
Ramification Theory for Local Fields with Imperfect
Residue Fields

Liang Xiao

This note was originally written for my talk in STAGE. After that I put in some more
content from [14, 15] in order to give a summary of the two papers. The argument here will
be sloppy with no details but with more intuitive explanation. Thanks to Ivan Fesenko for
useful comments.

1 Classical ramification theory

The ramification of a complete discretely valued field has been studied since the era of
Hilbert, who introduced the notion of higher ramification groups. Later, Artin, Hasse, Tate,
and other people made extraordinary contribution to generalize Hilbert’s idea. A good
reference for the classical ramification theory is Serre’s fantastic book [13].

Notation 1.1. Let l/k be a finite Galois extension of complete discretely valued fields. Let
Ok, Ol, πk, πl, k̄, and l̄ be rings of integers, uniformizers, and residue fields, respectively.
For an element a ∈ Ol, we use ā to denote its reduction in l̄.

Let G = Gl/k be the Galois group. Use vl(·) to denote the valuation on l so that
vl(πl) = 1. We call e = vl(πk) the näıve ramification degree; it is the index of the valuation
group of k in that of l.

Hypothesis 1.2. In this section, we assume that the residue field k is perfect.

Definition 1.3. The most natural way to define higher ramification subgroups of the Galois
group G is due to Hilbert:

g ∈ Ga if and only if vl(gx− x) ≥ a + 1 for all x ∈ Ol.

Actually, we need only to test for the generator of Ol over Ok; the extension of rings of
integers is generated by one element [13, § III.6 Proposition 12]). In particular, G−1 = G,
G0 = I is the inertia subgroup, and G1 = W is the wild inertia subgroup.

However, there is a disadvantage of this. Namely, it does not respect taking quotients
and hence it does not give a filtration on the absolute Galois group Gk. Hasse and Herbrand
independently defined a function φ and gave G an upper numbering filtration, which does
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extend to Gk. (We will give a working definition later.) Their ideas came from an attempt
to describe the behavior of the norm map on the filtration on units. For more details, one
may consult [6, Chap.3].

Definition 1.4. We set Gu = Gdue for u ∈ [−1,∞). Define

φ(u) =

∫ u

0

dt

[G0 : Gt]
.

We set Gφ(u) = Gu. The inverse of φ, denoted by ψ, is called the Hasse-Herbrand function.

Proposition 1.5. It turns out, if H is a normal subgroup of G, then (G/H)v = GvH/H for
all v. Hence the upper numbering filtration patches to give a filtration FilvGk on Gk.

Definition 1.6. Let ρ : Gk → GL(V ) be a representation of finite local monodromy (the
image of inertia is finite), where V is a finite dimensional vector space over a (topological)
field of characteristic zero. Define the Artin conductor to be

Art(ρ)
def
=

∑

a∈Q≥0

a · dim
(
V Fila+Gk

/
V FilaGk

)
, (1.6.1)

where Fila+Gk = ∪b>aFilbGk.
One can also define the Swan conductor to be

Swan(ρ)
def
=

∑

a∈Q≥1

(a− 1) · dim
(
V Fila+Gk

/
V FilaGk

)
, (1.6.2)

which measures the wild ramification of ρ.

Theorem 1.7 (Hasse-Arf Theorem). The conductors Art(ρ) and Swan(ρ) are non-negative
integers.

In practise, we will consider irreducible representation ρ which exactly factors through a
finite Galois extension l/k. In this case, let b(l/k) = max

{
b|Gb

l/k 6= {1}} and then we have

Art(ρ) = b(l/k) · dim ρ. (1.7.1)

This b(l/k) is called the highest ramification break of l/k.

b(l/k)





= 0 if l/k is unramified,
= 1 if l/k is tamely ramified,
> 1 if l/k is wildly ramified.

(1.7.2)

Proposition 1.8. If Ol/Ok is generated by one element x, we have an explicit formula for
bl/k as follows.

bl/k =
1

e

( ∑

16=g∈G

vl(gx− x) + max
16=g∈G

vl(gx− x)
)
.
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Alternative interpretation via rigid spaces

One of the main idea of Abbes-Saito’s construction in imperfect residue field case comes
from a reinterpretation of the number b(l/k) via geometric connected components of certain
rigid space.

Hypothesis 1.2 implies that Ol/Ok is generated by one element x in Ol [13, § III.6 Propo-
sition 12]). Let P (x) = 0 be its minimal polynomial.

Notation 1.9. We set |πk| = θ as this number will be often mentioned later.

Proposition 1.10. The rigid space X = {u||u| ≤ 1, |P (u)| < θa} has [l : k] geometric
connected components if and only if a ≥ b(l/k).

Proof. A rigorous proof can be found in [5, Lemme 2.4] or [1, Lemma 6.6]. We will give a
rough idea of why this is true.

The picture here is that if a is very large, we confine u in very small neighborhoods of the
roots of P (u) = 0, the conjugates of x. The rigid space X should be geometrically disjoint
union of very small discs centered at each of conjugates of x. When a becomes smaller, the
discs grow larger and, at some point, some of them crash into one disc, which decreases the
number of geometric connected components.

The cut-off condition is obviously |u − x| < max16=g∈G |gx − x|. Note that P (u) =∏
g∈G(u− gx). Hence, one has |u− gx| = |gx− x|. Thus,

|P (u)| =
∏
g∈G

|u− gx| = |u− x|
∏

16=g∈G

|x− gx| < θb(l/k).

If one stares at this explanation for a moment, he may turn it into a complete proof.

2 Abbes-Saito ramification filtrations

From now on, we drop Hypothesis 1.2 and consider the case when the residue field is im-
perfect. In this case, basic properties of the functions φ and ψ fail to hold and classical
ramification theory is no longer applicable.

In the imperfect residue field case, the ramification theory is initiated by Kato in [7] for
abelian representations and by Abbes and Saito in [1] for general case. Kedlaya [10] gave
a different approach for equal characteristic case following the ideas of Christol, Matsuda,
Mebkhout, and Tsuzuki.

When the residue field is imperfect, there are two kinds of wild ramifications. The first
kind is typically given by an Eisenstein extension ye + α1y

e−1 + · · ·αe = 0 with p|e. The
second kind involves imperfect residue field extension but does not change the group of
valuations, for example, xp = α for ᾱ ∈ k̄\k̄p. Unfortunately, one can not separate these
two kinds of ramifications like what we did for unramified extensions or tamely ramified
extensions. After base change, the order of such sub-extensions may shuffle.
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Another difficulty is that Ol/Ok is no longer monogenic, for example, in the case when
the residue field extension is Fp(x

1/p, y1/p)/Fp(x, y). Thus, the näıve generalization of Propo-
sition 1.8 is not possible. However, the rigid geometric interpretation can be generalized to
this case. This is carried out by Abbes and Saito in [1] and [2].

Definition 2.1. Take Z = (zj)j∈J ⊂ Ol to be a finite set of elements generating Ol over Ok,
i.e., Ok[(uj)j∈J ]/I ' Ol mapping uj to zj. Let (fi)i=1,...,n be a finite set of generators of I.
Define the Abbes-Saito space to be

asa
l/k,Z =

{
(uJ)

∣∣∣∣∣
|uj| ≤ 1, j ∈ J∣∣fi

(
(uj)j∈J

)∣∣ ≤ θa, 1 ≤ i ≤ n

}
. (2.1.1)

We denote the geometric connected components of asa
l/k,Z by πgeom

0 (asa
l/k,Z). The highest

ramification break b(l/k) of the extension l/k is defined to be the minimal b such that ∀a > b,
#πgeom

0 (asa
l/k,Z) = [l : k].

The intuition here is that when a À 0, asa
l/k,Z is geometrically just small polydiscs

around the solutions of fi((uj)j∈J) = 0, and when a → 0+, asa
l/k,Z is approaching to the

unit polydisc and, in particular, it is very likely to be geometrically connected. Thus, in the
process of a starting from a very big number and getting smaller, there is an a when some
components of asa

l/k,Z merge together. That is exactly the ramification break b(l/k).

They also define a version of logarithmic ramification number, which will give rise to
Swan conductors. We will not introduce the general definition, rather we will give a working
definition when l/k is totally ramified.

Definition 2.2. Let J = {1, . . . , m}. We say that k̄ has finite p-basis (b̄1, . . . , b̄m) ∈ k̄ if
{b̄e1

1 · · · b̄em
m |ej = 0, . . . , p − 1 for j ∈ J} form a basis of k̄ as a k̄p vector space. Let bj be a

lift in Ok of b̄j for each j. We also refer to (b1, . . . , bm) as a p-basis of Ok.
For the rest of this note, we always assume that k̄ has a finite p-basis. We may always

reduce to this case by certain limit argument.

Lemma 2.3. [14, Construction 3.3.5] or [15, Construction 2.1.6] We can choose c1, . . . , cm ∈
O×

l and b1, . . . , bm ∈ O×
k such that kj = k̄(c̄1, . . . , c̄j) has p-basis c̄1, . . . , c̄j, b̄j+1, . . . , b̄m and

c̄prj

j = prj for prj = [kj : kj−1] and all j = 1, . . . , m. We also choose the uniformizer πl so

that πk ≡ πe
l mod πe+1

l . Thus, c1, . . . , cm, πl generate Ol over Ok. More precisely,

{
ce1
1 · · · cem

m πi
l

∣∣ ej ∈ {0, . . . , prj − 1} for all j, and i ∈ {0, . . . , e− 1}} (2.3.1)

form a basis of Ol over Ok.
Let Ok〈u0, . . . , um〉/I ∼→ Ol be the map sending uj to cj for j = 1, . . . , m and u0 to πl,

where the angle brackets mean to take the completion with respect to the Gauss norm. We

will choose a set of generators p0, . . . , pm of I as follow: for every cprj

j or πe
l , one can write it

in terms of the basis listed in (2.3.1). This will give us an element pj or p0 in I. Obviously,
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p0, . . . , pm generate I. Moreover,

pj ∈ uprj

j − bj + (u0, πk) · kJu0, . . . , umK,
p0 ∈ ue

0 − πk + (u0πk, π
2
k) · kJu0, . . . , umK,

where bj is a polynomial in u1, . . . , uj−1 with coefficients in Ok for all j = 1, . . . , m.

Definition 2.4. Keep the notation from Lemma 2.3. Define the standard Abbes-Saito space
and logarithmic Abbes-Saito space to be

asa
l/k =

{
(u0, . . . , um)

∣∣∣∣∣
|u0| ≤ 1, . . . , |um| ≤ 1,

|p0(u)| ≤ θa, . . . , |pm(u)| ≤ θa

}

and asa
l/k,log =

{
(u0, . . . , um)

∣∣∣∣∣
|u0| ≤ 1, . . . , |um| ≤ 1,

|p0(u)| ≤ θa+1, |p1(u)| ≤ θa, . . . , |pm(u)| ≤ θa

}
,

where u = (u0, . . . , um).
Similarly, the highest logarithmic ramification break blog(l/k) of the extension l/k is

defined to be the minimal b such that ∀a > b, #πgeom
0 (asa

l/k,log) = [l : k].

Theorem 2.5. The Abbes-Saito spaces have the following properties.
(1) The ramification breaks b(l/k) and blog(l/k) depend only on l and k [1, Section 3]. In

particular, we can use the standard Abbes-Saito spaces to compute the ramification breaks.
(2) The ramification break (resp. logarithmic ramification break) gives rise to a filtration

of normal subgroups FilaGk (resp., FilalogGk) on the Galois group Gk [1, Theorem 3.3, 3.11].
Moreover, for l/k a finite Galois extension, both highest ramification breaks are rational
numbers [1, Theorem 3.8, 3.16].

(3) Let l/k be a finite separable Galois extension. If l/k is unramified, then FilaGl =
FilaGk [1, Proposition 3.7]. If l/k is tamely ramified with ramification index m, then
Filma

logGl = FilalogGk [1, Proposition 3.15].

(4) Define Fila+Gk = ∪b>aFilbGk (resp. Fila+
logGk = ∪b>aFilblogGk). Then the subquotients

FilaGk/Fila+Gk (resp. FilalogGk/Fila+
logGk) are p-abelian groups for any a ∈ Q≥1 (resp. a ∈

Q≥0) and are 0 if a /∈ Q, except possibly false in absolutely unramified and non-logarithmic
case ([1, Theorem 3.8, 3.16], [2, Theorem 1]).

(5) The inertia subgroup is FilaGk if a ∈ (0, 1] and the wild inertia subgroup is Fil1+Gk =
Fil0+

logGk [1, Theorem 3.7, 3.15].

(6) When the residue field k̄ is perfect, arithmetic ramification filtrations agree with
the classical upper numbered filtration in the following way: FilaGk = Fila−1

log Gk = Ga
k [1,

Section 6.1].

Proof. I will sketch some of the proofs.
(1) It is straightforward to check the independence on the generators of I. To see that

does not depend on generators of Ol/Ok, one can show that if we add a new (dummy)
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generator, the new Abbes-Saito space admits a fibration over the original Abbes-Saito space
whose fibers are closed discs of radius θa. The subtle difference between the polynomial rings
Ok[u0, . . . , um] and its completion in the definition does not affect the ramification breaks.

(2) The first statement is just abstract nonsense. The second one is essentially because
one defines the Abbes-Saito space over k and the geometric connect components and be seen
over the algebraic closure kalg, which has valued group |k×|Q. However, a rigorous proof
needs the theory of stable formal models of rigid spaces.

(3) For the unramified case, it is essentially because, for any finite Galois extension k′/k
linearly independent from l/k, Olk′ ' Ol⊗Ok

Ok′ . Thus, one can match up two Abbes-Saito
spaces in a natural way. In the tamely ramified and logarithmic case, one can also naturally
identify two Abbes-Saito spaces [1, Proposition 9.8].

(4) The proof used formal models and their reductions of Abbes-Saito spaces, which is
the main theorem in [2]. Saito proved a stronger version of this in [12, Theorem 1.3.3] stating
that for equal characteristic field k, the graded piece of logarithmic filtrations are actually
killed by p.

(5) is an easy fact.
(6) follows from the explicit calculation in Proposition 1.8 and 1.10.

One can define Artin conductors and Swan conductors as in the classical case, using the
same Formulas (1.6.1), (1.6.2). Essentially, for an irreducible representation ρ which exactly
factors through a Galois extension l/k, Art(ρ) = b(l/k)·dim ρ and Swan(ρ) = blog(l/k)·dim ρ.

Who cares about imperfect residue field, anyway?

The following theorem states that the Swan conductors measure the discrepancy in the Euler
characteristic formula.

Theorem 2.6 (Grothendieck-Ogg-Shavarevich Formula). Let k0 be a perfect field of char-
acteristic p and let l be a prime number different from p. Let X be a smooth proper curve
over k0 and let U be a dense open subset. Assume for simplicity, X\U = {x1, . . . , xn} are all
rational points over k0. Given a lisse Fl-sheaf F on U , one can read off the Swan conductor
Swanxj

(F) at each of the missing point xj. Then,

χc(U,F) =
2∑

i=0

(−1)i dimFl
H i

c(U,F) = χc(U,Fl) · rank Fl
F −

n∑
j=0

Swanxj
F . (2.6.1)

There is an analogous result for overconvergent F -isocrystals.
Very vaguely speaking, one can view this as an analogue of Riemann-Roch theorem. So,

it is natural to ask for a higher dimensional Theorem 2.6.
Let X be a smooth proper variety over k0 and D a divisor with simple normal crossings.

Let F be a lisse Fl-sheaf on X\D. The first difficulty is defining the Swan conductor
SwanDi

(F) along an irreducible components Di of D. An obvious definition is to pass to the
completion R = O∧

X,ηi
at the generic point ηi of Di. One immediately finds out that R is a
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complete discrete valuation ring with residue field equal to the function field of Di, which is
typically imperfect if dim Di ≥ 1.

In some sense, the above definition gives a possible way to overcome this difficulty.
Indeed, Saito, in [12], proved a higher dimensional Grothendieck-Ogg-Shavarevich formula
for lisse Q̄l-sheaves under some technical conditions. We will not discuss it here. It is
worth to point out that we do not expect any analogue of (2.6.1) holds for general lisse Q̄l-
sheaves in higher dimensional case. Instead, it should only hold for “clean” sheaves whose
ramifications along missing divisors are controlled by the generic points of the divisors. For
various definitions of cleanness, one may consult [8, 9, 12].

3 Hasse-Arf theorem

We will reproduce the main results in [14, 15]. The goal of the two papers is to prove the
following.

Conjecture 3.1 (Hasse-Arf Theorem). Let k be a complete discretely valued field. Then
the conductors Art(ρ) and Swan(ρ) are non-negative integers. Moreover, the subquotients
FilaGk/Fila+Gk and FilalogGk/Fila+

logGk are trivial for irrational a and are abelian groups killed
by p for rational a > 1 and 0, respectively.

This conjecture is first raised in [2], in which Abbes and Saito proved that the sub-
quotients of the filtrations are abelian groups expect possibly in the mixed characteristic
absolutely unramified and non-logarithmic case. Later Saito [12] proved that in the equal
characteristic case, FilalogGk/Fila+

logGk is an abelian group killed by p if a ∈ Q>0 (and is trivial
if a is irrational).

Our approach is very different. It originated as follow. In the case k is of equal charac-
teristic p > 0, there is another definition of Artin/Swan conductor using p-adic differential
modules, which was first introduced by Christol, Matsuda, Mebkhout, and Tsuzuki in the
perfect residue case and was carried out in general case by Kedlaya [10] later.

Kedlaya proved Hasse-Arf theorem for the differential conductors. Matsuda then asked
if one can prove a comparison theorem between the Abbes-Saito’s definition and Kedlaya’s
definition. Therefore, one can obtain a Hasse-Arf theorem for the ramification filtrations
defined by Abbes and Saito. The first step was carried out by Bruno Chiarellotto and
Andrea Pulita [4] in rank 1 case, using a different method to compare to a definition by
Kato. Later, I worked out the general case [14] using the p-adic differential modules.

In the mixed characteristic case, very little was known except the result of Abbes and
Saito mentioned above.

The main results in [14, 15] are the following.

Theorem 3.2. The Conjecture 3.1 holds except in the following cases.
(1) When k is of mixed characteristic and is absolutely unramified (i.e. p is a uniformizer

of k), we do not know if it is true for non-logarithmic filtration;
(2) When p = 2, instead of Swan(ρ) ∈ Z, we can only prove Swan(ρ) ∈ 1

2
Z.
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Remark 3.3. The first restriction also occurs in [2]. It reflects the failure of deforming the
uniformizer p (not even “slightly”). Explicitly, we have a dichotomy

Ω1
Ok/Zp

⊗ k̄ =

{ ⊕m
j=1 k̄ · dbj k is absolutely unramified,

k̄ · dπk ⊕
⊕m

j=1 k̄ · dbj otherwise.

The second restriction is purely technical. At some point, we can show that there exists
α ∈ Q such that n ·Swan(ρ) ∈ α +Z for all and n À 0 coprime to p. When p = 2 we cannot
completely recover the integrality of Swan(ρ). (For the proof, see the last paragraph of the
proof of Theorem 3.2.) In some cases, I think we can force α ∈ Z using a slight variant of
the method but I am not sure how to show it in general (see [15, Remark 3.5.12]), nor did I
know any counterexample for the integrality of Swan conductor.

Now we sketch a proof of the theorem. Since introducing Kedlaya’s definition requires
carrying out the whole theory of p-adic differential modules, I will just vaguely talk about
the proof, hiding Kedlaya’s definition in it.

The here given proof is not optimized in the equal characteristic case, in which case one
can get the integrality from slopes of Newton polygons very easily. We would like to make
the proof as a process of reduction to the perfect residue field case. The equal characteristic
case and the mixed characteristic case share the same strategy, but with different technical
difficulties.

Proof. Let k be a complete discretely valued field. We may always reduce to the case when
the residue field k̄ has a finite p-basis, or equivalently, dimk̄p(k̄) < ∞. We will only study the
essential part when l/k is a finite Galois totally ramified extension whose wild ramification
part is non-trivial. As in Lemma 2.3, the extension of ring of integers Ol/Ok is generated
by c1, . . . , cm, πl, or vaguely speaking, some “good” elements which allow us to write down
explicit equations by which they generate Ol.

We use Am
k [0, θa] to denote an m-dimensional polydisc over k with radius θa. Similarly,

for a nonarchimedean field K and η0 ∈ (0, 1), we use A1
K [η0, 1) to denote a half-open annulus

with inner radius η0 and outer radius 1.
We first give the outline of the proof, with serious gaps in it. Then we talk about how

to remedy the problems.

Step I: AS = TS theorem. (Make the Abbes-Saito space more functorial.)

There is a natural k-morphism π′ : asa
l/k → Am+1

k [0, θa] sending (u0, . . . , um) to (p0(u), . . . , pm(u))

(see Definition 2.4). The Abbes-Saito space is easy to define, but it is not easy to work with.
In particular, it is not preserved under base change, in other words, for k′/k a finite extension,
it is hard to link asa

l/k×π′,Am+1
k [0,θa] A

m+1
k′ [0, θa] to asa

l′/k′ , where l′ = k′l. In order to solve this

problem, we need introduce the thickening space tsa
l/k, together with π : tsa

l/k → Am+1
k [0, θa].

Pretend for a moment that we have a continuous homomorphism ψ : Ok → OkJδ0, . . . , δmK
such that ψ(πk) = πk + δ0 and ψ(bj) = bj + δj for j ∈ J . (This homomorphism always exists
in the equal characteristic case but never exists in the mixed characteristic case. I will come
back to this point in the remedy part.) We define tsa

l/k = Am+1
k [0, θa]×k,ψ l. Using standard
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approximation argument, we can prove that tsa
l/k ' asa

l/k. An alternative way to understand

this construction is that we change the morphism π′ : asa
l/k → Am+1

k [0, θa] to make it “more
functorial” on k.

Example 3.4. It is good to see the difference of two definitions in an example. Consider
the extension of Fp((x)) given by yp − xp−1y = x. The Abbes-Saito space is given by

{(u, δ)||u| ≤ 1, |δ| < θa, up − xp−1u = x + δ},
whereas the thickening space is given by

{(u, δ)||u| ≤ 1, |δ| < θa, up − (x + δ)p−1u = x + δ}.
In other words, the Abbes-Saito space asa

l/k consists of the points which are close to the
solutions to those equations; in contrast, the thickening space tsa

l/k consists of points which
are solutions to some equations whose coefficients are close to the original equations.

Step II: generic p-th roots. (A procedure to reduce to the perfect residue case.)
It is natural to make the following observation. Let a be slightly bigger than b(l/k)

then tsa
l/k is geometrically the disjoint union of [l : k] discs. What often happens is that if

you only increase the radius in certain direction, πgeom
0 (tsl/k) stays the same even when the

radius goes across the cut-off point θb(l/k). In contrast, if you increase radius along some
other direction, πgeom

0 (tsl/k) will change as soon as the radius reaches θb(l/k). In the latter
case, we say that direction dominates. We remark that if we change the lift of b̄j from bj to
bj + πk, then whether the “uniformizer direction” is dominant may be changed as well.

A natural question arises along this line: when is the direction corresponding to δ0

(uniformizer) dominant? If so, can we “forget” about other directions, in other words, can
we make the residue field perfect by simply adding in p-th roots of bj for all j? Moreover,
can we make the “uniformizer direction” always dominant, say by changing a dominant bj

to bj + πk if it is not dominant?
Following these questions and inspired by the work of Borger in [3], Kedlaya introduced

the notation of generic rotation. Let x1, . . . , xm be transcendental over k, let k′ be the
completion of k(x1, . . . , xm) with respect to the (1, . . . , 1)-Gauss norm and let l′ = k′l. It
easy to see that b(l′/k′) = b(l/k). The upshot is that if we set the p-basis of k′ to be
{b1 + x1πk, . . . , bm + xmπk, x1, . . . , xm}, then the uniformizer direction is always dominant.
Therefore, if the answers to the above questions are positive, we can just go ahead to add
in all the p-th power roots of the prescribed p-basis and reduce to the perfect residue field
case.

To realize the strategy above, we have to find a tool to detect the dominance and to
study how the ramification numbers vary. This is where p-adic differential modules come
into the picture.

Step III: étaleness. (Where we get the differential module from.)

Vaguely speaking, we hope that π : tsa
l/k → Am+1

k [0, θa] is étale, so that we can push-

forward the ring of functions on tsa
l/k to Am+1

k [0, θa] to obtain a differential module E , i.e.,
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a locally free module with integrable connection ∇ : E → E ⊗ Ω1
Am+1

k [0,θa]
. (In the equal

characteristic p case, there is no good theory of differential modules available in the sense of
Dwork. Just bear me for a moment; remedy will be explained later.)

The étaleness of π is not true in general. Of course, it is étale (in fact disjoint union of
copies) when a > b(l/k). Fortunately, Abbes and Saito proved in [1, 2] that π is étale for
a > b(l/k)− ε for some ε > 0. This extra ε is crucial for our approach, using which we can
read off the precise b(l/k) by the following step.

Step IV: relation between radii of convergence of differential modules with
ramification breaks. (How to use differential modules to “bind” the space together.)

The sheaf E = π∗Otsa
l/k

is a differential module when a > b(l/k) − ε (not quite in

the equal characteristic case, see the Remedy part). We consider its “näıve” base change
of E to Am+1

l [0, θa]. When restricting to the fiber at δ0 = · · · = δm = 0, E splits as
l⊗k l =

∏
g∈Gal(l/k) l(g), where l(g) are just copies of l, indexed by g ∈ G. The Taylor series lift

the idempotent elements to the locus where they converge. Thus, the radius θa where tsa
l/k,

or equivalently asa
l/k, becomes geometrically disjoint of copies of Am+1

k [0, θa] is the same as
the radius of convergence of the differential module E . We hence turn the question of rigid
geometry to a question of p-adic differential modules.

A good thing of radius of convergence is that one can calculate it easily under base
change. In particular, if we want to forget about some element in the p-basis, we just ignore
the radius for the corresponding derivative. Using this, we can finish the project laid out in
Step II and hence prove (modulo the lies I said) the Hasse-Arf theorem.

Step V: Logarithmic filtration. (A trick to deal with logarithmic filtration.)
In the logarithmic case, we do not expect that we can always make the uniformizer

direction dominant. Instead, we expect a dichotomy:

• if the uniformizer direction is dominant, we are good anyway;

• if the uniformizer direction is not dominant, we expect that, after a large tame base
change to kn = k(π

1/n
k ) and then a generic rotation for kn as in Step II, blog(l

′
n/k

′
n) =

nblog(l/k)− 1 and the uniformizer direction is dominant. (In the mixed characteristic
case, we have a technical issue here, see the remedy later.)

Thus, we can always deduce that n · Swan(ρ) ∈ Z for n À 0 and p - n. Taking two coprime
numbers n1 and n2 will imply that Swan(ρ) itself is an integer.

To get the result on the subquotients, one uses a tricky wildly ramified base change due
to Kedlaya, which we will not discuss here.

Remedy in the equal characteristic p case: We lift the thickening space tsa
l/k over

k to a rigid space TSa
l/k over an annulus over a field of characteristic zero.

The only compliant in this case is that we do not have a good theory of differential
modules over a characteristic p field. The trick is to lift the rigid space tsa

l/k to a rigid

space TSa
l/k over A1

K [η0, 1) for some η0 ∈ (0, 1), where K is the fraction field of a Cohen

ring OK of k̄ and A1
K [η0, 1) = {x|η0 ≤ |x| < 1}. Roughly speaking, the lifting process is
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just writing down equations that define tsa
l/k as an affinoid subspace of Am+1

k [0, 1] and lifting

the coefficients to OKJT K; then these equations will give the space TSa
l/k over the annulus

A1
K [η0, 1). Vaguely speaking, one can show that geometric connected components of tsa

l/k

are in one-to-one correspondence with “geometric” connected components of TSa
l/k when

η0 → 1. Here, “geometric” means up to a base extension from A1
K [η0, 1) to A1

K′ [η
1/ek′/k

0 , 1),
where k′ is a finite separable extension of k of naive ramification degree ek′/k and K ′ is the
fraction field of a Cohen ring of the residue field of k′.

In fact, the Steps III-V of the proof are carried out for TSa
l/k instead of the thickening

space itself.

Remedy in the mixed characteristic case: We do not require ψ : Ok → OkJδ0, . . . , δmK
to be a homomorphism, but just a function.

Basically, the main obstruction of constructing a homomorphism ψ is that ψ(p) is forced
to be p but not something like (πk + δ0)

βk if πβk

k = p. Thus, we can pathetically claim
that ψ is a homomorphism modulo p. When βk = vk(p) is big, this turns out to be a very
strong approximation, which allows us to carry out all the steps with some modification. In
contrast, when βK = 1, we can not even distinguish ψ(p) = p with ψ(p) = p + δ0. This
approximation is too weak to obtain the main theorem.

In Step I, we define the standard thickening space tsa
l/k,ψ as the rigid space associated to

k〈u0, . . . , um, π−a
k δ0, . . . , π

−a
k δm〉

/(
ψ(p0(u)), . . . , ψ(pm(u))

)
,

where we apply ψ termwise to pj(u). It turns out that the AS = TS theorem holds, even with
the existence of some reasonable error terms, namely oscillating ψ(pj(u)) by some “small”
element Rj ∈ OkJu0, . . . , um, δ0, . . . , δmK. (The ψ(pj(u)) themselves are not very well-defined
anyway.)

Step II is more delicate. Since ψ is not actually a homomorphism, under base change,
tsa

l/k will give some error terms, which is originally of the scale of |p|. Thus, we need to make
some mild base change so that the error terms are still in the range to invoke the AS = TS
theorem. In particular, we cannot put in all the p-th power roots of some bj at the same time.
Instead, we base change to k′ = k(x)∧,unr,∧(bj +xπk)

1/p, where the hat is the completion with
respect to the 1-Gauss norm. This operation is only valid when βk = vk(p) ≥ 2, otherwise
the error terms from ψ will exceed the restriction posed in the AS = TS theorem (compare
Remark 3.3). It is an easy exercise that, after finitely many such base change, we can reduce
to the non-fiercely ramified case (i.e., the residue field extension is separable), which has no
difference from the perfect residue field case.

It is worth to mention that when dealing with the logarithmic filtrations, we can first
make a large tame base change to avoid this absolutely unramified (βk = 1) issue.

Step III and Step IV do not need any further changes. In Step V, we omitted a key
point when first introducing it. The dichotomy only appears if we have a continuous ho-
momorphism φ : Ok → OkJδ1, . . . , δmK sending bj to bj + δj, in which case, the differential
module can be obtained from a one dimensional space “A1

k[0, θ
a] ×k,ψ′ l → A1

k[0, θ
a]” where

the function ψ′ : Ok → OkKδ0K together with the above homomorphism gives ψ. If this is

11



the case, we are essentially studying one dimensional variation of radii of convergence, which
gives rise to the result in Step V.

When such a homomorphism φ does not exist, we are forced to work with higher di-
mensional variation of radii of convergence using [11]. Consequently, we have to modify the
second case of the dichotomy to be blog(l

′
n/k′n) = nblog(l/k) − αl/k for some αl/k ∈ R not

depending on n. Here is my favorite argument ♥:
By the non-logarithmic Hasse-Arf theorem, nSwan(ρ) ∈ Z + β for β = αl/k dim ρ. Take

n1, n2 À 0 coprime to p as closer to each other as possible, in other words, take n1 = n2 + 1
when p 6= 2 or take n1 = n2 + 2 when p 6= 2. Thus, we obtain α ∈ Z when p = 2 and
α ∈ 1

2
Z when p = 2. Then, pick two coprime n3, n4 À 0 both coprime to p. When p 6= 2,

n3Swan(ρ), n4Swan(ρ) ∈ Z will imply that Swan(ρ) ∈ Z. When p = 2, same argument can
only prove that Swan(ρ) ∈ 1

2
Z. Evil even prime number p = 2 only has two congruence

classes....
(This argument is slightly different from the one I used in [15, Section 3.5] because in

the paper I was trying to avoid the notational complication when n is not congruent to 1
modulo p[l : k].)

Remarks on the relations with Abbes and Saito’s approach
The essential difference between our approaches and their methods reflects the two differ-

ent points of view of rigid analytic geometry: one is working with affinoid algebras and using
p-adic analysis, and the other one is using formal models of affinoid algebras and studying
their (stable) reductions.

In the study of rigid geometry, it often happens that these two approaches can reach the
same goal using completely irrelevant arguments. However, the deep relation between these
two methods is reflected in many (unexpected) places. The failure of proving Conjecture 3.1
in the mixed characteristic and absolutely unramified case sets a perfectly good example.
On one hand, Abbes and Saito failed because of the reason in Remark 3.3; on the other
hand, I failed because I can not deform p as in “Remedy in the mixed characteristic case”.
They seem to come from the same origin but appear in a complete different form.

The two approaches have their own advantages. The Abbes and Saito’s approach grasps
tightly the integral structure, which gives them easy access to a global theory in the vein of
Grothendieck-Ogg-Shavarevich formula (see [12]). In contrast, the approach through p-adic
analysis is less rigid and can “deform” better. One can obtain variational properties of Swan
conductors easily (see [11] and [9]).
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