated to (G′, {1}).

In this case, we have two natural correspondences

SG′,K
(P1)perf -bundle←−−−−−−−−− Xbi := G′(Q)\Xbi,min

µ∗ (1)×G′(Af )/K −−→ S
perf
G,K , i = 1, 2.
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The union of the images of Xb1 and Xb2 in S
perf
G,K is exactly the basic locus S

perf
G,K,b. They induce

natural maps (for i, j ∈ {1, 2})

(9.1.2) H0
et

(
SG′,K,Fp ,Q`

)
[πf ] ∼= H0

et

(
Xbi,Fp ,Q`

)
[πf ] Gysbi

--
H2

et

(
SG,K,Fp ,Q`

)
[πf ]

Resbj
qq

H0
et

(
SG′,K,Fp ,Q`

)
[πf ] ∼= H2

et,c

(
Xbj ,Fp ,Q`

)
[πf ]

for any automorphic representation πf of G(Af ). (The compositions of two horizontal maps in
(9.1.2) are precisely JLτbi ,µ(ai,in) and JLµ,τbj (aj,out) in [XZ17+, §7.4.3], respectively.) According
to [TX19], the composition of the two maps give rise to the following matrix representing the
intersection of irreducible components of the basic locus:

(9.1.3)
(
Resbj ◦Gysbi

)
1≤i,j≤2

=

(
−2p Tp
Tp −2p

)
,

where Tp = [Kp

(
p 0
0 1

)
Kp] is the Hecke operator at p. Let α and β denote the two Satake parameters

at p of πf so that αβ = p2. The πf -part of the intersection matrix (9.1.3) is exactly(
−2p α+ β

(α+ β) −2p

)
whose determinant is 4p2 − (α+ β)2 = p2(αβ − 1)(βα − 1). So when α 6= β, the map Gysb1

⊕Gysb2

is injective on the πf -component, and is an isomorphism if α 6= ±β. This verifies the prediction by
the Tate conjecture in this case.

Remark 9.1.3. In the case when the prime p splits in F , the Frobenius σp acts trivially on the dual
group Ĝ. In this case, V Tate

µ∗ is trivial; correspondingly, one can prove that the basic locus of SG,X

is 0-dimensional (see for example [AG04, §8.2]). So this is not in the scope of our main theorem.

9.1.4. Quaternionic Shimura varieties. The discussion above extends to quaternionic Shimura va-
rieties. This is essentially treated in [TX19]; we briefly recall a variant here. Let F be a totally real
number field of degree g in which a prime p > 2 is inert. Let B be a quaternion algebra over F that
is split at p, and, for simplicity, split at all the archimedean places. Let G = ResF/QPB

× be the
projective multiplicative group of B; its dual group of G is Ĝ ∼= (SL2)g, on which σp acts by cycli-
cally permuting the factors. If we identify the weight lattice of Ĝ with Zg, the Hodge cocharacter is
µ = (1, . . . , 1), and Vµ∗ ∼= �gstd∗; so Vµ∗ |∆(SL2) = (std∗)⊗g where ∆ is the diagonal embedding. As
above, choose a neat open compact subgroup K = KpKp ⊂ G(Af ) with Kp hyperspecial, and let
SG,K denote the canonical integral model of the associated Shimura variety over Z(p) with special
fiber S G,K := SG,K ×Z(p)

Fpg , which is smooth of dimension g.
When g is odd, V Tate

µ∗ = 0; in this case, the basic locus of S G,K has dimension g−1
2 . Our main

theorem does not apply to this case. For the rest of this subsection, we assume that g is even.
Then V Tate

µ∗ has dimension
( g
g/2

)
; it is the direct sum V Tate

µ∗ =
⊕

I⊂{1,...,g} Vµ∗(λI) over subsets
I ⊂ {1, . . . , g} of cardinality of g/2, where λI is 1 at those places in I, and −1 at those places not
in I. Moreover, each MVµ∗(λI) is a singleton {bI}. For each such I, there is a minimal νI ∈ X∗(T̂ )
such that σ(ν∗I )− ν∗I = λI ; this νI corresponds to the “periodic semi-meander" as in [TX19].

The associated irreducible component XbI ,min
µ∗ (0) is always isomorphic to an iterated P1-bundle,

of dimension g/2. Let G′ denote the projective multiplicative group of the quaternion algebra over
F which is locally isomorphic to B at all finite places and is ramified at all archimedean places.
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Thus one has morphisms

SG′,K
iterated (P1)perf -bundle←−−−−−−−−−−−−−− XbI := G′(Q)\XbI ,min

µ∗ (0)×G′(Af )/K −−→ S
perf
G,K .

From this, we construct the Gysin and restriction maps as in (9.1.2). The determinant of the
composition matrix

(9.1.4)
(
ResbJ ◦GysbI

)
I,J⊆{1,...,g}

was computed in [TX19] using the combinatorics of periodic semi-meanders that was often discussed
in the context of mathematical physics. Up to a nonzero constant, The determinant is equal to
(T 2
p − 4pg)η, where

η =
∑
r>0

dim
(
(std)⊗g

)
(r) =

(
g

0

)
+ · · ·+

(
g

g
2 − 1

)
= 2g−1 − 1

2

(
g
g
2

)
.

Theorem [XZ17+, Theorem 7.4.6] (and particularly Theorem [XZ17+, Theorem 1.4.1]) gives a differ-
ent proof of this computation. As a corollary of the computation of determinant, if the two Satake
parameters of πf at p are distinct, the πf -component of the cycle classes generated by the irreducible
components of the basic locus S b are linearly independent. One verifies the Tate conjecture for
the πf -component if the Satake parameters are strongly general with respect to Vµ∗ in the sense of
[XZ17+, Definition 1.4.2].

9.2. Unitary Shimura varieties. In this and the next two subsections, we give a detailed discus-
sion of our results in the case of U(1, 2r)-Shimura varieties, in particular Picard modular surfaces
(r = 1), and in the case of U(2, s)-Shimura varieties, at an inert prime. In the U(1, 2r) case, the
description of the basic (=supersingular) locus was essentially contained in [Vo10, VW11], but the
computation of the intersection of irreducible components of the basic locus is new. In the U(2, s)
case, the description of basic locus is contained in [HP14] when s = 2, and is new for s ≥ 3. As
we shall see, compared with all previous related works on the basic locus of Shimura varieties, new
phenomenon appears. Namely, when s ≥ 3, we encounter certain generalization of Deligne–Lusztig
varieties admitting actions of U(Zp/p2Zp) which does not factor through U(Fp).

9.2.1. Satake isomorphism for unitary groups. We first give explicit formulas for the Satake isomor-
phism for unitary groups, and discuss basic properties of the dual group of unitary groups.

Let Vp be an n-dimensional Hermitian space over Qp2 . We write r = bn2 c. Let G = U(Vp) denote
the unitary group. Although σp and φp are equal in Gal(Qp2/Qp), we distinguish them as they play
different roles in our general theory.

We first recall the representation theory on the dual group side. For the dual group Ĝ = GLn,
we take the Cartan subgroup T̂ and the Borel subgroup B̂ to be the group of diagonal matrices and
the group of upper triangular matrices. For an index i ∈ {1, . . . , n}, we write i∨ := n + 1 − i, and
for a subset I ⊂ {1, . . . , n}, write I∨ := {i∨|i ∈ I}. Then σp = φp ∈ Gal(Qp2/Qp) acts on Ĝ by
sending A 7→ J(At)−1J−1, where At is the transpose of A and J = (Jij)1≤i,j≤n is the anti-diagonal
matrix with alternating 1’s and −1’s, i.e. Ji,j = 0 if j 6= i∨ and Ji,i∨ = (−1)i−1.

The group X•(T̂ ) admits a basis ε1, . . . , εn, where εi is the character of T̂ given by evaluating the
(i, i)-entry of T̂ . Then σp and φp act on X•(T̂ ) by

φp(εi) = σp(εi) = −εi∨ for i = 1, . . . , n.

The Bruhat partial order on X•(T̂ ) is generated by εi � εj whenever i < j. Put Ŝ := T̂ /(σp − 1)T̂
so that

X•(Ŝ) = X•(T̂ )σp =

r⊕
i=1

Z(εi − εi∨),
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where r = bn2 c as introduced above. The absolute Weyl group W ∼= Sn of Ĝ permutes ε1, . . . , εn;
and the relative Weyl group is

W0 = W σp = 〈(i, i∨), (ij)(i∨, j∨) | i, j = 1, . . . , r〉 = (Z/2Z)r o Sr.

For a character η of X•(T̂ ), we write eη for the corresponding function on T̂ . If we write Si for the
ith elementary symmetric power in eε1−ε1∨ + eε1∨−ε1 , . . . , eεr−εr∨ + eεr∨−εr , then

J = J Ĝ := Q`[Ĝφp]
Ĝ ∼= Q`[X•(Ŝ)]W0 ∼= Q`[S1, . . . ,Sr]

is a subring of Q`[X•(T̂ )] = Q`[e
±ε1 , . . . , e±εn ]. When r = 1 (that is n = 2, 3),

J = Q`[e
ε1−ε1∨ + eε1∨−ε1 ].

For a σp-invariant dominant weight λ ∈ X•(T̂ )σp = X•(Ŝ), restricting the character function of
the highest weight Ĝ-representation Vλ to the coset Ĝφp gives an element in the above ring J .

Example 9.2.2. Let M = M3,3 denote the space of 3 × 3-matrices equipped with the adjoint
representation of GL3. The associated character is χM = eε1−ε1∨ + eε1∨−ε1 + 1.

The roots in the relative root system Φ∨rel ⊂ X•(Ŝ) = X•(T̂ )σp consist of the W0-orbits of ε1− ε1∨

and the W0-orbits of ε1− ε1∨ − ε2 + ε2∨ (when r ≥ 2). Correspondingly, there are two discriminant
functions (only one if r = 1) in J :

disc1 :=
∏

1≤i≤r

(
(eεi−εi∨ − 1)(eεi∨−εi − 1)

)
=

r∑
i=0

(−1)r−i2iSr−i;(9.2.1)

disc2 :=
∏

1≤i<j≤r

(
(eεi−εi∨ − eεj−εj∨ )(eεi−εi∨ − eεj∨−εj )(eεi∨−εi − eεj−εj∨ )(eεi∨−εi − eεj∨−εj )

)
.

Lemma 9.2.3. Set S0 = 1. Let Va := ∧astd⊗ (∧astd)∗ with 0 ≤ a ≤ r.
(1) For each 0 ≤ a ≤ r, we have

χVa =

{
Sa +

(
r−a+2

1

)
Sa−2 + · · ·+

(
r−a+2j

j

)
Sa−2j + · · · n = 2r

Sa + Sa−1 + (r − a+ 2)Sa−2 + · · ·+
(r−a+j
bj/2c

)
Sa−j + · · · n = 2r + 1.

(2) When n = 2r + 1, have

disc1 =

r∑
a=0

(−1)r−a(2a+ 1)χVr−a .

In particular, when r = 1, disc1 = 3− χstd⊗std∗.

Proof. (1) Let b1, . . . , bn denote the standard basis of std, and b∗1, . . . , b∗n the dual basis in std∗. For
a subset I ⊆ {1, . . . , n}, we write εI =

∑
i∈I εi and 〈I〉 =

∑
i∈I i; if the elements in I = {i1, . . . , is}

is in increasing order, we write bI := bi1 ∧ · · · ∧ bia and b∗I := b∗i1 ∧ · · · ∧ b
∗
ia
. There is a natural map

φp : std→ std∗ that sends bi to (−1)ib∗i∨ , and thus φp(bI) = (−1)〈I〉+a(a−1)/2b∗I .
For t̂ ∈ T̂ , t̂φp acts on ∧astd⊗ (∧astd)∗ as

bI ⊗ b∗J
φp−→ (−1)〈I〉+〈J

∨〉b∗I∨ ⊗ bJ∨
t̂−→ (−1)〈I〉+〈J

∨〉e−εI∨+εJ∨ (t̂) · b∗I∨ ⊗ bJ∨ ,

where I, J ⊆ {1, . . . , n} are subsets of cardinality a. This term contributes to the trace if and
only if I = J∨, in which case the contribution is e−εI∨+εI (t̂). Summing over those I such that
#(I ∩ I∨) = j, we obtain

(r−a+j
bj/2c

)
Sa−j with the condition that j must be even if n is even; this is

because (I\I∨)∪ (I∨\I) consists of a− j pairs of distinct numbers {i, i∨}, and when fixing that, we
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are left with
(r−a+j
bj/2c

)
choices for the set I ∩ I∨ (which, when n is odd, must contain n+1

2 if j is odd,
and must not contain n+1

2 if j is even). Summing this over all j gives the formula in the lemma.
(2) Using part (1), we deduce that

r∑
a=0

(−1)r−a(2a+ 1)χVr−a =
r∑

a=0

∑
0≤i≤r−a

(−1)r−a(2a+ 1)

(
r − (r − a) + (r − a− i)

b r−a−i2 c

)
Si

=

r∑
i=0

∑
0≤a≤r−i

(−1)r−a(2a+ 1)

(
r − i
b r−a−i2 c

)
Si.

Comparing to the formula for disc1 in (9.2.1), we need to show the coefficient of Si above is equal
to (−1)i2r−i. Rewrite k = r − i and ` = k − a for simplicity; so we need to show that∑

0≤`≤k
(−1)k−`(2k − 2`+ 1)

(
k

b`/2c

)
= (−2)k.

But the left hand side is equal to(
k

0

)(
(−1)k(2k + 1) + (−1)k−1(2k − 1)

)
+

(
k

1

)(
(−1)k−2(2k − 3) + (−1)k−3(2k − 5)

)
+ · · ·

=

(
k

0

)
(−1)k · 2 +

(
k

1

)
(−1)k · 2 +

(
k

2

)
(−1)k · 2 + · · · .

Some easy analysis by the parity of k shows that the above expression is just (−1)k times the
binomial expansion of (1 + 1)k. Our lemma is proved. �

Next, we discuss the Satake isomorphism. We can assume that there is a basis {e1, . . . , en} of
the hermitian space Vp such that the hermitian form is given by h(ei, ej∨) = δij . We identify G(Qp)
as a subgroup of GLn(Qp2) via this basis. Then the stabilizer Kp of the lattice Λ =

⊕n
i=1 Zp2ei is

a hyperspecial subgroup of G(Qp). We choose

S =
{

diag{a1, . . . , an} ∈ G(Qp) | a1a1∨ = · · · = arar∨ = a(n+1)/2 = 1
}

as a maximal split torus of GQp , where when n is even, we omit the last term a(n+1)/2. Its dual
group is exactly Ŝ and its cocharacter group is X•(S) = X•(T̂ )σp is given as above. For each
λ ∈ X•(S) we write λ(p) for the image of p under the natural map Q×p

λ−→ G(Qp). Explicitly, for a
tuple m = (m1, . . . ,mr) ∈ Zr, we write

λm := m1(ε1 − ε1∨) + · · ·+mr(εr − εr∨) ∈ X•(S)

for the associated cocharacter. Then

λm(p) = diag
{
pm1 , . . . , pmr , 1, p−mr , . . . , p−m1

}
∈ G(Qp),

where when n is even, we omit the term 1 in the middle. The character λm is dominant if and only
if m1 ≥ · · · ≥ mr ≥ 0. We will use often the following dominant characters for i = 0, . . . , r:

λi = λ(1i,0n−2i,(−1)i) = ε1 + · · ·+ εr − εr∨ − · · · − ε1∨ ∈ X•(S).

Let Sphp := H(G(Qp),Kp) be the spherical (a.k.a unramified) Hecke algebra with Q`-coefficients.
Let

Tm := Tλm := 1Kpλm(p)Kp ∈ H(G(Qp),Kp)

be the Hecke operator corresponding to the characteristic function of Kpλm(p)Kp. Then{
Tm | (m1, . . . ,mr) ∈ Zr,m1 ≥ · · · ≥ mr ≥ 0

}
6



form a Q`-basis of Sphp, by the Cartan decomposition. In particular, for 0 ≤ i ≤ r, we write Tp,i for
Tλi , which together generate Sphp as a Q`-algebra. In particular, when r = 1, Sphp as an algebra
is generated by Hecke operators: Tp,1 = 1Kpdiag{p,1,p−1}Kp .

We fix a square root p1/2 ∈ Q`. Then we have the usual Satake isomorphism

CTp : Sphp
∼= H(S(Qp),Kp ∩ S(Qp))

W0 ' Q`[X•(Ŝ)]W0 .

On the other hand, the geometric Satake correspondence associates every representation V of LGFp
a perverse sheaf Sat(V ) on Gr, whose trace function defines an element hV ∈ Sphp. It follows
from the compatibility of geometric Satake and the classical Satake ([XZ17+, Proposition 3.5.5])
that CTp(hV ) = χV . As {Tm} is a basis of the Hecke algebra, every hV can be written as the
linear combination of these characteristic polynomials. The coefficients can be expressed by the
so-called Lusztig–Kato polynomials2. For our later application, we obtain a formula for hVa for
Va := ∧astd ⊗ (∧astd)∗, 0 ≤ a ≤ r directly as follows. Recall the v-analogue of the binomial
coefficients

[0]v = 1, [n]v =
vn − 1

v − 1
, [n]v! = [n]v[n− 1]v · · · [1]v,

[
n
m

]
v

=
[n]v!

[n−m]v![m]v!
.

Lemma 9.2.4. For 0 ≤ a ≤ r, we have

(9.2.2) hVa = p−a(n−a)
a∑
i=0

[
n− 2i
a− i

]
v

Tp,i,

with v = −p. In particular,

hV1 = p1−n
(
Tp,1 +

(−p)n − 1

−p− 1

)
.

Proof. We sketch a proof. Let Sat : Rep(Ĝ) → PL+G⊗Fp(Gr ⊗ Fp) denote the geometric Satake
equivalence. Note that G ⊗ Zp2 ' GLn. Therefore, there is a natural isomorphism GrG ⊗ Fp2

∼=
GrGLn , which we identify with lattices in Vp as usual. Under this isomorphism, the Frobenius
endomorphism F := FrobGrG ⊗idFp2 of GrG ⊗ Fp2 sends, for a perfect Fp2-algebra R, a lattice
L ⊂ Vp ⊗Zp2 W (R) to Frob∗R(L)∨, where FrobR : W (R) → W (R) is the morphism induced by the
Frobenius of R, and Frob∗R(L)∨ is the lattice dual to Frob∗R(L) with respect to the hermitian form
on Vp.

Since Va = ∧astd⊗ ∧astd∗,

Sat(Va) = Sat(∧astd) ? Sat(∧astd∗),

here ? stands for the convolution product of the Satake category. Note that Sat(∧astd) and
Sat(∧astd∗) are constant sheaves (up to shift and twist) supported on the corresponding minus-
cule Schubert varieties Gr∧astd and Gr∧astd∗ defined over Fp2 , which are switched by F . The Weil
structure on Sat(Va) then is given by

F ∗(Sat(Va)) = F ∗Sat(∧astd) ? F ∗Sat(∧astd∗)
∼= Sat(∧astd∗) ? Sat(∧astd) ∼= Sat(∧astd) ? Sat(∧astd∗),

where the last isomorphism comes from the commutativity constraints.

2Strictly speaking, Lusztig–Kato polynomials are only defined and studied for (residually) split groups in literature.
But the generalization to unramified groups is not difficult, using the results and methods in [Zhu15].
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Over Fp2 , we are working with the affine Grassmannian of GLn; it is well known that the Poincaré
polynomial of the stalk cohomology Sat(Va)λi(p) of Sat(Va) at λi(p) is∑

j≥0

dim
(
H−2j−〈λi,2ρ〉
λi(p)

(
Sat(Va)

))
vj =

[
n− 2i
a− i

]
v

.

Here v denotes an indeterminate. On the other hand, from the construction of the commutativity
constraints from [Zhu17a] (in particular Section 2.4.5), we see that for 0 ≤ i ≤ a,

tr
(
φp | Sat(Va)λi(p)

)
= p−i(n−i)

[
n− 2i
a− i

]
v

, v = −p−1,

which is exactly what the lemma claims. �

Using Lemmas 9.2.3 and 9.2.4, and the notation therein, we may express the preimage of disc1

under the Satake isomorphism
CTp : Sphp

∼= Q`[X•(Ŝ)]W0 .

CT−1
p (disc1) =

r∑
i=0

(−1)i(2i+ 1)hVr−i =
r∑
i=0

(−1)i(2i+ 1)p−(r−i)(r+i+1)
r−i∑
j=0

[
2r + 1− 2j
r − i− j

]
v=−p

Tp,j .

Let LGFp := Ĝ o Gal(Fp/Fp) denote the unramified Langlands dual group, regarded as a pro-
algebraic group. As explained in [XZ17+, Remark 3.5.3], there are two maps from the representation
ring R(LGFp) of LGFp to Q`[X•(Ŝ)]W0 . One is given by restricting a character function of a repre-
sentation V to the coset Ĝφp, and the other one is given by restricting to the coset Ĝσp. They in
general differ by an involution of Q`[X•(Ŝ)]W0 induced by multiplication by (−1) on X•(Ŝ). In our
case the canonical isomorphism

(9.2.3) inv : Q`[X•(Ŝ)]W0 ∼= Q`[Ĝσp]
Ĝ gσp 7→φp(g−1)φp−−−−−−−−−−→ Q`[Ĝφp]

Ĝ ∼= Q`[X•(Ŝ)]W0

turns out to be the identity map. So inv(disc1) = disc1.

9.3. Picard modular surfaces and U(1, 2r)-Shimura varieties. We first describe our main the-
orem in a more concrete way in this case. We will start with the computation on the representation
side, and then translate the supposedly intersection matrix in terms of the Satake isomorphism.
Then we rewrite our results in more classical way, explaining how they lead to intersection numbers
of cycles. When possible, we make explicit the computation in the case of Picard modular surfaces.

9.3.1. PEL type moduli problem of U(1, 2r)-Shimura varieties. Let E be an imaginary quadratic
field and let p > 2 be an inert prime. Let V be a (2r + 1)-dimensional hermitian space over E
of signature (1, 2r) at the infinity and is unramified at p. Let G = U(V) be the corresponding
unitary group. We choose the level structure to be K = KpK

p ⊂ G(Af ) with Kp the hyperspecial
subgroup fixing a self-dual Zp2-lattice Λ ⊂ Vp := V ⊗E Qp2 . Following [RSZ17+, §3], we realize the
Shimura variety ShK(G,X) as a PEL moduli problem as follow. We choose and fix a CM elliptic
curve A0 with a full OE-action and a principal polarization λ0 in the prime-to-p isogeny category
that is defined over the Hilbert class field EH of E. Then the integral model of the Shimura variety
SG,K,OEH,(p)

classifies triples (A, λ, η) over an OE,(p)-scheme S, where

• A is an abelian variety of dimension 2r + 1 over S with a faithful action by OE satisfying
the Kottwitz’ determinant condition of signature (1, 2r),
• λ : A→ A∨ is a principal polarization in the category of abelian varieties up to prime-to-p
isogenies such that the Rosati involution induces complex conjugation on OE , and
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• η is a section of

IsomHerm

(
V ⊗ Apf , HomOE (Vet(A0)p,Vet(A)p)

)/
Kp

of the étale sheaf parametrizing Kp-orbits of hermitian isomorphisms, where the hermitian
structure on the latter is given by

for x, y ∈ HomOE (Vet(A0)p,Vet(A)p), 〈x, y〉 := λ0 ◦ y∨ ◦ λ ◦ x ∈ EndOE (Vet(A0)p) = ApE,f .

When r = 1, SG,K,OEH,(p)
is essentially a Picard modular surface. We point out that, by taking

appropriate quotient, one can define SG,K over OE,(p), but we content with our definition here
because p must split in EH/E; so taking the special fiber at a place v of EH above p, we recover the
special fiber S G,K := SG,K,OEH,(p)

⊗OEH
k(v) over Fp2 . We also note that S G,K admits a canonical

smooth compactification S̃ G,K by adding a (CM) abelian variety of dimension 2r−1 at every cusp.

Lemma 9.3.2. The Shimura datum (G,X) determines the Hodge character µ = ε1 ∈ X•(T̂ ). We
have V

Tatep
µ∗ = Vµ∗(λ), where λ = −εr+1; it is one-dimensional. In particular, the set of MV

cycles MVTate
µ∗ = MVµ∗(λ) = {b} is a singleton. One can write λ = σ(ν∗) − ν∗ + τ∗, where

ν = νb = ε1 + · · ·+ εr and τ = τb = ε1 + · · ·+ ε2r+1 ∈ X•(ZG).

Proof. Go through the definitions. �

Corresponding to the MV cycle b, we have the Satake cycle a ∈ S(ν∗,µ∗)|λ+ν∗ such that

Gr0,a
(ν∗,µ∗)|λ+ν∗ ∩ Sν∗,λ = (Sν∗ ∩Grν∗)×̃(Sλ ∩Grµ∗)

b

(see [XZ17+, Lemma 3.2.7]). Via [XZ17+, Proposition 3.1.10] and the geometric Satake, it gives
two nonzero morphisms of Ĝ-representations

(9.3.1) ain : Vσ(ν) ⊗ Vτ ⊗ Vν∗ → Vµ and aout : Vσ(ν∗) ⊗ Vµ ⊗ Vν → Vτ .

These two morphisms give rise to elements Ξν(ain) ∈ Hom(Ṽτ , Ṽµ) and Ξν∗(aout) ∈ Hom(Ṽµ, Ṽτ )

(per recipe [XZ17+, (6.2.2)] and [XZ19, (4.4.2)]), whose restrictions to the fiber gσp ∈ Ĝσp are

(9.3.2) Ξν(ain)(gσp) : Vτ
id⊗δν−−−→ Vν ⊗ Vτ ⊗ Vν∗

gσp⊗1⊗1−−−−−−→ Vσ(ν) ⊗ Vτ ⊗ Vν∗
ain−−→ Vµ, and

(9.3.3) Ξν∗(aout)(gσp) : Vµ
id⊗δν∗−−−−→ Vν∗ ⊗ Vµ ⊗ Vν

gσp⊗1⊗1−−−−−−→ Vσ(ν∗) ⊗ Vµ ⊗ Vν
aout−−→ Vτ .

Lemma 9.3.3. Up to a non-zero constant in Q`,

(9.3.4) D := Ξν∗(aout) ◦ Ξν(ain) =

r∏
i=1

(
eεi−εi∨ + eεi∨−εi − 2

)
= (−1)rdisc1,

as elements in Hom(Ṽτ , Ṽτ ) = Q`[Ĝσp]
Ĝ = J . In particular, when r = 1, D = 2−eε1−ε1∨ −eε1∨−ε1.

Proof. This follows from [XZ19, Theorem 1.0.2], specialized to this case. The explicit calculation is
also carried out in [XZ19, Example 6.4.2]. �

Next we describe the relevant affine Deligne–Lusztig varieties and the basic locus of S G,K . These
results are essentially contained in [Vo10, VW11], although we take a different approach.

The Satake cycle a ∈ S(ν∗,µ∗)|τ∗+σ(ν∗) determines a cohomological correspondence supported on
Gr0,a

(ν∗,µ∗)|τ∗+σ(ν∗). Recall that Λ is the self-dual Zp2-lattice of the hermitian space Vp.
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Lemma 9.3.4. Over Fp2 , the correspondence

Gr0,a
(ν∗,µ∗)|τ∗+σ(ν∗) ⊂ Grν∗ ×Grτ∗+σ(ν∗)

is L+G-equivariantly isomorphic to

(9.3.5) H = {(`1, `2) ∈ Gr(r, 2r+1)×Gr(r+1, 2r+1) | `1 ⊂ `2} ⊂ Gr(r, 2r+1)×Gr(r+1, 2r+1),

where Gr(i, 2r + 1) classifies i-dimensional subspaces in Λ/pΛ. The map Grν∗ → Grτ+σ(ν∗) given
by g 7→ $τσ(g) is identified with the map sending ` ⊂ Λ/pΛ to Frob(`)⊥.

Proof. Recall the natural isomorphism GrG ⊗ Fp2
∼= GrGLn . For ν∗ = −ε1∨ − · · · − εr∨ , we have an

identification

Grν∗(R) =
{

Λ⊗W (R) ⊂ L ⊂ 1
p(Λ⊗W (R)) | rkR L/(Λ⊗W (R)) = 1

} ∼= // Gr(r, 2r + 1)(R)

L � // L/(Λ⊗W (R)).

In a similar way, we have Grτ∗+σ(ν∗)
∼= Gr(r + 1, 2r + 1). The map Grν∗ → Grτ∗+σ(ν∗) sends a

lattice L as above to 1
p Frob∗R(L)∨. Therefore, after modulo Λ⊗W (R), it is identified with the map

Gr(r, 2r + 1)→ Gr(r + 1, 2r + 1) as described in the statement of the lemma.
Now we show that Gr0,a

(ν∗,µ∗)|τ∗+σ(ν∗) is given by the correspondence H in (9.3.5). This follows
from the fact that the G-orbits of Gr(r, 2r+1)×Gr(r+1, 2r+1) are parameterized by an integer a ∈
{0, . . . , r}, characterized as requiring dim `1∩`2 = a, and that the correspondence H (corresponding
to a = r) is the unique (closed) orbit of dimension r(r + 1) + r. So Gr0,a

(ν∗,µ∗)|τ∗+σ(ν∗) ⊂ Grν∗ ×
Grτ∗+σ(ν∗) must be equal to H. �

The relevant affine Deligne–Lusztig variety Xµ∗(τ
∗) is defined as

Xµ∗(τ
∗) := {g ∈ Gr | g−1pτ

∗
σ(g) ∈ L+G · pµ∗L+G}.

By [XZ17+, Theorem 4.4.5], an irreducible component of the affine Deligne–Lusztig is given by the
following Cartesian diagram

(9.3.6) Xb,min
µ∗ (τ∗) //

��

Gr0,a
(ν∗,µ∗)|τ∗+σ(ν∗)

pr1×m
��

Grν∗
1×pτ∗σp // Grν∗ ×Grτ∗+σ(ν∗).

More precisely, what we proved in [XZ17+, Theorem 4.4.5] is that the closure in Xµ∗(τ
∗) of the

unique maximal dimensional irreducible component of Xb,min
µ∗ (τ∗) is an irreducible component of

Xµ∗(τ
∗). But the explicit description of Lemma 9.3.4 implies that the fiber product (9.3.6) is already

irreducible and proper, and it is equal to

(9.3.7) Xb,min
µ∗ (τ∗) = {` ∈ Λ/pΛ | ` ⊂ Frob(`)⊥}.

This is a Deligne–Lusztig variety for the unitary group GU2r+1(Fp), defined over Fp2 . When r = 1,
this is a Fermat curve: under an explicit coordinate of the hermitian space Vp above,

Xb,min
µ∗ (τ∗) =

{
(x, y, z) ∈ P2 | xp+1 + yp+1 + zp+1 = 0

}
.

The action of Kp on Xb,min
µ∗ (τ∗) factors through the quotient Kp → GU2r+1(Fp). By [XZ17+,

Theorem 4.4.14], we have a G(Qp)-equivariant surjective map

G(Qp)×Kp Xb,min
µ∗ (τ∗)→ Xb

µ∗(τ
∗) = Xµ∗(τ

∗)

that induces a bijection on irreducible components.
10



Let V ′ denote the (2r + 1)-dimensional hermitian space over E, which is isomorphic to V at all
finite places and is of signature (2r+1, 0) at the infinity place. Let G′ := U(V ′) denote the associated
unitary group. Then the Rapoport–Zink uniformization [XZ17+, Corollary 7.2.16] induces a natural
surjective map

(9.3.8) G′(Q)
∖(
G(Qp)×Kp Xb,min

µ∗ (τ∗)×G′(Apf )
/
Kp
)
→ Nb

onto the basic locus Nb ⊆ S
perf
G,K , which induces a bijection on the set of irreducible components.

This then defines the cycle class map (the Gysin map)

cl(b) : C(G′(Q)\G′(Af )/K,Q`)→ H2r
et,c(S G,K,Fp ,Q`(r)).

There is also the dual of the cycle class map (the restriction map)

cl∨(b) : H2r
et,c(S G,K,Fp ,Q`(r))→ C(G′(Q)\G′(A)/K,Q`).

Then [XZ17+, Theorem 7.4.6] specialized to this case as follows.

Theorem 9.3.5. The composition

cl∨(b) ◦ cl(b) : C(G′(Q)\G′(A)/K,Q`)→ C(G′(Q)\G′(A)/K,Q`)

is given by the Hecke operator

(9.3.9) h =

r∑
i=0

(−1)i(2i+ 1)pi(i+1)
r−i∑
j=0

[
2r + 1− 2j
r − i− j

]
v=−p

Tp,j ∈ H(G(Qp),Kp),

which encodes the intersection matrices of the cycles in Nb. More precisely, for G′(Q)gK ∈ G′(Af ),
let Xg be the corresponding irreducible component of Nb by (9.3.8). Then if g and g′ has the same
prime-to-p-component, then the intersection number Xg ·Xg′ is equal to h(g−1

p g′p).
In particular, if r = 1, then

h = Tp,1 + (1− p− 2p2).

More concretely, if g, g′ ∈ G′(Af ) have the same prime-to-p part,

Xg ·Xg′ =


1 if gp ∈ g′pKpλ1,0Kp

1− p− 2p2 if gp ∈ g′pKp

0, otherwise.

Proof. By [XZ17+, Theorem 7.4.6] or more precisely [XZ17+, Lemma 7.4.5], and the previous dis-
cussions (Lemmas 9.2.3 and 9.2.4), we know that h is a multiple of

CT−1
p (D) = p−r(r+1)Tp,r + · · · .

On the other hand, by the discussion later in §9.3.9, when g, g′ ∈ G′(Af ) have the same prime-to-p
part and Inv(gKp, g

′Kp) = λ1r,0 = λr, Xg and X ′g intersect properly at one point. It follows that
h = Tp,r + · · · = pr(r+1) · CT−1

p (D). The proposition follows. �

9.3.6. Interpretation in classical terms. We now reinterpret Theorem 9.3.5 using the geometry of
the corresponding Shimura varieties. When r = 1, namely the case of Picard modular surfaces,
we will reprove the theorem by an explicit computation; for the general case, we will reduce the
theorem to a computation of the degree of a vector bundle on a Deligne–Lusztig variety.

If a coherent sheaf M over an OE,(p)-scheme is equipped with an OE-action, we write M ∼=
M1 ⊕M2 such that OE acts on M1 by the structure map and on M2 by the complex conjugate of

11



the structure map. Let A denote the universal abelian scheme over S G,K (which is an OE/(p)-
scheme). There is a natural OE-action on invariant differentials ωA, and the Kottwitz condition
implies that, under the decomposition by action of OE

ωA ∼= ωA,1 ⊕ ωA,2,

where ωA,1 is locally free of rank 1 and ωA,2 is locally free of rank 2r.

Remark 9.3.7. When r = 1, one can describe the basic locus (or equivalently supersingular) Nb
of the Picard modular surface as follows. The Verschiebung map V : A(p) → A induces two maps

h1 : ωA,1 → ωA(p),1
∼= ω

(p)
A,2 and h2 : ωA,2 → ω

(p)
A,1,

where for a coherent sheaf F on S G,K , F (p) = F ⊗SG,K ,Frob S G,K is pullback along the relative

Frobenius. The composition h := h
(p)
2 ◦h1 : ωA,1 → (ωA,1)p

2 can be regarded as the Hasse invariant
for the Picard modular surface. Then Nb is (the reduced subscheme of) the vanishing locus of
h. Indeed, we can work pointwise. So let x̄ be an Fp-point, and let D(Ax̄) be the contravariant
Dieudonné module of Ax̄. In fact, for the given signature condition, there are only two possibilities
of the Newton polygon of D(Ax̄), namely, either with slopes 0, 1

2 , 1 (the µ-ordinary case), or with
slopes 1

2 ,
1
2 ,

1
2 (the supersingular case). In the first case, any power of the Verschiebung is nonzero

on ωAx̄,1 and hence h is nonzero at x̄. In the second case, the Frobenius is topologically nilpotent
on D(Ax̄), so h has to be zero at x̄. This proves the claim.

Since we are working with the PEL type Shimura varieties, one can also make the cohomological
correspondence (9.3.8) explicit as follows. Let S G′,K denote the special fiber of the Shimura variety
associated to the unitary group G′. In particular, making use of the same auxiliary CM elliptic curve
A0 from § 9.3.1, S G′,K classifies triples (A′, λ′, η′) over a noetherian Fp2-scheme S, where

• A′ is an abelian schemes over S with a faithful action by OE , satisfying the Kottwitz’
condition: ωA′,1 = H1

dR(A′)1 and ωA′,2 = 0;
• λ′ : A′ → A′∨ is a principal polarization in the category of abelian varieties up to prime-to-p
isogenies such that the Rosati involution induces complex conjugation on OE , and
• η′ is a level structure as defined in § 9.3.1 with A replaced by A′.

We will apply the general construction of correspondences between Shimura varieties, but over a
subspace of Shtloc

τ |µ, where the isogeny of the local G-shtukas is restricted a particular type corre-
sponding to Xb,min

µ∗ in (9.3.7). More precisely, we define a moduli space Ñb that classifies tuples
(A, λ, η,A′, λ′, η′, f) over noetherian Fp2-schemes S, where

• (A, λ, η) is an S-point of S G,K and (A′, λ′, η′) is an S-point of S G′,K ,
• f : A′ 99K A is an OE-equivariant quasi-isogeny such that λ′ = f∨ ◦ λ ◦ f , and η = f∗ ◦ η′,
and
• at each geometric point x̄, f induces inclusions (f−1)∗ : D(A′x̄)1 ⊂ D(Ax̄)1 and f∗ : D(Ax̄)2 ⊂
D(A′x̄)2 whose cokernels are all isomorphic to k(x̄)⊕r.

The forgetful map π : Ñb → S G,K remembering only A is exactly the Rapoport–Zink uniformiza-
tion map (9.3.8). The other forgetful map π′ : Ñb → S G′,K remembering only A′ identifies Ñb with
the left hand side of (9.3.8); more precisely, the fiber over each coset G′(Q)gK ∈ G′(Af ) corre-
sponds to an Fp-point g ∈ S G′,K ; Xg := π′−1(g) classifies r-dimensional subspaces H ⊂ HdR

1 (A′g)1

such that H ⊂ Frob(H)⊥. In terms of the moduli problem above, the subspace H is the image
f∗2ωA,2 ⊆ H1

dR(A′g)2
∼= HdR

1 (A′g)1 (which has dimension r). The perfection of each Xg is isomorphic
to Xb,min

µ∗ (τ∗) in (9.3.7) over Fp.
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We first assume that r = 1, i.e. S G,K is a Picard modular surface. The space Xg may be
identified with certain degree (p + 1) Fermat curve inside P(HdR

1 (A′g)1) ' P2. We denote the
restriction of OP2(n) to this curve by O(n). In this case, our computation of the intersection
number (Theorem 9.3.5) is essentially equivalent to the following result.

Proposition 9.3.8. When r = 1, the restriction of π to each Xg is a regular embedding (whose
image we still denote by Xg), and its normal bundle in S G,K is O(1 − 2p). In particular, the self
intersection of Xg in S G,K is (p+ 1)(1− 2p) = 1− p− 2p2.

Proof. We only sketch the proof here; the readers are invited to fill in the details. Let H denote
the universal line subbundle of HdR

1 (A′g)1 ⊗OXg ∼= H1
dR(A′g)2 ⊗OXg over Xg, which is the same as

O(−1). Then the tangent bundle of Xg is given by

TXg
∼= Hom

(
H, (H(p))⊥/H

)
.

One can verify that over Xg, the universal quasi-isogeny f : A′ → A induces a homomorphism
f∗2 : H1

dR(A)2 → H1
dR(A′)2. From this, we deduce a canonical isomorphism

(H(p))⊥/H ∼= f∗,−1
2 (H1

dR(A)2)/f∗,−1
2 (ωA,2)

f∗2
∼=
// H1

dR(A)2/ωA,2.

Under this isomorphism, we have an exact sequence over Xg:

0→ TXg
∼= Hom

(
H, (H(p))⊥/H

)
→ TSG,K |Xg

∼= Hom
(
ωA,2, H

1
dR(A)2/ωA,2

)
→ NXg(S G,K)→ 0.

In particular, this implies that

NXg(S G,K) ∼= Hom(Ker(f∗2 ), (H(p))⊥/H) ∼= Hom
(
H1

dR(A′)2/(H(p))⊥, (H(p))⊥/H
)

∼= H(p) ⊗
(
(H(p))⊥/H

) ∼= Hom(O(p),O(−p+ 1)) ∼= O(1− 2p). �

On the other hand, Xg and Xg′ (for g 6= g′) intersects if and only if g and g′ are related by the
Hecke correspondence Tp,1, i.e. Inv(gKp, g

′Kp) = λ1,0, in which case Xg and Xg′ intersects properly
at one point. This gives a direct proof of Theorem 9.3.5 when r = 1.

9.3.9. Computation of Xg ·Xg′ in the general case. We now describe the intersection of these cycles
for general r. The computation is similar to [HTX17, §5–6] (which uses covariant Dieudonné mod-
ules). The cyclesXg and Xg′ intersect if and only if g and g′ are related by the Hecke correspondence
Tp,i for some 0 ≤ i ≤ r, after replacing coset representatives, g and g′ have the same prime-to-p
part and Inv(gpKp, g

′
pKp) = λi = λ1i,0r−i,0. In this case, one can compute the intersection of Xg

with Xg′ following the steps below.
(1) Let A′g and A′g′ be the universal abelian varieties at G′(Q)gK and at G′(Q)g′K, respectively.

Since Inv(gKp, g
′Kp) = λ1i,0r−i,0, there is a quasi-isogeny f ′ : A′g → A′g′ preserving the

tame level structures and the polarizations on both abelian varieties such that under the
identification f ′ : D(A′g)[

1
p ] ∼= D(A′g′)[

1
p ], we have (D(A′g)j + D(A′g′)j)/D(A′g)j

∼= F⊕ip for
j = 1, 2. Moreover, we can show that the perfect pairing induced by polarization between
D(A′g)2 and D(A′g)1 = Frob(D(A′g)2) induces a perfect pairing between

(9.3.10) Dg,g′,2 :=
(
D(A′g)2 ∩ D(A′g′)2

)/(
pD(A′g)2 + pD(A′g′)2

)
and Frob(Dg,g′,2),

where both spaces are of dimension 2r − 2i+ 1 over Fp.
(2) The intersection Xg ∩ Xg′ parametrizes quasi-OE-isogenies A′g

f1−→ A
f2←− A′g′ compatible

with polarizations and tame level structures such that the composition f−1
2 ◦ f1 is just f ′,

and at each geometric point x̄, f1 and f2 induce includes D(A′g)1 ⊂ D(Ax̄)1 ⊃ D(A′g′)1 and
D(A′g)2 ⊃ D(Ax̄)2 ⊂ D(A′g′)2 so that the cokernel of each inclusion is isomorphic to k(x̄)⊕r.
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(3) One can then show that this moduli interpretation of Xg ∩Xg′ is equivalent to the moduli
problem of an (r − i)-dimensional subspace

H := (f1)∗2(ωA,2) mod
(
pD(A′g)2 + pD(A′g′)2

)
as a subspace of Dg,g′,2 such that H ∈ Frob(H)⊥, where •⊥ means to take the annihilator
under the perfect pairing between (9.3.10).

In particular, when i = r, Xg and Xg′ intersect properly.
(4) To compute the intersection number of Xg and Xg′ , one needs to use the excessive intersec-

tion formula ([Fu98, §6.3]).

Xg ·Xg′ :=

∫
Xg∩Xg′

cr−i(Eg,g′) for Eg,g′ := NXg(S G,K)|Xg∩Xg′
/
NXg∩Xg′ (Xg).

Using an argument similar to the discussion in Proposition 9.3.8, one can prove that, setting
H := (f1)∗2(ωA,2),

NXg(SK) ∼= H(p) ⊗
(
(H(p))⊥/H

)
and

NXg∩Xg′ (Xg) ∼=
(
(H(p))⊥/H

)
⊗ (pD(A′g)2 + pD(A′g′)2)/pD(A′g)2.

Therefore, using the fact that (H(p)
)⊥/H ∼= (H(p))⊥/H, we deduce that

Eg,g′ ∼= H
(p) ⊗

(
(H(p)

)⊥/H
)
.

In other words, we essentially need to compute the top degree of a fixed vector bundle over
a Deligne–Lusztig varieties (but for all different dimensional unitary spaces). This is the
following lemma (which then justifies the expression of intersection of cycles in Proposi-
tion 9.3.5).

Now the above discussions imply that Theorem 9.3.5 is in fact equivalent to the following state-
ment.

Proposition 9.3.10. Consider the r-dimensional Deligne–Lusztig variety (9.3.7), namely

DLr :=
{
H ⊂ Λ/pΛ of dimension r | H ⊆ Frob(H)⊥

}
.

Let H denote the universal subbundle of rank r, then for E = H(p) ⊗
(
(H(p))⊥/H

)
, we have∫

DLr

cr(E) =

r∑
i=0

(−1)i(2i+ 1)pi
2+i

[
2r + 1
r − i

]
v=−p

Proof. Indeed, we may deduce it from Theorem 9.3.5 by simply retrieving the coefficient of Tp,0 in
(9.3.9). And vice versa, the proposition gives the coefficent of �

When r = 1, this is Proposition 9.3.8 above. In general, unfortunately, we do not know a direct
proof to this lemma.

Remark 9.3.11. We hope to convey through the above discussion that formulating our main
theorem in terms of geometric Satake theory allows us to overcome the difficult combinatorics
questions like the above lemma.
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9.4. The G = PSO(2, n−2)-Shimura varieties. Consider a quadratic space V over Q of signature
(2, n − 2) at infinity, and let PSO(V) denote the corresponding projective orthogonal group. Let
p be an odd prime such that Vp := V ⊗ Qp is unramified, i.e. the Hasse invariant is 1 and its
determinant is a p-adic unit modulo (Q×p )2. We take Kp to be the stabilizer in G(Qp) of a self-dual
lattice Λ ⊂ Vp. The corresponding Shimura variety is of abelian type (witnessed by the GSpin(V)-
Shimura variety), and its integral model SG,K over Z(p) is constructed by Kisin [Kis10]; its special
fiber S G,K is of dimension n. We focus on its basic locus Nb ⊂ S G,K .

When n is odd, we do not expect any middle dimensional Tate classes for the dimension reason.
This is related to the fact that the associated representation Vµ∗ of the dual group Ĝ = Spn−1 is the
vector representation, and is minuscule. So V Tate

µ∗ = 0. (More generally, if G splits over Qp, V Tate
µ∗

is always trivial.)
For the rest of this subsection, we assume n = 2m is even. The description of the basic locus was

essentially contained in [HP17] following [GH15]. We explain how their findings fit in our philosophy
and how [XZ17+, Theorem 7.4.6] applies to this case.

The group G is of type Dm so Ĝ = Spin2m. We need to separate two cases:
(a) when detVp ≡ (−1)m mod (Q×p )2, GQp splits over Qp, and
(b) when detVp mod (Q×p )2 is a p-adic unit by is not equal to (−1)m, GQp is unramified but

non-split over Qp, and the Frobenius acts non-trivially on the Dynkin diagram of G.
We identify Gm

m with the diagonal maximal torus of SO2m by

t = (t1, . . . , tm) 7→ Diag(t1, . . . , tm, t
−1
m , . . . , t−1

1 ),

and take the maximal torus T̂ of the dual group Ĝ = Spin2m to be the preimage of Gm
m under the

natural 2-to-1 map Spin2m → SO2m. For i = 1, . . . ,m, let εi denote the character of Gm
m that sends

t to ti; then we may identify the weight space of Ĝ with

X•(T̂ ) = Z · ε1 + · · ·+ εm
2

⊕
m−1⊕
i=1

Zεi,

and the roots of Ĝ are ±(εi − εj) and ±(εi + εj) for 1 ≤ i < j ≤ m. A weight
∑m

i=1 aiεi is
dominant if a1 ≥ · · · ≥ am−1 ≥ |am|. The absolute Weyl group W of Ĝ is R o Sm, where
R ⊂ {±1}m is the subgroup of elements with total product 1 which acts on X•(T̂ ) by coordinate-
wise multiplication, and Sm acts on X•(T̂ ) by permuting the factors. So for a dominant weight
µ =

∑m
i=1 aiεi, µ

∗ =
∑m−1

i=1 aiεi − amεm.
The Hodge cocharacter of G induces the weight µ = ε1 of Ĝ and the associated highest weight

representation Vµ∗ is the vector representation Spin2m → SO2m → GL(Q) with Q = Q⊕2m
` ; its

weights are ±ε1, . . . ,±εm.
In case (a) above, i.e. when the projective orthogonal group GQp splits over Qp, we have V Tate

µ∗ =

Vµ∗(0) = 0. In this case, the philosophy behind [XZ17+, Theorem 1.1.4(1)] predicts that the
dimension of the basic locus Nb should be strictly less than 1

2 dim S G,K = n
2 . This agrees with the

findings in [HP17, Theorem C].
We now assume that we are in case (b), i.e. GQp is unramified and non-split over Qp.

Lemma 9.4.1. The Frobenius element φp = σp fixes ε1, . . . , εm−1 and sends εm to −εm. We have

V Tate
µ∗ = Vµ∗(λ+)⊕ Vµ∗(λ−) for λ+ = εm and λ− = −εm,

which is of 2-dimensional. We can write λ± = σ(ν∗±)− ν∗± (so τ± = 0) with

ν+ = 1
2(ε1 + · · ·+ εm), and ν− = 1

2(ε1 + · · ·+ εm−1 − εm).
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In addition, each MVµ∗(λ±) = {b±} is a singleton, and is represented by nonzero homomorphisms

(9.4.1) b±,in : Vσ(ν±) ⊗ Vν∗± → Vµ and b±,out : Vσ(ν∗±) ⊗ Vµ ⊗ Vν± → 1.

Proof. The dimension of the two hom spaces in (9.4.1) can be computed as

dim Hom(Vσ(ν±) ⊗ Vν∗± , Vµ) = dim Hom(Vσ(ν±), Vν± ⊗ Vµ).

Since µ is minuscule, Vν± ⊗ Vµ =
⊕

η Vν±+η with the sum taken over all weights η ∈ Wµ in the
Weyl group orbit such that ν± + η is dominant. One checks directly, σ(ν±) belongs to this list of
weights. �

Set Ŝ := T̂ /(σp − 1)T̂ and then

X•(Ŝ) = X•(T̂ )σp=1 =
m−1⊕
i=1

Zεi.

The relative Weyl group is W0 = W σp ∼= (Z/2Z)m−1 o Sm−1, where Sm−1 permutes ε1, . . . , εm−1

and (Z/2Z)m−1 acts on each of ε1, . . . , εm−1 by multiplication by ±1. So the invariants of Q`[X•(Ŝ)]
under W0 are

(9.4.2) J := Q`[X•(Ŝ)]W0 = Q`[S1, . . . ,Sm−1],

where Si for i = 1, . . . ,m− 1 is the ith symmetric polynomial in eε1 + e−ε1 , . . . , eεm−1 + e−εm−1 .
The relative root system Φ∨rel ⊂ X•(Ŝ) consists of roots ±(εi + εj) and ±εi for 1 ≤ i ≤ j ≤ m− 1.

In particular, the discriminant of the W0-orbits of long roots ±2ε1, . . . ,±2εm−1 is

disclong =
m−1∏
i=1

(e2εi − 1)(e−2εi − 1).

Lemma 9.4.2. For i, j ∈ {+,−}, the elements

Mij := Ξν∗i (bi,out) ◦ Ξνj (bj,out) ∈ Hom
(
1̃, 1̃

) ∼= J

can be computed explicitly as follows (up to a nonzero constant in Q`):

M =

(
M++ M+−
M−+ M−−

)
=

(∑
i≥0 even 2m−1−iSi

∑
i>0 odd 2m−1−iSi∑

i>0 odd 2m−1−iSi
∑

i≥0 even 2m−1−iSi

)
.

Moreover, the determinant of M is ±disclong.

Proof. See [XZ19, Lemma 6.4.5]. �

We remark that in the process of changing from σp to φp following [XZ17+, Remark 3.5.3], the
formula in Lemma 9.4.2 is unchanged. We leave it to the interesting readers to make the Satake
isomorphism explicit in this case.

Now we focus on the relevant affine Deligne–Lusztig varieties and the basic locus of S G,K . These
results are essentially contained in [HP17]. The Ĝ-representation homomorphisms b±,in induce Ĝ-
homomorphisms

b± : Vν∗± ⊗ Vµ∗ → Vσ(ν∗±),

which, by Geometric Satake theory, corresponds to a cohomological correspondence supported on
Gr

0,b±
(ν∗±,µ

∗)|σ(ν∗±). Here Gr denotes the affine Grassmannian for the group PSO(Vp). Recall that Λ is
the self-dual Zp2-lattice of the quadratic space Vp.
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Lemma 9.4.3. Over Fp2 , the correspondence

Gr
0,b±
(ν∗±,µ

∗)|σ(ν∗±) ⊂ Grν∗± ×Grσ(ν∗±)

is L+G-equivariantly isomorphic to

(9.4.3) H =
{

(L1,L2) m-dimensional Lagrangian subspaces of Λ/pΛ | dim L1 + L2 ≤ m+ 1
}
.

The Frobenius map Grν∗± → Grσ(ν±)∗ , g 7→ σ(g) is identified with the map sending L to σp(L ).

Proof. This is essentially contained in [HP14, § 3.2]; we only sketch the essence here. One may
choose a Zp2-basis {e1, . . . , em, f1, . . . , fm} of Λ⊗Zp Zp2 such that

• 〈e1, . . . , em〉 and 〈f1, . . . , fm〉 are (maximal) isotropic, and 〈ei, fj〉 = δij ,
• the Frobenius 1⊗ σ fixes e1, . . . , em−1, f1, . . . , fm−1, and interchanges em with fm, and
• the parabolic subgroups P± generated by root subgroups Uα for those 〈α, ν±〉 ≤ 0, are
precisely the stabilizer subgroups of the maximal isotropic subspaces L+ = 〈f1, . . . , fm〉
and L− = 〈f1, . . . , fm−1, em〉, respectively.

Then, we have a natural isomorphism

Grν∗±
∼= Grν∓

∼= // G/P∓
∼= // {m-dimensional Lagrangian subspaces of Λ/pΛ}

gpν∓L+G � // (g mod L+G(1)) mod P∓
� // gL∓.

The lemma follows from the above isomorphism. �

The relevant affine Deligne–Lusztig variety Xµ∗(1) is defined as

Xµ∗(1) := {g ∈ Gr | g−1σ(g) ∈ L+G · pµ∗L+G}.
By [XZ17+, Theorem 4.4.5], two irreducible components of the affine Deligne–Lusztig are given by
the following Cartesian diagram

X
b±,min
µ∗ (1) //

��

Gr0,bi
(ν∗±,µ

∗)|σ(ν∗±)

pr1×m

��
Grν∗±

1×σp // Grν∗± ×Grσ(ν∗±).

More precisely, we also needed here the explicit description in Lemma 9.4.3 to deduce that the fiber
product is itself irreducible and is hence equal to Xb±,min

µ∗ (1). Explicitly,
(9.4.4)
X

b±,min
µ∗ (1) =

{
L m-dimensional Lagrangian subspace of Λ/pΛ | dim(L + σp(L )) = m+ 1

}
.

It is the Deligne–Lusztig variety over Fp2 for the unitary group PSO(Λ/pΛ) associated to the Coxeter
elements.

In general we have a G(Qp)-equivariant surjective map⊔
i∈{±}

G(Qp)×Kp Xbi,min
µ∗ (1)→ X

b+

µ∗ (1) ∪Xb−
µ∗ (1) = Xµ∗(1)

that induces a bijection on irreducible components. Let V ′ denote the 2m-dimensional quadratic
space over Q of signature (0, n) at infinity and is isomorphic to V at all non-archimedean places.
Set G′ := PSO(V ′) denote the associated projective orthogonal group. Then the Rapoport–Zink
uniformization [XZ17+, Corollary 7.2.16] induces a natural surjective map

(9.4.5)
⊔

i∈{±}

G′(Q)
∖(
G(Qp)×Kp Xbi,min

µ∗ (τ∗)×G′(Apf )
/
Kp
)
→ Nb
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onto the basic locus Nb ⊆ S
perf
G,K , which induces a bijection on the set of irreducible components.

This then defines the cycle class map (the Gysin map) and its dual:

cl(b±) : C(G′(Q)\G′(Af )/K,Q`)→ H2m
et,c(S G,K,Fp ,Q`(m)).

cl∨(b±) : H2m
et,c(S G,K,Fp ,Q`(m))→ C(G′(Q)\G′(A)/K,Q`).

Then [XZ17+, Theorem 7.4.6] specialized to this case as follows.

Theorem 9.4.4. For i, j ∈ {+,−}, the composition

cl∨(bi) ◦ cl(bj) : C(G′(Q)\G′(A)/K,Q`)→ C(G′(Q)\G′(A)/K,Q`)

is the multiplication by Mij in Lemma 9.4.2 under the Satake isomorphism J ∼= Cc(Kp\G′(Qp)/Kp,Q`).
Moreover, for πf an irreducible module of the Hecke algebra HK , if the Satake parameter for πf,p
avoids the zeros of e2εi = 1 for all i, then the following map is injective:

C(G′(Q)\G′(Af )/K,Q`)[πf ]⊕2 cl(b+)+cl(b−)−−−−−−−−−→ H2m
et,c

(
S G,K,Fp ,Q`(m)

)
[πf ].
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