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Abstract

We construct parabolic analogues of (global) eigenvarieties, of patched eigenvarieties and
of (local) trianguline varieties, that we call respectively Bernstein eigenvarieties, patched Bern-
stein eigenvarieties, and Bernstein paraboline varieties. We study the geometry of these rigid
analytic spaces, in particular (generalizing results of Breuil-Hellmann-Schraen) we show that
their local geometry can be described by certain algebraic schemes related to the generalized
Grothendieck-Springer resolution. We deduce several local-global compatibility results, in-
cluding a classicality result (with no trianguline assumption at p), and new cases towards the
locally analytic socle conjecture of Breuil in the non-trianguline case.
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1 Introduction

Let p be a prime number. The study of p-adic eigenvarieties is an important and fruitful theme
in arithmetic geometry. This paper is motivated by the role that eigenvarieties play in the study
of local-global compatibility problems in the (p-adic) Langlands program (e.g. see [19] or [37]).
The “classical” theory of eigenvarieties has the restriction that one can only see finite slope p-
adic automorphic forms or representations, or, in terms of Galois representations, trianguline
representations. In order to extend the theory to the non-trianguline case, we construct in this
paper a parabolic version of eigenvarieties, that we call Bernstein eigenvarieties. Note that there
was already some work in that direction, cf. [53], [68], [2] (see after Theorem 1.4 below for a
brief comparison with [53]). These spaces parametrize certain p-adic automorphic (resp. Galois)
representations which are not of finite slope (resp. not trianguline). Following the strategy and
methods in the series of articles [17], [18], [19] (which themselves are based on many previous
results by other people), we study and use the geometry of these Bernstein eigenvarieties and of
their patched and (local) Galois avatars to obtain various local-global compatibility results in the
non-trianguline case.

Before stating our main results, we briefly give the global setup of the paper (with some
simplifications for convenience). Let n ≥ 2 an integer, F+ a totally real number field and F a
totally imaginary quadratic extension of F+ such that all places of F+ dividing p split in F . We
fix a unitary algebraic group G over F+ which becomes GLn over F and such that G(F+ ⊗Q R)
is compact and G is split at all places above p. Let Up =

∏
v-∞,p Uv be a compact open subgroup

of G(A∞,p
F+ ), and E be a sufficiently large finite extension of Qp. Put

Ŝ(Up, E) := {f : G(F+)\G(A∞F+)/Up → E, f continuous},

which is a Banach space for the supremum norm and is equipped with a continuous (unitary)
action of G(F+

p ) := G(F+ ⊗Q Qp) by right translation on functions. For simplicity, we assume in
this introduction that p is inert in F+, and we fix a place ℘ of F dividing p. We have then G(F+

p ) ∼=
GLn(F+

p ) ∼= GLn(F℘) and Ŝ(Up, E) is a unitary Banach space representation of GLn(F℘). We

recall that the locally algebraic vectors Ŝ(Up, E)lalg (for the action of GLn(F℘)) admit a description
in terms of classical automorphic representations of G (see for example Proposition 3.2.1 (1)).
The space Ŝ(Up, E) is also equipped with a faithful action of a certain commutative global Hecke
algebra T(Up) over OE (the ring of integers of E) which is generated by sufficiently many prime-
to-p Hecke operators. With some more assumptions (on G, F , etc., see § 3.2.4 and § 3.3), one can
show that

� T(Up) is isomorphic to a finite product of complete noetherian OE-algebras T(Up)ρ, indexed
by some n-dimensional continuous representations ρ of GalF over the residue field kE of OE ;

� for each ρ such that T(Up)ρ 6= 0, there is a surjective morphism Rρ,S � T(Up)ρ, where Rρ,S
is the universal deformation ring of certain deformations of ρ (see § 3.3).

These properties are not necessary for our construction of Bernstein eigenvarieties, but for con-
venience we assume they hold in the introduction. With respect to T(Up) ∼=

∏
ρ T(Up)ρ, we

have a decomposition Ŝ(Up, E) ∼=
⊕

ρ Ŝ(Up, E)ρ of GLn(F℘)-representations. We fix henceforth

ρ such that T(Up)ρ 6= 0, and thus Ŝ(Up, E)ρ 6= 0. Let mρ ⊂ T(Up)ρ[1/p] be a maximal ideal
and ρ : GalF → GLn(E) the associated representation, where GalL := Gal(L/L) for a field L.
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The subspace Ŝ(Up, E)ρ[mρ] of Ŝ(Up, E)ρ annihilated by mρ is an admissible unitary Banach
space representation of GLn(F℘). The study of its relation with the local Galois representation
ρ℘ := ρ|GalF℘

, referred to as local-global compatibility, is one of the main themes in the (p-adic)
Langlands program. We first state our local-global compatibility results, which are obtained using
the aforementioned Bernstein eigenvarieties, and we describe these latter afterwards. For these
results, as in [19] we also need the following so-called Taylor-Wiles hypothesis:

Hypothesis 1.1. (1) p > 2;

(2) the field F is unramified over F+, F does not contain a non trivial root p
√

1 of 1 and G is
quasi-split at all finite places of F+;

(3) Uv is hyperspecial when the finite place v of F+ is inert in F ;

(4) ρ is absolutely irreducible and ρ(GalF ( p
√

1)) is adequate.

Let B ⊂ GLn be the Borel subgroup of upper triangular matrices and T ⊂ B the subgroup of
diagonal matrices. We first have the following classicality result.

Theorem 1.2 (cf. Theorem 7.2.9). Assume Hypothesis 1.1 and the following hypothesis (at p)1:

(1) ρ℘ is potentially crystalline with distinct Hodge-Tate weights and is generic (in the sense of
§ 2.3);

(2) there exists a parabolic subgroup P ⊇ B of GLn such that JP (Ŝ(Up, E)an
ρ [mρ]) has non-

zero locally algebraic vectors for LDP (F℘), where JP (·) is Emerton’s locally analytic Jacquet
functor for P ([40]) and LDP is the derived subgroup of the Levi subgroup LP ⊇ T of P .

Then Ŝ(Up, E)[mρ]
lalg 6= 0, i.e. ρ is associated to a classical automorphic representation of

G(AF+).

The theorem in the case P = B was proved in [19]. Indeed, the assumption (2) in Theorem
1.2 when P = B is equivalent to JB(Ŝ(Up, E)an

ρ [mρ]) 6= 0, which means that ρ appears on the
(classical) eigenvariety associated to G with tame level Up. The main novelty of Theorem 1.2 is
that ρ℘ is not necessarily trianguline.

Assume that ρ℘ is generic potentially crystalline and let r(ρ℘) be the Weil-Deligne repre-
sentation associated to ρ℘. It admits a decomposition r(ρ℘) ∼= ⊕ri=1ri by absolutely irreducible
Weil-Deligne representations ri (which are distinct as ρ℘ is generic). Each ordering of the ri
defines a partial flag F on r(ρ℘), and we let P ⊇ B be the associated parabolic subgroup. We say
F is a P -filtration on r(ρ℘), or a refinement of ρ℘. By Fontaine’s theory, the filtration F induces
a P -filtration Fτ on DdR(ρ℘)τ := DdR(ρ℘)⊗(F℘⊗QpE) (F℘⊗F℘,τ E) for each τ : F℘ ↪→ E. Let Filτ
be the full flag of the Hodge filtration on DdR(ρ℘)τ . The relative position of the partial flag Fτ

and the full flag Filτ is measured by an element w ∈ W max
P , where W max

P is the set of maximal
length representatives in the Weyl group W ∼= Sn of GLn of the right cosets WLP \W (here WLP

is the Weyl group of LP ). More precisely, fixing a basis of DdR(ρ℘)τ over E, then Fτ (resp. Filτ )
corresponds to an element in GLn /P (resp. GLn /B), still denoted by Fτ (resp. Filτ ). There ex-
ists a unique wτ ∈ W max

P such that (Fτ ,Filτ ) lies in the GLn-orbit of (1, wτ ) ∈ GLn /P ×GLn /B

1We also need some mild assumption on ρv for finitely many finite places v - p of F that we omit in the
introduction, see Theorem 7.2.9.
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for the diagonal GLn-action (where wτ here denotes a lifting of wτ ∈ W in NGLn(T )). We let
wF := (wτ ) ∈ W max

P,F℘
:=
∏
τ :F℘↪→E W max

P .

On the automorphic side, to any w ∈ W min
P,F℘

(defined as W max
P,F℘

but with “maximal length”

replaced by “minimal length”), one can associate as in [13, § 6] a topologically irreducible locally
Qp-analytic representation C(w,F ) of GLn(F℘) over E. We refer to loc. cit. and § 3.2.5 for its
precise definition. We recall that, when w = 1, C(1,F ) is isomorphic to the locally algebraic
representation of GLn(F℘) associated to ρ℘ by the classical (suitably normalized) local Lang-

lands correspondence (and is actually independent of F ) and that if Ŝ(Up, E)[mρ]
lalg 6= 0, then

Ŝ(Up, E)[mρ]
lalg ∼= C(1,F )⊕m for some m ∈ Z≥1. Let w0 ∈ WF℘ :=

∏
τ :F℘→E W be the element

of maximal length, the following theorem establishes several new cases of [14, Conj. 5.3].

Theorem 1.3 (cf. Theorem 7.2.20). Assume Hypothesis 1.1, Ŝ(Up, E)[mρ]
lalg 6= 0, and that ρ℘

is generic potentially crystalline with distinct Hodge-Tate weights. Assume moreover

(∗) any two factors GLni in LP =

GLn1 · · · 0
...

. . .
...

0 · · · GLnr

 with ni > 1 (if they exist) are not

adjacent.

Then for w ∈ W min
P,F℘

we have a GLn(F℘)-equivariant injection C(w,F ) ↪→ Ŝ(Up, E)an
ρ [mρ] if and

only if ww0 ≥ wF for the Bruhat order2.

The case P = B was proved in [19] (see also [14], [36] for related work). When P 6= B, almost
nothing was known, except very partial results in [38]. Note that, if there is at most one ri with
dimE ri > 1, then the assumption (∗) is empty and [14, Conj. 5.3] is proved for any refinement
F of ρ℘. The technical assumption (∗) comes from some properties of the geometry of Bernstein
eigenvarieties (see the discussion at the end of this introduction). Without (∗), we still have some
partial results towards [14, Conj. 5.3], for instance the “only if” part in the conclusion of Theorem
1.3 holds without any assumption on P .

When P = B, both Theorem 1.2 and Theorem 1.3 followed from an extensive study of
eigenvarieties (and of the corresponding patched eigenvarieties and trianguline varieties) in [17],
[18], [19]. We follow the same strategy in this work.

Let us start by defining the global Bernstein eigenvarieties. We need more notation. We fix

a parabolic subgroup P ⊇ B of GLn and write its Levi subgroup LP as

GLn1 · · · 0
...

. . .
...

0 · · · GLnr

.

We fix Ω =
∏r
i=1 Ωi a cuspidal Bernstein component of LP (F℘) ∼=

∏r
i=1 GLni(F℘), and denote

by ZΩ = ⊗ri=1ZΩi the corresponding Bernstein centre (over E). Thus a point of (SpecZΩ)rig

corresponds to an irreducible smooth cuspidal representation of LP (F℘), and we frequently use
the associated representation to denote the point. Let Z0 := ZLP (OF℘) (where ZLP is the center

of LP ) and Ẑ0 be the rigid space over E parametrizing continuous characters of Z0. We fix a
uniformizer $ of F℘. For a continuous character χ of (O×F℘)⊕s with s ∈ Z≥1, we denote by χ$ the

character of (F×℘ )⊕s such that χ$|(O×F℘ )⊕r = χ and χ$
(
($k1 , . . . , $ks)

)
= 1 for any k1, . . . , ks ∈ Z.

2Note that for w ∈ WF℘ , w ∈ W min
P,F℘

is equivalent to ww0 ∈ W max
P,F℘

.
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Finally we also fix λ = (λi)1≤i≤n = (λi,τ ) 1≤i≤n
τ :F℘↪→E

an integral P -dominant weight of GLn(F℘). The

following theorem summarizes some key features of Bernstein eigenvarieties:

Theorem 1.4 (cf. § 3.2). For each (Ω, λ) as above there is a rigid analytic space EΩ,λ(Up, ρ) over
E and an injection of rigid spaces over E

ιΩ,λ : EΩ,λ(Up, ρ) ↪→ (Spf T(Up)ρ)
rig × (SpecZΩ)rig × Ẑ0

(
↪→ (Spf Rρ,S)rig × (SpecZΩ)rig × Ẑ0

)
satisfying the following properties:

(1) the induced morphism EΩ,λ(Up, ρ)→ Ẑ0 is locally finite;

(2) a point (η, πLP , χ) ∈ (Spf T(Up)ρ)
rig × (SpecZΩ)rig × Ẑ0 lies in EΩ,λ(Up, ρ) if and only if

there exists an injection of locally Qp-analytic representations of LP (F℘) (where mη denotes the
maximal ideal of T(Up)ρ[1/p] associated to η):

πLP ⊗E (χ$ ◦ detLP )⊗E L(λ)P ↪−→ JP (Ŝ(Up, E)an
ρ )[mη]

where JP (·) is Emerton’s Jacquet functor for P , L(λ)P is the algebraic representation of LP (F℘)
of highest weight λ (with respect to B ∩ LP ), and detLP : LP (F℘)→ ZLP (F℘) is the determinant
map;

(3) EΩ,λ(Up, ρ) is equidimensional of dimension [F℘ : Qp]r;

(4) the set of classical points, i.e. the points (η, πLP , χ) ∈ EΩ,λ(Up, ρ) such that

πLP ⊗E (χ$ ◦ detLP )⊗E L(λ)P ↪−→ JP (Ŝ(Up, E)lalg
ρ )[mη],

is Zariski-dense in EΩ,λ(Up, ρ).

Similar spaces have been constructed in [53] (see also [2] for a construction via overconvergent
cohomology, and also [68]), but the new feature in Theorem 1.4 is that we take into account
the action of the full Bernstein centre (rather than just the action of ZLP (F℘)), obtained by
applying Bushnell-Kutzko’s theory of types. This allows to parametrize the full LP (F℘)-action,
which is particularly important for our applications. When P = B, we have an isomorphism

Ẑ0×(SpecZΩ)rig ∼= T̂ (F℘) (= continuous characters of T (F℘)) and we can show that all (reduced)
varieties EΩ,λ(Up, ρ)red are isomorphic to the (finite slope) reduced eigenvariety E(Up, ρ)red, see
Remark 3.2.6.

We next discuss p-adic families of Galois representations on EΩ,λ(Up, ρ). For a point xi of
(SpecZΩi)

rig (i ∈ {1, . . . , r}), we denote by πxi the associated irreducible supercuspidal rep-
resentation of GLni(F℘) over E and we let rxi := rec(πxi) be the associated (absolutely irre-
ducible) Weil representation via the classical local Langlands correspondence (normalized as in
[49]). The Weil representation rxi corresponds to a Deligne-Fontaine module DFxi (see for in-
stance [21, Prop. 4.1]), which by Berger’s theory [6, Thm. A] corresponds in turn to a p-adic
differential equation ∆xi , i.e. a (ϕ,Γ)-module of rank ni over Rk(xi),F℘ which is de Rham of
constant Hodge-Tate weight 0 (here k(xi) is the residue field at xi and Rk(xi),F℘ is the Robba
ring associated to F℘ with k(xi)-coefficients). Let x := (η, (xi), χ = (χi)) ∈ EΩ,λ(Up, ρ), the
image of η via the injection (Spf T(Up)ρ)

rig ↪→ (Spf Rρ,S)rig corresponds to a continuous repre-
sentation ρx : Gal(F/F ) → GLn(k(x)) over the residue field k(x) of EΩ,λ(Up, ρ) at x. We put
ρx,℘ := ρx|GalF℘

.
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Theorem 1.5 (cf. Theorem 3.2.16, Proposition 3.2.17). Let x as above.

(1) The (ϕ,Γ)-module Drig(ρx,℘) associated to ρx,℘ admits a P -filtration Fil•Drig(ρx,℘) by
saturated (ϕ,Γ)-submodules of Drig(ρx,℘) such that for i = 1, . . . , r:(

griDrig(ρx,℘)
)
[1/t] ∼=

(
∆′xi ⊗Rk(x),F℘

Rk(x),F℘(χi,$)
)
[1/t], (1.1)

where Rk(x),F℘(δ) denotes the rank one (ϕ,Γ)-module associated to a continuous character δ and

∆′xi := ∆xi ⊗Rk(x),F℘
Rk(x),F℘(unr(q−si−1+(1−ni)/2)), q being the cardinality of the residue field

of F℘, si−1 := r1 + · · · + ri−1 and unr(a) denoting the unramified character of F×℘ sending any
uniformizer to a.

(2) For τ : F℘ ↪→ E, the Sen τ -weights of ρx,℘ are given by {hji,τ +wt(χi)τ} 1≤i≤r
si−1+1≤ji≤si

, where

wt(χ′)τ denotes the τ -weight of χ′ for a continuous character χ′ of O×F℘ (or of F×℘ ).

We call a filtration on a (ϕ,Γ)-module satisfying the property (1.1) an Ω-filtration, and call
({∆xi}, {χi}) a parameter of the Ω-filtration. Theorem 1.5 (1) gives an analogue of the fact that
p-adic Galois representations over eigenvarieties are trianguline. The proof of Theorem 1.5 (1) is
based on an interpolation result for Ω-filtrations in families given in § A.1, which is an analogue
of the theory of global triangulation of [60], [67], [4].

We now define rigid analytic spaces which are (local) Galois avatars of Bernstein eigenvarieties
and analogues of the trianguline variety of [52], [17] when P = B. They parametrize Galois
representations admitting an Ω-filtration. Let ρ℘ := ρ|GalF℘

and h := (hi)i=1,...,n := (hi,τ ) i=1,...,n
τ :F℘↪→E

with hi,τ = λi,τ − i+ 1. Note that the weight h is strictly P -dominant. Let Rρ℘ be the universal

framed deformation ring of ρ℘. Define UΩ,h(ρ℘) as the subset of (Spf Rρ℘)rig × (SpecZΩ)rig × Ẑ0

which consists of the points (%, (xi), (χi)) such that:

� the parameter
(
(xi), (χi)

)
is generic in the sense of § 4.2;

� Drig(%) admits an Ω-filtration {FiliDrig(%)} such that one has embeddings

griDrig(%)⊗Rk(x),F℘
Rk(x),F℘(χ−1

i,$) ↪−→ ∆xi ⊗Rk(x),F℘
Rk(x),F℘(zhsi )

where the image has Hodge-Tate weights (hsi−1+1, . . . ,hsi) (here zhsi :=
∏
τ :F℘↪→E τ(z)hsi,τ ).

We define XΩ,h(ρ℘) to be the (reduced) Zariski-closure of UΩ,h(ρ℘) in (Spf Rρ℘)rig×(SpecZΩ)rig×
Ẑ0 and denote by ιΩ,h : XΩ,h(ρ℘) ↪→ (Spf Rρ℘)rig × (SpecZΩ)rig × Ẑ0 the closed embedding. We
call XΩ,h(ρ℘) a Bernstein paraboline variety. When P = B, one can check that XΩ,h(ρ℘) is
isomorphic to the trianguline variety X�

tri(ρ) of [17] (see Remark 4.2.4 (1)). It also has similar
geometric properties as X�

tri(ρ) (compare the following theorem with [17, Thm. 2.6]):

Theorem 1.6 (cf. Theorem 4.2.5). (1) The rigid analytic space XΩ,h(ρ℘) is equidimensional of
dimension

n2 + [F℘ : Qp]
(n(n− 1)

2
+ r
)
.

(2) The set UΩ,h(ρ℘) is Zariski-open and Zariski-dense in XΩ,h(ρ℘).

(3) The rigid analytic space UΩ,h(ρ℘) is smooth over E, and the natural morphism UΩ,h(ρ℘)→
(SpecZΩ)rig × Ẑ0 is smooth.
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Note that, differently from the trianguline case, the proof of Theorem 1.6 crucially uses Kisin’s
results on potentially crystalline deformation rings ([63]).

Similarly as in [17], the Bernstein paraboline varieties are closely related to a patched version of
the Bernstein eigenvarieties. Recall that under Hypothesis 1.1, it was constructed in [26] a p-adic
unitary Banach space representation Π∞ of GLn(F℘) equipped with an action of a certain patched
Galois deformation ring R∞ ∼= Rp∞⊗̂OERρ℘ (commuting with GLn(F℘)). There is an ideal a of R∞

such that one has a surjection R∞/a � Rρ,S and an isomorphism Π∞[a] ∼= Ŝ(Up, E)ρ. Applying

the construction of Bernstein eigenvarieties with Ŝ(Up, E) replaced by Π∞, we can construct an
embedding of rigid analytic spaces

ιΩ,λ : E∞Ω,λ(ρ) ↪−→ (Spf R∞)rig × (SpecZΩ)rig × Ẑ0

∼= (Spf Rp∞)rig × (Spf Rρ℘)rig × (SpecZΩ)rig × Ẑ0 (1.2)

which satisfies the properties in the following theorem:

Theorem 1.7 (cf. § 3.3). (1) A point (my, πLP , χ) ∈ (Spf R∞)rig×(SpecZΩ)rig×Ẑ0 lies in E∞Ω,λ(ρ)
if and only if one has an LP (F℘)-equivariant embedding

πLP ⊗E (χ$ ◦ detLP )⊗E L(λ)P ↪−→ JP (ΠR∞−an
∞ )[my]

where ΠR∞−an
∞ denotes the R∞-analytic vectors in the sense of [17, § 3.1].

(2) The rigid analytic space E∞Ω,λ(ρ) is reduced and equidimensional of dimension

dim(Spf Rp∞)rig + n2 + [F℘ : Qp]
(n(n− 1)

2
+ r
)
.

(3) There is a natural morphism of rigid spaces

EΩ,λ(Up) −→ E∞Ω,λ(ρ)×(Spf R∞)rig (Spf Rρ,S)rig

which is bijective on points (where the morphism (Spf Rρ,S)rig → (Spf R∞)rig is induced by
R∞/a � Rρ,S).

(4) The embedding (1.2) factors through

E∞Ω,λ(ρ) ↪−→ (Spf Rp∞)rig × (XΩ,h(ρ℘)) (1.3)

(where  is a certain shift of the natural embedding, see (3.32)) and induces an isomorphism
between E∞Ω,λ(ρ) and a union of irreducible components of (Spf Rp∞)rig× (XΩ,h(ρ℘)) equipped with
the reduced closed rigid subspace structure.

To gain a better understanding of the embedding (1.3), we are led to study the local geometry
of Bernstein paraboline varieties. As in the trianguline case (when P = B), it is closely related to
certain schemes appearing in parabolic generalizations of Grothendieck’s and Springer’s resolution
of singularities. We now define these schemes. For a closed algebraic subgroup H of GLn (seen over

F℘), put H℘ := (Res
F℘
Qp H)×SpecQp SpecE. Likewise, for a Lie subalgebra h of the Lie algebra gln

over F℘, put h℘ := h⊗Qp E. Let g̃℘ (resp. g̃P,℘) be the closed E-subscheme of (GLn,℘ /B℘)×gln,℘
(resp. of (GLn,℘ /P℘)× gln,℘) defined by:

{(gB℘, ψ) ∈ (GLn,℘ /B℘)× gln,℘ | Ad(g−1)ψ ∈ b℘}
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(
resp. {(gP℘, ψ) ∈ (GLn,℘ /P℘)× gln,℘ | Ad(g−1)ψ ∈ rP,℘}

)
,

where b ⊂ gln (resp. rP ∼= nP o zLP ) is the Lie algebra of B (resp. of the full radical NP oZLP of
P ∼= NP o LP ). Put

XP,℘ := g̃P,℘ ×gln,℘ g̃℘.

We define a morphism π as the composition:

π : XP,℘ ↪−→ (GLn,℘ /P℘)× (GLn,℘ /B℘)× gln,℘ −� (GLn,℘ /P℘)× (GLn,℘ /B℘)

= qw∈W max
P,F℘

GLn,℘(1, w)(P℘ ×B℘)

where the second map is the canonical projection. For w ∈ W max
P,F℘

, let Uw := GLn,℘(1, w)(P℘×B℘)

and Xw the reduced closed subscheme of XP,℘ defined as the Zariski-closure of π−1(Uw). One can
show that {Xw}w∈W max

P,F℘
are the irreducible components of XP,℘ and that XP,℘ is equidimensional

of dimension

[F℘ : Qp]
n(n− 1)

2
+ dim rP,℘ = [F℘ : Qp]

(n(n− 1)

2
+ r
)

+ dim nP,℘.

The following geometric property of Xw is particularly important for our applications:

Theorem 1.8 (cf. Theorem 5.3.1). Let w ∈ W max
P,F℘

and x = (g1P℘, g2B℘, 0) ∈ Xw ↪→(GLn,℘ /P℘)×
(GLn,℘ /B℘)× gln,℘, then the scheme Xw is unibranch at x.

When P = B, it was showed in [19, Thm. 2.3.6] that the whole scheme Xw is normal. When
P 6= B, the geometry of Xw appears seriously more difficult and we don’t know if Xw is normal.
The proof of Theorem 1.8 is inspired by a result of Le, Le Hung, Morra and Levin in the setting
of deformation rings ([65, Lemma 3.4.8]) and a priori only works for those points x ∈ Xw with
gln,℘-factor zero (as in Theorem 1.8).

Let x = (%, (xi), (χi)) ∈ XΩ,h(ρ℘) such that % is almost de Rham (in the sense of [44]) with

distinct Sen weights. We fix an F℘ ⊗Qp k(x)-linear isomorphism α : F℘ ⊗Qp k(x)
∼−→ DpdR(%) =

(BpdR ⊗Qp %)GalF℘ where BpdR is the ring of [44, § 4.3] (see also § 6.1). By an analogue of
Theorem 1.5 (1) for the variety XΩ,h(ρ℘) instead of EΩ,λ(Up, ρ), the (ϕ,Γ)-module Drig(%)[1

t ] over

Rk(x),F℘ [1
t ] admits a P -filtration F% which induces a P -filtration (still denoted) F% on DpdR(%) ∼=(

BpdR ⊗BdR
WdR(Drig(%)[1

t ])
)GalF℘ (see for instance [19, Lemma 3.3.5 (ii)] for WdR(−), see also

§ 6.2). We use Fil% to denote the complete flag given by the Hodge filtration on DpdR(%). Using
the framing α, the filtration F% (resp. Fil%) corresponds to an element still denoted by F% (resp.
Fil%) in GLn,℘ /P℘ (resp. in GLn,℘ /B℘). Finally, let νpdR be Fontaine’s nilpotent operator on
DpdR(%). As both F% and Fil% are stabilized by νpdR, we have

ypdR := (F%,Fil%, νpdR) ∈ XP,℘ ↪→ (GLn,℘ /P℘)× (GLn,℘ /B℘)× gln,℘ . (1.4)

There exists thus wF% ∈ W max
P,F℘

such that ypdR ∈ π−1(UwF%
). In fact, wF% is independent of the

choice of α and is equal to the element wF defined above Theorem 1.3 if % = ρ℘ and F% = F
(note that we have νpdR = 0 in this case).

By an analogue of Theorem 1.5 (2), one can show that for each τ : F℘ ↪→ E, the set of τ -Sen
weights of % is given by {kx,j,τ := hj,τ + wt(χi(j))τ}j=1,...,n where i(j) ∈ {1, . . . , r} is such that
si(j)−1 < j ≤ si(j). There exist then a unique element wx = (wx,τ ) ∈ W min

P,F℘
and a strictly dominant
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weight hx (which is in fact given by the (decreasing) Sen weights of %) such that kx = wx(hx)
where kx := {kx,j,τ}j=1,...,n

τ :F℘↪→E
.

By generalizing [19, § 3], we have:

Theorem 1.9 (cf. § 6.4). Keep the above notation and assume % is de Rham (equivalently νpdR =
0) and F% is generic (in the sense of (6.5)).

(1) We have wF ≤ wxw0.

(2) There exists a formal scheme X�,wx
%,M• over E such that the associated reduced formal scheme

(X�,wx
%,M•)

red is formally smooth of dimension n2 + dim p℘ over the completion X̂wx,ypdR
of Xwx at

ypdR, and formally smooth of dimension n2[F℘ : Qp] over the completion ̂XΩ,h(ρ℘)
x

of XΩ,h(ρ℘)
at x:

̂XΩ,h(ρ℘)
x
←− (X�,wx

%,M•)
red −→ X̂wx,ypdR

.

In particular, XΩ,h(ρ℘) is unibranch at the point x.

By Theorem 1.9 (2) and Theorem 1.7 (4), we deduce the following “R = T”-type result:

Corollary 1.10. Let x = (mp, %, πLP , χ) ∈ E∞Ω,λ(ρ) ↪→ (Spf Rp∞)rig × (Spf Rρ℘)rig × (SpecZΩ)rig ×
Ẑ0. Assume that mp is a smooth point of (Spf Rp∞)rig and that % is generic potentially crystalline
with distinct Hodge-Tate weights. Then the embedding (1.3) induces an isomorphism after taking
completions at x.

We now discuss the problem of companion points on Bernstein eigenvarieties (resp. on patched
Bernstein eigenvarieties, resp. on Bernstein paraboline varieties), which will be crucial to attack
the socle conjecture. Let y be a point of (Spf Rρ,S)rig (resp. of (Spf R∞)rig, resp. of (Spf Rρ℘)rig),
and % be the GalF℘-representation associated to y. We assume % is generic potentially crystalline
with distinct Hodge-Tate weights. We let h be the (decreasing) Hodge-Tate weights of % and λ =
(λi,τ ) i=1,...,n

τ :F℘↪→E
with λi,τ = hi,τ + i−1 (so λ is dominant with respect to B). Assume r(%) ∼= ⊕ri=1rxi

with x = (xi) ∈ (SpecZΩ)rig. Note that, as % is generic, the P -filtration rx1 ⊂ rx1 ⊕ rx2 ⊂ · · ·
on r(%) corresponds to a unique Ω-filtration on Drig(%), see § 2.3. Consider the point x :=

(y, x, 1) in (Spf Rρ,S)rig × (SpecZΩ)rig × Ẑ0

(
resp. in (Spf Rp∞)rig × (SpecZΩ)rig × Ẑ0, resp. in

(Spf Rρ℘)rig × (SpecZΩ)rig × Ẑ0

)
. As usual, we denote by w · µ the dot action on a weight µ.

Conjecture 1.11. Let w ∈ W P
min,F℘

, then x ∈ EΩ,w·λ(Up, ρ)
(
resp. x ∈ E∞Ω,w·λ(ρ), resp. x ∈

XΩ,w(h)(ρ℘)
)

if and only if ww0 ≥ wF%.

As w ∈ W P
min,F℘

, w(h) is strictly P -dominant and w · λ is P -dominant, so the corresponding
rigid spaces in Conjecture 1.11 are well defined. The reader who is familiar with companion
points in the trianguline case may find the statement of Conjecture 1.11 a little strange. Indeed,
for the classical eigenvariety E(Up, ρ) (the case of the patched eigenvariety or of the trianguline

variety being similar), there is a canonical embedding E(Up, ρ) ↪→ (Spf Rρ,S)rig × T̂ (F℘) and the
companion points are the distinct points that lie above a same point y ∈ (Spf Rρ,S)rig. In our
case however, as there are different rigid spaces depending on (Ω, λ), it seems more convenient to

fix the point x ∈ (Spf Rρ,S)rig × (SpecZΩ)rig × Ẑ0 and let the Bernstein eigenvarieties (together
with the embedding ιΩ,λ) vary. See Remark 3.3.12 and Remark 4.3.10 for more details.
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By Theorem 1.9 (1) and a study of the relation between potentially crystalline deformation
spaces and Bernstein paraboline varieties (cf. § 4.3), we can prove Conjecture 1.11 for Bernstein
paraboline varieties:

Theorem 1.12 (cf. Corollary 6.4.12). Let w ∈ W P
min,Fṽ

, then x ∈ XΩ,w(h)(ρ℘) if and only if
ww0 ≥ wF%.

Using Theorem 1.7 (3) and Theorem 1.7 (4), Theorem 1.12 then implies the “only if” part of
Conjecture 1.11.

We now move back to the global applications in Theorem 1.2 and Theorem 1.3, both of
which are about irreducible constituents in the socle of Ŝ(Up, E)an[mρ]. Let y be the image of
mρ via (Spf Rρ,S)rig ↪→ (Spf R∞)rig. Let my ⊂ R∞[1/p] be the associated maximal ideal, then

Ŝ(Up, E)an[mρ] ∼= ΠR∞−an
∞ [my]. In particular, to prove Theorem 1.2 and Theorem 1.3, it suffices

to show the same statement with ΠR∞−an
∞ [my] instead of Ŝ(Up, E)an[mρ]. Let F be a P -filtration

on r(ρ℘) as in the discussion above Theorem 1.3. As before let h be the (decreasing) Hodge-
Tate weights of ρ℘ and λ = (λi,τ ) with λi,τ = hi,τ + i − 1. Let Ω be a Bernstein component
of LP (F℘) and x = (xi) ∈ (SpecZΩ)rig such that rxi

∼= ri for i = 1, · · · , r (so Ω and x are
determined by ρ and F ). We then associate to ρ and the P -filtration F on r(ρ℘) a point

xF = (y, x, 1) ∈ (Spf R∞)rig× (SpecZΩ)rig×Ẑ0. From the locally analytic representation theory,

for each w ∈ W min
P,F℘

, we can construct a cycle [Nw·λ,y,F ] ∈ Z [F+:Q]
n(n+1)

2 (Spec ÔX∞,y), where Zd(−)
is the free abelian group generated by the irreducible closed subschemes of codimension d and
ÔX∞,y is the completion of X∞ := (Spf R∞)rig at the point y, such that:

� [Nw·λ,y,F ] 6= 0 if and only if C(w,F ) embeds into ΠR∞−an
∞ [my].

It is also not difficult to prove the implication [Nw·λ,y,F ] 6= 0⇒ xF ∈ E∞Ω,w·λ(ρ). It turns out that
this implication is in fact an equivalence (which then implies that, in this case, the existence of
companion points is equivalent to the existence of companion constituents):

Proposition 1.13 (cf. Proposition 7.2.3). For w ∈ W min
P,F℘

, [Nw·λ,y,F ] 6= 0 if and only if xF ∈
E∞Ω,w·λ(ρ).

We first discuss the proof of Theorem 1.2. The assumption (2) in loc. cit. guarantees that
there exist a parabolic subgroup P ⊇ B of GLn and a P -filtration F on r(ρ℘) such that the above

associated point xF = (y, x, 1) ∈ (Spf R∞)rig×(SpecZΩ)rig×Ẑ0 lies in a certain patched Bernstein
eigenvariety E∞Ω,w·λ(ρ) for some w ∈ W min

P,F℘
. Using Proposition 1.13 (and a bit of representation

theory), one can deduce xF ∈ E∞Ω,λ(ρ). Then the classicality follows by applying Proposition 1.13
to w = 1 and using that C(1,F ) is locally algebraic.

We now discuss the proof of Theorem 1.3. We henceforth fix a filtration F and write x := xF ,
[Nw·λ,y] := [Nw·λ,y,F ]. Note that, as ΠR∞−an

∞ [my]
lalg ∼= Ŝ(Up, E)[mρ]

lalg is non-zero and isomorphic
to a direct sum of copies of C(1,F ), we have [Nλ,y] 6= 0 and x ∈ E∞Ω,λ(ρ). The “only if” part
(with no assumption on P ) already follows from Proposition 1.13 and Theorem 1.12. So we need
to show x ∈ E∞Ω,w·λ(ρ) for w ∈ W min

P,F℘
such that ww0 ≥ wF . Let lg(−) denotes the length function

on Weyl group. The case where lg(wF ) ≥ lg(w0) − 1 is not very difficult (and holds for any P ).
We assume in the sequel lg(wF ) ≤ lg(w0) − 2. By induction and some similar arguments as in
the proof of the “if” part of Theorem 1.12, one is reduced to showing the following statement:
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� if x ∈ E∞Ω,w′w0·λ(ρ) for all w′ ∈ W max
P,F℘

such that w′ > wF , then x ∈ E∞Ω,wFw0·λ(ρ).

Thus, assuming x ∈ E∞Ω,w′w0·λ(ρ) for all w′ ∈ W max
P,F℘

, w′ > wF , we need to show [NwFw0·λ,y] 6= 0.

One important fact is that the cycles [Nw·λ,y] can be related to cycles coming from irreducible
components of certain generalized Steinberg varieties. Let ZP,℘ be the fibre of XP,p at 0 ∈ zLP ,℘
via

XP,℘ −→ zLP ,℘, (g1P℘, g2B℘, ψ) 7−→ Ad(g−1
1 )ψ

where (−) means the natural projection rP,℘ � zLP ,℘. One can show that ZP,℘ is equidimensional
with (reduced) irreducible components given by {Zw := (ZP,℘ ∩Xw)red}w∈W max

P,F℘
. Let ypdR be the

point of XP,℘ associated to ρ℘ and F as in (1.4). As νpdR = 0, ypdR ∈ ZP,℘. Similarly as in
Theorem 1.8, one can prove that for w ∈ W max

P,F℘
, if ypdR ∈ Zw, then Zw is unibranch at ypdR (cf.

Theorem 5.4.3). Using Theorem 1.9 (2), for w ∈ W max
P,F℘

, one can then associate to the completion

ÔZw,ypdR
of Zw at ypdR a unique irreducible cycle [Zw,y] ∈ Z [F+:Q]

n(n+1)
2 (Spec ÔX∞,y). We have

� Zw,y 6= 0 if and only if w ≥ wF .

By results on the characteristic cycles associated to generalized Verma modules (that we couldn’t
really find in the literature and that we prove in § A.2), we have the following statements:

� [NwFw0·λ,y] ∈ Z≥0ZwF ,y;

� if x is a smooth point of E∞Ω,ww0·λ(ρ) for w ∈ W min
P,F℘

, there is an integer my ∈ Z≥1 such that

in Z [F+:Q]
n(n+1)

2 (Spec ÔX∞,y):∑
w′∈W min

P,F℘

w≤w′≤wFw0

bw,w′ [Nw′·λ,y] = my

( ∑
w′∈W min

P,F℘

w≤w′≤wFw0

bw,w′Zw′w0,y

)
(1.5)

where bw,w′ is the multiplicity of the simple U(g℘)-module L(w′ · 0) of highest weight w′ · 0
in the parabolic Verma module MP (w · 0) of highest weight w · 0.

If x is not smooth, we also have an equation similar to (1.5) but with the coefficients mybw,w′ on
the right hand side replaced by certain non-negative integers that we do not know how to control
(the left hand side staying unchanged).

Let us assume my = 1 in the rest of the argument for simplicity. To use these equations to
deduce [NwFw0·λ,y] 6= 0, we are led to three cases (recall we have assumed lg(wF ) ≤ lg(w0)− 2),
with the third case still resisting without a further assumption on P :

Case (1) is exactly the same as in [19] (in particular we are always in this case when P = B):
assume that there exist w1, w2, w ∈ W max

P,F℘
such that w ≥ wF , lg(w) = lg(wF ) + 2, {w1, w2} =

[wF , w] := {w′ | wF < w′ < w} and dim zwFw−1

LP ,℘
= dim zLP ,℘ − 2. Under these conditions, by a

tangent space argument, one can prove that E∞Ω,w′w0·λ(ρ) is smooth at x for w′ ∈ {w1, w2, w}. We
can deduce from (1.5) equalities:

[Nw1w0·λ,y] + [NwFw0·λ,y] = Zw1,y + ZwF ,y

[Nw2w0·λ,y] + [NwFw0·λ,y] = Zw2,y + ZwF ,y

[Nww0·λ,y] + [Nw1w0·λ,y] + [Nw2w0·λ,y] + [NwFw0·λ,y] = Zw,y + Zw1,y + Zw2,y + ZwF ,y.

(1.6)
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Using that Zw′′,y can only have non-negative coefficients in [Nw′w0·λ,y] for w′, w′′ ∈ W max
P,F℘

and

[NwFw0·λ,y] ∈ Z≥0ZwF ,y, it is not difficult to deduce from the equalities in (1.6) that [NwFw0·λ,y] 6=
03.

Case (2): assume that there exists w > wF with lg(w) = lg(wF ) + 2 such that there is a
unique w1 ∈ W max

P,F℘
such that wF < w1 < w (in other words, the Bruhat interval [wF , w] is not

full in the quotient WLP ,F℘\WF℘). In this case, we deduce from (1.5) equalities:{
[Nw1w0·λ,y] + [NwFw0·λ,y] = Zw1,y + ZwF ,y

[Nww0·λ,y] + [Nw1w0·λ,y] = a0Zw,y + a1Zw1,y

for some ai ∈ Z≥0. Though we don’t have more control on the ai, these equalities are (again)
sufficient to imply [NwFw0·λ,y] 6= 0.

Case (3): assume that, for any w ≤ wFw0 with lg(w) = lg(wFw0)−2, we have dim zwFw0w−1

LP ,℘
>

dim zLP ,℘ − 2 and there exist w1, w2 ∈ W min
P,F℘

such that {w′ | w < w′ < wFw0} = {w1, w2}. The

main difference with Case (1) is that we do not know if E∞Ω,ww0·λ(ρ) is smooth at the point x (the

tangent space argument collapses because of dim zwFw0w−1

LP ,℘
> dim zLP ,℘ − 2). Consequently, the

third equation in (1.6) has to be replaced by an equation of the form (the two others staying
unchanged)

[Nww0·λ,y] + [Nw1w0·λ,y] + [Nw2w0·λ,y] + [NwFw0·λ,y] = a0Zw,y + a1Zw1,y + a2Zw2,y + a3ZwF ,y

for some ai ∈ Z≥0. Without more control on these coefficients ai, this equation together with the
first two in (1.6) seem not enough to imply [NwFw0·λ,y] 6= 0.

The assumption (∗) in Theorem 1.3 is there precisely to avoid Case (3) (cf. Proposition A.3.3,
see also Remark A.3.5 for an example of Case (3) for GL4).

One may expect other arithmetic applications of Bernstein eigenvarieties. In fact, the results
in this work provide a framework to which many arguments for classical eigenvarieties may be
adapted (as what we already do in this paper). In a forthcoming work [50] of Yiqin He, Bernstein
eigenvarieties are used to establish some local-global compatibility results on simple L-invariants
for certain GLn-representations attached to Zelevinsky’s linked segments (which was previously
only known in the trianguline case).

Finally, we remark that in his PhD. thesis [55], Shanxiao Huang proves results that parallel
Theorem 1.4, Theorem 1.5, Theorem 1.6 and the global analogue of part (4) of Theorem 1.7 (i.e.
a version without patched objects).
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2 Preliminaries

2.1 General notation

Let L be a finite extension of Qp and E be a finite extension of Qp sufficiently large such that ΣL :=
{τ : L ↪→ Qp} = {τ : L ↪−→ E}. For k = (kτ )τ∈ΣL ∈ Z⊕|ΣL|, denote by zk :=

∏
τ∈ΣL

τ(z)kτ :
L× → E×. Let OL, resp. OE be the ring of integers of L, resp. E, kE the residue field of E, $L be
a uniformizer of OL, qL := |OL/$L| and valL(x) the valuation on L× such that valL($L) = 1. For
a character χ of O×L , denote by χ$L the character of L× such that χ$L |O×L = χ and χ$L($L) = 1;

for a character δ of L×, denote by δ0 := δ|O×L . We use the convention that the Hodge-Tate weight

of the p-adic cyclotomic character if 1. For a group A and a ∈ A, we denote by unr(a) : L× → A
the unramified character sending any uniformizer to a.

Let A (resp. X) be an affinoid algebra (resp. a rigid analytic space), we write RA,L (resp.
RX,L) for the Robba ring associated to L with A-coefficients (resp. with OX -coefficients) (see
[60, Def. 6.2.1]), and RA,L(δ) for the (ϕ,Γ)-module of character type over RA,L associated to a
continuous character δ : L× → A× in [60, Const. 6.2.4].

Let m ∈ Z≥1, π be an irreducible smooth admissible representation of GLm(L), denote by
rec(π) the F -semi-simple Weil-Deligne representation associated to π via the local Langlands cor-
respondence normalized as in [49]. We normalize local class field theory by sending a uniformizer
to a (lift of the) geometric Frobenius. In this way, we identify characters of the Weil group
WL ⊂ GalL := Gal(L/L) and characters of L× without further mention. Let χcyc denote the
cyclotomic character of GalL (and of L×).

Let Ω be a cuspidal Bernstein component of GLm(L) ([8]) and π ∈ Ω. We put

µΩ := {η : L× → E× | π ⊗E η ◦ det ∼= π}, (2.1)

µunr
Ω := {η : L× → E× unramified | π ⊗E η ◦ det ∼= π}.

We have µunr
Ω ⊆ µΩ and it is easy to see that both are finite groups (look at the central characters)

and independent of the choice of π in Ω. Denote by ZΩ the corresponding Bernstein centre (see
§ 2.2 below for more details). For a closed point x ∈ SpecZΩ, denote by πx the associated
irreducible cuspidal smooth representation of GLm(L) over k(x), rx := rec(πx) and ∆x the p-adic
differential equation associated to rx. Recall from [6] that ∆x is the (ϕ,Γ)-module of rank m over
Rk(x),L which is de Rham of constant Hodge-Tate weight 0 such that Dpst(∆x) (forgetting the
Hodge filtration) is isomorphic to the Deligne-Fontaine module associated by Fontaine to rx ([21,
Prop. 4.1]). We may use the associated GLm(L)-representation or the associated Weil-Deligne
representation or the associated p-adic differential equation to denote a closed point of SpecZΩ

depending on the situation.

Throughout the paper, we denote by B the upper triangular matrices in GLn and we will
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consider parabolic subgroups P of GLn containing B, i.e. of the form
GLn1 ∗ · · · ∗

0 GLn2 · · · ∗
...

...
. . . ∗

0 0 · · · GLnr

 , (2.2)

where ni ∈ Z≥1 such that
∑r

i=1 ni = n. For i ∈ {1, . . . , r} we define si :=
∑i

j=1 nj and s0 := 0.
We denote by LP the Levi subgroup of P containing the group T of diagonal matrices. An integral
weight λ = (λ1, . . . , λn) of GLn is called P -dominant (resp. strictly P -dominant) if for j = 1, . . . , r
with nj > 1, and sj−1 ≤ i ≤ sj−1 + nj − 1, we have λi ≥ λi+1 (resp. λi > λi+1).

We use lg(−) to denote the length function on elements in Weyl groups. Let W ∼= Sn be the
Weyl group of GLn, and WLP ⊂ W be the Weyl group of LP . Denote by W P

min ⊂ W (resp. W P
max)

the set of minimal (resp. maximal) length representatives in W of the right cosets in WLP \W .
Let w0 ∈ W be the element of maximal length. Then w ∈ W P

min if and only if ww0 ∈ W P
max. We

denote by WL := W |ΣL| (resp. WLP ,L := W
|ΣL|
LP

) which is the Weyl group of ResLQp GLn (resp.

ResLQp LP ). Then W P
min,L = (W P

min)|ΣL| (resp. W P
max,L = (W P

max)|ΣL|) is the set of minimal (resp.
maximal) length representatives in WL of WLP ,L\WL. Put w0,L := (w0, . . . , w0) ∈ WL for the
element of maximal length in WL. We use “·” to denote the dot action of a Weyl group on the
corresponding weight space (cf. [57, Def. 1.8]).

If X is a scheme locally of finite type over E, or a locally noetherian formal scheme over OE
whose reduction (modulo an ideal of definition) is locally of finite type over kE , we denote by Xrig

the associated rigid analytic space over E. If X is a scheme locally of finite type over E or a rigid
analytic space over E, we denote by Xred the associated reduced Zariski-closed subspace. If x is a
point of X, we denote by k(x) the residue field at x, OX,x the local ring at x, ÔX,x its mOX,x-adic

completion and X̂x the affine formal scheme Spf ÔX,x. If x is a closed point of X, then ÔX,x is a
noetherian complete local k(x)-algebra of residue field k(x).

2.2 p-adic differential equations over Bernstein components

Let m ≥ 1, Ω be cuspidal type of GLm(L) and ZΩ be the associated Bernstein centre over E
(that we recall below). In this section, we construct a “universal” p-adic differential equation on
(SpecZΩ)rig that interpolates {∆x}x∈(SpecZΩ)rig .

Let π be an irreducible smooth representation of GLm(L) over E of type Ω. We assume that
E contains the m-th roots of unity. By comparing the central characters, we see that there exists
m0|m such that µm0 = {a ∈ E× | π ⊗E unr(a) ◦ det ∼= π}, where µm0 denotes the group of m0-th
roots of unity in E×. We equip E[z, z−1] with an action of µm0 by a(z) := az for a ∈ µm0 . We
then have a natural isomorphism

ZΩ
∼= E[z, z−1]µm0 ∼= E[zm0 , z−m0 ]

such that the induced map Gm := SpecE[z, z−1]→ SpecZΩ sends α to π ⊗E unr(α) ◦ det.

We first construct a (ϕ,Γ)-module on Grig
m . Let ∆ be the p-adic differential equation over

RE,L associated to π (or equivalently to rec(π)). Let

Aj := E〈zj , tj〉/(zjtj − p2j),
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then the maximal spectrum SpmAj is {z ∈ Grig
m | p−j ≤ |z|p ≤ pj} (mapping z to p−jzj

and z−1 to p−jtj) and {SpmAj}j∈Z≥0
form an admissible covering of Grig

m . We define ∆Aj :=
∆⊗RE,LRAj ,L(unr(z)), which is a (ϕ,Γ)-module free of rank m over RAj ,L. These {∆Aj}j∈Z≥0

glue to a (ϕ,Γ)-module over RGrig
m ,L

, where RGrig
m ,L

is defined as in [60, Def. 6.2.1].

Let ςm0 be a primitive m0-th root of unity. Since π ∼= π ⊗E unr(ςm0) ◦ det, we have ∆ ∼=
∆ ⊗RE,L RE,L(unr(ςm0)). Let ι1 : ∆ → ∆ ⊗RE,L RE,L(unr(ςm0)) be an isomorphism of (ϕ,Γ)-
modules. For a continuous character δ of L×, we also use ι1 to denote the induced morphism
∆⊗RE,L RE,L(δ)→ ∆⊗RE,L RE,L(unr(ςm0))⊗RE,L RE,L(δ). We put for i ∈ Z≥1:

ιi := ι1 ◦ ι1 ◦ · · · ◦ ι1 : ∆
ι1−→ ∆⊗RE,L RE,L(unr(ςm0))

ι1−→ · · · ι1−→ ∆⊗RE,L RE,L(unr(ς im0
)).

Since Hom(ϕ,Γ)(∆,∆) ∼= E and E contains all m0-th roots of unity, we can multiply ι1 by a scalar
in E× so that ιm0 = id∆. Let ∆i

Aj
:= ∆⊗RE,LRAj ,L(unr(ς im0

z)). The isomorphism ιi induces an

isomorphism (still denoted) ιi : ∆Aj
∼−→ ∆i

Aj
satisfying ιm0 = id∆Aj

. We fix a basis e of ∆ over

RE,L, and still denote by e the corresponding basis e⊗ 1 of ∆i
Aj

over RAj ,L. We do not ask that

ι1 respects e (i.e. sends e to e⊗ 1), hence the isomorphisms ιi in general do not stabilize e.

It is clear that SpmAj is stable by the induced action of µm0 on Grig
m . The action of µm0 on

Aj induces an action on RAj ,L. We equip ∆Aj with an RAj ,L-semi-linear action of µm0 such that
ς im0

acts via

∆Aj −→ ∆i
Aj

ι−1
i−−→ ∆Aj

where the first map sends v⊗a ∈ ∆⊗RE,LRAj ,L(unr(z)) to v⊗ς im0
(a) ∈ ∆⊗RE,LRAj ,L(unr(ς im0

z)).
Indeed, one can check that this defines a group action of µm0 , that commutes with the (ϕ,Γ)-
action.

Define ∆Bj := ∆
µm0
Aj

. By [7, Prop. 2.2.1] (applied first to B = Aj , S = R[r,s]
E,L and G = µm0 ,

then letting r, s vary), we can deduce that ∆Bj is a (ϕ,Γ)-module free of rank m over RBj ,L
where Bj := A

µm0
j
∼= E〈zm0

j , tm0
j 〉/(z

m0
j tm0

j − p2jm0). The affinoids {SpmBj}j∈Z≥0
then form an

admissible covering of (SpecZΩ)rig. Moreover it is easy to see that {∆Bj}j∈Z≥0
glue to a (ϕ,Γ)-

module over R(SpecZΩ)rig,L that we denote by ∆Ω. One checks that ∆Ω is independent of the

choice of π of type Ω. It is also clear that for a point x ∈ (SpecZΩ)rig with πx the associated
smooth representation of GLm(L) over k(x), the fibre ∆x := x∗∆Ω is isomorphic to the p-adic
differential equation associated to πx.

2.3 Potentially crystalline representations

We recall the structure of potentially crystalline Galois representations.

Let ρ be an n-dimensional potentially crystalline representation of GalL over E. Let L′ be a
finite Galois extension of L such that ρ|GalL′ is crystalline. Consider the Deligne-Fontaine module
associated to ρ:

DF(ρ) :=
(
DL′ := (Bcris ⊗Qp ρ)GalL′ , ϕ,Gal(L′/L)

)
,

where DL′ := (Bcris ⊗Qp ρ)GalL′ is a finite free L′0 ⊗Qp E-module of rank n, L′0 being the maximal
unramified subextension of L′ (over Qp), where the ϕ-action on DL′ is induced from the ϕ-action
on Bcris, and where the Gal(L′/L)-action on DL′ is the residual action of GalL. By Fontaine’s
equivalence of categories as in [21, Prop. 4.1], we can associate to DF(ρ) an n-dimensional Weil-
Deligne representation r(ρ) of WL over E (and we can recover DF(ρ) from r(ρ) as in loc. cit.).
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Let P be a parabolic subgroup of GLn as in (2.2). Assume that r(ρ) admits a filtration

F : FilF• r(ρ) =
(
0 = FilF0 r(ρ) ( FilF1 r(ρ) ( · · · ( FilFr r(ρ) = r(ρ)

)
by Weil-Deligne subrepresentations such that dimE FilFi r(ρ) =

∑i
j=1 nj . We call such a filtration

a P -filtration. We call the filtration F a minimal filtration if r(ρ)i := grF
i r(ρ) is an irreducible

Weil-Deligne representation for all i. We assume that F is minimal in the sequel. In this case, the
Galois representation ρ is called generic if Hom(r(ρ)i, r(ρ)j) = 0 and Hom(r(ρ)i, r(ρ)j(1)) = 0
for all i 6= j (where Hom is taken in the category of Weil-Deligne representations and (1) means
the twist by x ∈ L× 7→ 1

q
valL(x)

L

). It is easy to see that being generic does not depend on the

choice of minimal filtrations on r(ρ), and that if ρ is generic then r(ρ) ∼= ⊕ri=1r(ρ)i. Let Ωi be the
Bernstein component of GLni(L) such that the smooth irreducible representation corresponding
to r(ρ)i via the classical local Langlands correspondence (normalized as in [49]) lies in Ωi. Let
Ω :=

∏
i Ωi, which is a Bernstein component of LP (L). The minimal P -filtration F will also be

called an Ω-filtration.

The P -filtration F corresponds to a filtration (still denoted) F = FilF• DF(ρ) (and still called
a P -filtration) on DF(ρ) by Deligne-Fontaine submodules, such that FilFi DF(ρ) is associated to
FilFi r(ρ) via [21, Prop. 4.1]. If ρ is generic, we have then DF(ρ) ∼= ⊕ri=1 grF

i DF(ρ).

As ρ is potentially crystalline, it is de Rham, and thus we have DdR(ρ) ∼= (DL′⊗L′0L
′)Gal(L′/L),

which is a free L ⊗Qp E-module of rank n. The P -filtration F on DF(ρ) induces a P -filtration

F on DdR(ρ) by free L⊗Qp E-submodules FilFi DdR(ρ) := (FilFi DL′ ⊗L′0 L
′)Gal(L′/L). Recall also

that DdR(ρ) is equipped with a natural decreasing Hodge filtration FilH• DdR(ρ) (induced by the
one on Bcris) given by (not necessarily free) L⊗Qp E submodules. We assume that ρ has distinct
Hodge-Tate weights. Hence, for each τ ∈ ΣL, we have a complete flag (with an obvious notation
for DdR(ρ)τ )

0 ( FilH−hn,τDdR(ρ)τ ( FilH−hn−1,τ
DdR(ρ)τ ( · · · ( FilH−h1,τ

DdR(ρ)τ = DdR(ρ)τ

where hi,τ are the integers such that dimE grH−hi,τDdR(ρ)τ = 1. Thus the Hodge-Tate weights of

ρ are h = (hi)i=1,...,n = (h1,τ > · · · > hn,τ )τ∈ΣL .

We fix a basis of DdR(ρ)τ over E for each τ ∈ ΣL. The filtration F (resp. FilH• ) on DdR(ρ) thus
corresponds to an E-point of the flag variety ResLQp GLn /ResLQp P (resp. ResLQp GLn /ResLQp B)):

g1(ResLQp P )(E) = (g1,τP (E))τ∈ΣL (resp. g2(ResLQp B)(E) = (g2,τB(E))τ∈τL)).

For each τ ∈ ΣL, there exists thus a unique wF ,τ ∈ W P
max such that

(g1,τP (E), g2,τB(E)) ∈ GLn(E)(1, wF ,τ )(P ×B)(E) ⊆ (GLn /P ×GLn /B)(E)

where we still use wF ,τ ∈ NGLn(T ) to denote a lifting of the corresponding element in W (which is
traditionally denoted by ẇF ,τ ). We write wF := (wF ,τ )τ∈ΣL ∈ W |ΣL|. We call (ρ,F) non-critical
if wF = w0,L, or equivalently wF ,τ = w0 for all τ ∈ ΣL.

Consider the (ϕ,Γ)-module Drig(ρ) over RE,L associated to ρ (see [6] and the references
therein). Let ∆ (resp. FilFi ∆) be the p-adic differential equation over RE,L associated to DF(ρ)
(resp. to FilFi DF(ρ)), or equivalently to r(ρ) (resp. to FilFi r(ρ)). Then F := FilF• ∆ gives an
increasing filtration on ∆ by saturated (ϕ,Γ)-submodules. Consider

M(ρ) := Drig(ρ)[1/t] ∼= ∆[1/t].
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By inverting t, the filtration F on ∆ induces an increasing filtration (still denoted) F :={
FilFi M(ρ) := (FilFi ∆)[1/t]

}
on M(ρ) by (ϕ,Γ)-submodules over RE,L[1/t]. Finally, the fil-

tration F on M(ρ) induces a filtration on Drig(ρ):

F := {FilFi Drig(ρ) := FilFi M(ρ) ∩Drig(ρ)} (2.3)

by saturated (ϕ,Γ)-submodules of Drig(ρ). By Berger’s equivalence of categories ([6, Thm. A]),
FilFi Drig(ρ) corresponds to the filtered Deligne-Fontaine module FilFi DF(ρ) equipped with the
induced filtration from the Hodge filtration on DL′ = (Bcris⊗Qp ρ)GalL′ (coming from the filtration
on Bcris). Such a filtration will be called an Ω-filtration on Drig(ρ) (see § 4.1.2 for a definition in
a more general setting).

One sees that the Hodge-Tate weights of FilFi Drig(ρ) are given by (recall si =
∑i

j=1 nj)

{h(wF,τw0)−1(1),τ , . . . , h(wF,τw0)−1(si),τ}τ∈ΣL , hence the Hodge-Tate weights of grF
i Drig(ρ) are

(wF (h)si−1+1, . . . , wF (h)si) =
(
h(wF,τw0)−1(si−1+1),τ , . . . , h(wF,τw0)−1(si),τ

)
τ∈ΣL

(which are decreasing as wF ,τw0 ∈ W P
min). In particular, (ρ,F ) is non-critical if and only if the

Hodge-Tate weights of grF
i Drig(ρ) are (hsi−1+1, . . . ,hsi) for i = 1, . . . , r. Since grF

i Drig(ρ) ⊆
t−N grF

i ∆ for N sufficiently large, using [6, Thm. A] and comparing the weights, we have an
injection of (ϕ,Γ)-modules over RE,L for i = 1, . . . , r:

grF
i Drig(ρ)⊗RE,L RE,L(z−wF (h)si ) ↪−→ grF

i ∆. (2.4)

Finally let ρ : GalL → GLn(kE) be a continuous representation, ξ : IL → GLn(E) be an inertial
type (where IL ⊂WL denotes the inertial subgroup), and h ∈ Zn|ΣL| be a strictly dominant weight
as above. We denote by Rpcr

ρ (ξ,h) the universal potentially crystalline framed deformation ring
of ρ of inertial type ξ and of Hodge-Tate weights h (cf. [63]).

3 Bernstein eigenvarieties

In this section, we construct Bernstein eigenvarieties from p-adic automorphic representations. In
§ 3.1, we give the general formalism of the construction, which can be applied to any admissible
locally analytic representation of (a product of copies of) GLn. We then apply in § 3.2 this
formalism to p-adic automorphic representations on compact unitary group, to get what we call
Bernstein eigenvarieties. We prove basic properties of the latter, like the density of classical points,
etc. We also show that the Galois representations associated to points on Bernstein eigenvarieties
admit a certain filtration, and address the problem of companion points. Finally, in § 3.3, we
apply the general formalism to the “patched” p-adic automorphic representation of [26] to obtain
a patched version of Bernstein eigenvarieties (that has a more local flavor).

3.1 Abstract construction

This section gives a general formal construction of certain rigid analytic spaces from Emerton’s
Jacquet modules of locally analytic representations, using Bushnell-Kutzko’s theory of types.
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3.1.1 Notation and setup

We will assume that the reader has some familiarity with p-adic functional analysis, and we use -
most of the time without further mention - the various foundational results in [76], [77], [78], [79]
and [42].

For a locally Qp-analytic group H, denote by CQp−la(H,E) the space of locally Qp-analytic
functions on H with values in E and by D(H,E) := CQp−la(H,E)∨ its strong dual (the distri-
bution algebra), which is a Fréchet-Stein algebra when H is compact. Denote by C∞(H,E) ↪→
CQp−la(H,E) the closed subspace of locally constant functions on H with values in E, and set
D∞(H,E) := C∞(H,E)∨, which is a Hausdorff quotient of D(H,E).

For a topologically finitely generated locally Qp-analytic abelian group Z, denote by Ẑ the
rigid space over E parameterizing locally Qp-analytic characters of Z (cf. [42, Prop. 6.4.5]). By

[42, Prop. 6.4.6], there is a natural injection D(Z,E) ↪→ Γ(Ẑ,O
Ẑ

). For χ a locally Qp-analytic
character of Z, we denote by mχ the associated maximal ideal of E[Z]. If Z ∼= (L×)n or is a
compact open subgroup of (L×)n (for L as in § 2.1), and χ is a locally Qp-analytic character of
Z, we denote by wt(χ) the weight of χ (see [19, Notation]). For instance if χ is E-valued, then
wt(χ) = (wt(χ)τ )τ∈ΣL = (wt(χ)i,τ )i=1,...,n

τ∈ΣL

∈ (En)|ΣL|. In this case, for λ = (λi,τ ) ∈ (Zn)|ΣL|, we

denote by δλ the algebraic character of Z of weight λ.

For a continuous Banach representation Π of a p-adic Lie group G, we denote by Πan the locally
Qp-analytic subrepresentation of Π and by Πlalg ⊆ Πan the locally Qp-algebraic subrepresentation
of Π.

Let I be a finite index set. For any i ∈ I , assume we have a finite extension Fi of Qp. For
each Fi, we fix a uniformizer $i, and denote by κ$i : F×i � O×Fi the map sending $i to 1 and

being the identity on O×Fi .

Let G :=
∏
i∈I ResFiQp GLn (an algebraic group), and Gp := G(Qp). For each i ∈ I , we fix

a parabolic subgroup Pi of GLn containing the Borel subgroup B of upper triangular matrices,
and let LPi the Levi subgroup of Pi containing the group T of diagonal matrices. Let P :=∏
i∈I ResFiQp Pi ⊇ BI :=

∏
i∈I ResFiQp B, and LP :=

∏
i∈I ResFiQp LPi which is the Levi subgroup

of P containing TI :=
∏
i∈I ResFiQp T . Let NP (resp. NPi) be the unipotent radical of P (resp.

of Pi), P
− (resp. P−i ) the parabolic subgroup opposite to P (resp. to Pi), NP− (resp. NP−i

) the

unipotent radical of P− (resp. of P−i ), ZLP (resp. ZLPi ) the centre of LP (resp. of LPi), and LDP
(resp. LDPi) the derived subgroup of LP (resp. LPi). We have therefore

NP =
∏
i∈I ResFiQp NPi , P− =

∏
i∈I ResFiQp P

−
i , NP− =

∏
i∈I ResFiQp NP−i

,

ZLP =
∏
i∈I ResFiQp ZLPi , LDP =

∏
i∈I ResFiQp L

D
Pi
.

We denote by g, bI , p, nP , lP , nP− , zLP , lDP the Lie algebra over E of G, BI , P , NP , LP , NP− ,
ZLP , LDP respectively. For a Lie algebra h over E, denote by U(h) the universal enveloping algebra
over E. We define

L0
P :=

∏
i∈I LPi(OFi) ⊂ LP (Qp), Z0

LP
:=
∏
i∈I ZLPi (OFi) = L0

P ∩ ZLP (Qp) ⊂ ZLP (Qp)
N0
P :=

∏
i∈I NP (OFi) ⊂ NP (Qp), N0

P− :=
∏
i∈I NP−(OFi) ⊂ NP−(Qp)

and denote by detLP the determinant map LP (Qp)→ ZLP (Qp). For each i ∈ I , LPi(Fi) has the
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form


GLni,1 0 · · · 0

0 GLni,2 · · · 0
...

...
. . . 0

0 0 · · · GLi,nri

 for some ri ∈ Z≥1 and integers ni,j ∈ Z≥1, 1 ≤ j ≤ ri with

∑ri
j=1 ni,j = n. Hence LP (Qp) ∼=

∏
i∈I

∏ri
j=1 GLni,j (Fi). For each (i, j) ∈ I × {1, . . . , ri} we fix

a cuspidal Bernstein component Ωi,j for GLni,j (Fi), and we let Ω :=
∏
i∈I

∏ri
j=1 Ωi,j . Let ZΩi,j

(resp. ZΩ) be the Bernstein centre of Ωi,j (resp. of Ω) over E (see § 2.2), we have an isomorphism
of commutative E-algebras

ZΩ
∼= ⊗i∈I ⊗rij=1 ZΩi,j .

Let (Ji,j , σ
0
i,j) be a maximal simple type of Ωi,j (cf. [23, § 6]) such that the compact open subgroup

Ji,j is contained in GLni,j (OFi). Recall that σ0
i,j is an absolutely irreducible smooth representa-

tion of Ji,j over E. Put σi,j := Ind
GLni,j (OFi )
Ji,j

σ0
i,j , which is an absolutely irreducible smooth

representation of GLni,j (OFi) over E (e.g. see the proof of [75, Cor. 6.1]). Let

σ0 := �i∈I �ri
j=1 σ

0
i,j , J :=

∏
i,j

Ji,j and σ := �i∈I �ri
j=1 σi,j

∼= Ind
L0
P

J σ0

which is an absolutely irreducible smooth representation of L0
P over E. Recall we have natural

isomorphisms of commutative E-algebras (where “c-ind” denotes the compact induction)

EndGLni,j (Fi)

(
c-ind

GLni,j (Fi)

GLni,j (OFi )
σi,j

)
∼= EndGLni,j (Fi)

(
c-ind

GLni,j (Fi)

Ji,j
σ0
i,j

)
∼= ZΩi,j

EndLP (Qp)(c-ind
LP (Qp)

L0
P

σ) ∼= EndLP (Qp)(c-ind
LP (Qp)
J σ) ∼= ZΩ.

Let λ be an integral P -dominant weight of G, i.e. λ = (λi)i∈I = (λi,τ ) i∈I
τ∈ΣFi

with each weight

λi,τ of GLn being Pi-dominant (cf. § 2.1), and L(λ)P the algebraic representation of LP (Qp) over
E of highest weight λ. If λ is moreover dominant, we denote by L(λ) the algebraic representation
of Gp (over E) of highest weight λ.

3.1.2 (Ω, λ)-part of Jacquet-Emerton modules

Let V be an admissible locally Qp-analytic representation of G(Qp) over E. Using Emerton’s
locally analytic Jacquet functor and the type theory (à la Bushnell-Kutzko), we associate to V a
certain ZΩ × Z0

LP
-module BΩ,λ(V ).

First applying Emerton’s Jacquet functor JP (−) ([40]) to V , we obtain an essentially admissi-
ble locally Qp-analytic representation JP (V ) of LP (Qp) over E. Let λ be an integral P -dominant
weight of G. We then define

JP (V )λ := HomlDP

(
L(λ)P , JP (V )

) ∼= (JP (V )⊗E L(λ)∨P
)lDP ∼= lim−→

H

(
JP (V )⊗E L(λ)∨P

)H
(3.1)

where H runs through compact open subgroups of LDP (QP ). This is a closed LP (Qp)-subrepresen-
tation of JP (V )⊗E L(λ)∨P (with the induced topology).

We equip the space of locally analytic functions CQp−la(Z0
LP
, E) with an LP (Qp)-action given

by the regular action of Z0
LP

on CQp−la(Z0
LP
, E) precomposed with:

LP (QP )
(detLP )−1

−−−−−−→ ZLP (Qp) ∼=
∏
i∈I

ZLPi (Fi)

∏
i κ$i−−−−→

∏
i∈I

ZLPi (OFi) = Z0
LP
. (3.2)
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Let σ be an irreducible smooth representation of L0
P as in § 3.1.1. We put:

Bσ,λ(V ) := HomL0
P

(
σ, JP (V )λ⊗̂ECQp−la(Z0

LP
, E)

)
∼=
(
σ∨ ⊗E

(
JP (V )λ⊗̂ECQp−la(Z0

LP
, E)

))L0
P

(3.3)

where JP (V )λ⊗̂ECQp−la(Z0
LP
, E) is the completion of JP (V )λ⊗ECQp−la(Z0

LP
, E) equipped with

the projective - or equivalently injective - tensor product topology (note that both factors are
vector spaces of compact type) and with the diagonal action of LP (Qp). We view Bσ,λ(V ) as
a closed subspace of σ∨ ⊗E JP (V )λ⊗̂ECQp−la(Z0

LP
, E) which is an E-vector space of compact

type (recall the finite dimensional σ∨ is equipped with the finest locally convex topology). Hence
Bσ,λ(V ) is also an E-vector space of compact type.

Remark 3.1.1. The definition of Bσ,λ(V ) might appear somewhat artificial. The motivation is to
construct an object parametrizing LP (Qp)-subrepresentations of JP (V )λ that lie in the Bernstein
component Ω up to twist by continuous characters of ZLP (Qp) (see Proposition 3.1.8). One
may consider removing the factor CQp−la(Z0

LP
, E) and using types for LDP (Qp) instead of the type

(σ, L0
P ) for LP (Qp). The resulting object is actually more natural. However, it is not clear to

the authors how to use such an object to parametrize the LP (Qp)-subrepresentations of JP (V )λ
discussed above.

Next, we discuss various group actions on Bσ,λ(V ).

There is a natural locally Qp-analytic action of ZLP (Qp) × Z0
LP

on σ∨ ⊗E
JP (V )λ⊗̂ECQp−la(Z0

LP
, E) where ZLP (Qp) acts on JP (V )λ, Z0

LP
acts on CQp−la(Z0

LP
, E), and there

is no action on σ∨. It is easy to check that this action of ZLP (Qp) × Z0
LP

commutes with the

diagonal L0
P -action (L0

P acting on all 3 factors). So we see that Bσ,λ(V ) inherits a locally Qp-
analytic action of ZLP (Qp)×Z0

LP
. In order to avoid confusion, we write Z0 for Z0

LP
when it acts

on CQp−la(Z0
LP
, E) alone and we use the notation Υ0 for this action. Likewise we write Z1 for

ZLP (Qp) when it acts on JP (V )λ alone and use the notation Υ1 for this action.

We write ∆0 for the action of ZLP (Qp) on Bσ,λ(V ) induced by the diagonal action of ZLP (Qp)
on JP (V )λ⊗̂ECQp−la(Z0

LP
, E) (and the trivial action on σ), i.e. ∆0 is given by the action of Z1×Z0

composed with the morphism

ZLP (Qp)
(id,(3.2))−−−−−−→ ZLP (Qp)× Z0

LP
= Z1 ×Z0. (3.4)

Denoting by ψσ the central character of σ (a character of ZLP (Qp)), we see that the restriction
∆0|Z0

LP

on Bσ,λ(V ) is given by ψσ. We deduce hence for any z0 ∈ Z0
LP

(see the (detLP )−1 in

(3.2)):
Υ1(z0) = ψσ(z0)Υ0

(
detLP (z0)

)
. (3.5)

With our choice of the uniformizers $i, we have a map Z ↪→ F×i , 1 7→ $i, that induces a map
⊕i∈IZri ↪→ ZLP (Qp). We denote by Z$ its image. Then the action of ∆0 is determined by ∆0|Z$
(since ∆0|Z0

LP

acts via ψσ and ZLP (Qp) ∼= Z0
LP
× Z$). On the other hand, the action of Z1 ×Z0

restricts to an action of Z$ ×Z0 on Bσ,λ(V ). Since (3.2) is trivial on Z$, using (3.4) we see that
Υ1|Z$ = ∆0|Z$ .

From the natural bijection

Bσ,λ(V ) ∼= HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ, JP (V )λ⊗̂ECQp−la(Z0
LP
, E)

)
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we deduce that Bσ,λ(V ) is also equipped with a natural action of ZΩ
∼= EndLP (Qp)(c-ind

LP (Qp)

L0
P

σ)

which commutes with the action of Z1 ×Z0. Moreover, we have a natural morphism

ZLP (Qp) −→ EndLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ
) ∼= ZΩ

and it is easy to see that the ZLP (Qp)-action on Bσ,λ(V ) induced by this map coincides with the
∆0-action. In particular (from the last assertion in the previous paragraph) the action Υ1|Z$ can
be recovered from the ZΩ-action. With (3.5), we finally see that the action of the full Z1 can be
read out from the action of Z0 ×ZΩ.

The following lemma is straightforward (using tensor-Hom adjunction).

Lemma 3.1.2. Let M be a finite length ZΩ-module over E, then we have

HomZΩ
(M,Bσ,λ(V ))

∼−−→ HomLP (Qp)

((
c-ind

LP (Qp)

L0
P

σ
)
⊗ZΩ

M,JP (V )λ⊗̂ECQp−la(Z0
LP
, E)

)
.

Lemma 3.1.3. The action of Z$ ×Z0 (seen inside Z1×Z0) on Bσ,λ(V ) makes it an essentially
admissible representation of Z$ ×Z0.

Proof. We first consider JP (V )λ. Since JP (V )λ is an essentially admissible representation of
LP (Qp) (by [40, Thm. 4.2.32] and [35, Lemma 2.8]), the topological dual (with the strong topology)

JP (V )∨λ is a coadmissible module over D(H,E)⊗̂EΓ
( ̂ZLP (Qp),O ̂ZLP (Qp)

)
for an arbitrary compact

open subgroup H of LP (Qp). Shrinking H, we can and do assume H has the form H ∼= HD ×
ZH where HD (resp. ZH) is a compact open subgroup of LDP (Qp) (resp. of ZLP (Qp)). Hence
D(H,E) ∼= D(HD, E)⊗̂ED(ZH , E). Since the HD-action on JP (V )λ is smooth, the action of

D(H,E)⊗̂EΓ( ̂ZLP (Qp),O ̂ZLP (Qp)
) on JP (V )∨λ factors through

D∞(HD, E)⊗̂ED(ZH , E)⊗̂EΓ( ̂ZLP (Qp),O ̂ZLP (Qp)
),

and further through its quotient

D∞(HD, E)⊗̂EΓ( ̂ZLP (Qp),O ̂ZLP (Qp)
)

via the embedding D(ZH , E) ↪→ Γ( ̂ZLP (Qp),O ̂ZLP (Qp)
).

We now consider JP (V )λ⊗̂ECQp−la(Z0
LP
, E). We denote Z0

LP
by Z0 (resp. Z ′0, resp. Z ′′0 ) when

it acts on JP (V )λ⊗̂ECQp−la(Z0
LP
, E) by only acting on the term CQp−la(Z0

LP
, E) (resp. by only

acting on JP (V )λ, resp. by acting via Z0
LP

(id,det−1
LP

)

−−−−−−→ Z ′0 × Z0). In particular the Z ′0-action

coincides with Υ1|Z0
LP

. Note that (3.2) defines a trivial action of HD ×Z$ on CQp−la(Z0
LP
, E), so

the diagonal action of HD×Z$ is the same as the one given by only acting on JP (V )λ. It follows
from the previous discussion that the strong dual of JP (V )λ⊗̂ECQp−la(Z0

LP
, E) is a coadmissible

module over (recall Z1
∼= ZLP (Qp) acts via Υ1)

D∞(HD, E)⊗̂EΓ(Ẑ1,OẐ1
)⊗̂ED(Z0, E)

∼= D∞(HD, E)⊗̂EΓ(Ẑ$,OẐ$)⊗̂ED(Z ′0, E)⊗̂ED(Z0, E).
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Using the group isomorphism

Z ′′0 ×Z0
∼−−→ Z ′0 ×Z0, (a, b) 7→ (a, bdetLP (a)−1),

we see that the strong dual of JP (V )λ⊗̂ECQp−la(Z0
LP
, E) is also a coadmissible module over

D0 := D∞(HD, E)⊗̂EΓ(Ẑ$,OẐ$)⊗̂ED(Z ′′0 , E)⊗̂ED(Z0, E).

We now finally consider Bσ,λ(V ). Let M :=
(
σ∨ ⊗E JP (V )λ⊗̂ECQp−la(Z0

LP
, E)

)∨
(a Fréchet

space). We use Z0, Z ′0, Z ′′0 to denote the corresponding induced action of Z0
LP

on M that acts
trivially on σ∨. Shrinking H if necessary, we assume the H-action on σ is trivial. Using the
previous paragraph, we see that M is a coadmissible module over D0. Noting that the action of
Z ′′0 coincides with ∆0|Z0

LP

, Bσ,λ(V ) is by definition a direct summand of:

W :=
(
σ∨ ⊗E JP (V )λ⊗̂ECQp−la(Z0

LP
, E)

)HD

[Z ′′0 = ψσ].

Endow M⊗D0,κψσ

(
Γ(Ẑ$,OẐ$)⊗̂ED(Z0, E)

)
with the locally convex quotient topology from

M⊗E
(
Γ(Ẑ$,OẐ$)⊗̂ED(Z0, E)

)
where κψσ denotes the projectionD0 � Γ(Ẑ$,OẐ$)⊗̂ED(Z0, E)

which sends D∞(HD, E) to E by moding out by the augmentation ideal, which sends D(Z ′′0 , E)
to E via the character ψσ, and which is the identity for the other factors of D0. Then we have
an isomorphism

W∨ ∼= M⊗̂D0,κψσ

(
Γ(Ẑ$,OẐ$)⊗̂ED(Z0, E)

)
where the right hand side is the Hausdorff completion of M⊗D0,κψσ

(
Γ(Ẑ$,OẐ$)⊗̂ED(Z0, E)

)
.

As M is coadmissible over D0, we deduce that W∨ is coadmissible over Γ(Ẑ$,OẐ$)⊗̂ED(Z0, E).

Hence W is an essentially admissible locally Qp-analytic representation of Z$ × Z0, and so is
Bσ,λ(V ).

We use the notation z0 := zLP to emphasize the action on Bσ,λ(V ) derived from Z0. For an
E-algebra A, m ⊂ A an ideal, and an A-module M , we denote by M [m∞] := lim−→n

M [mn] the
A-submodule of M consisting of elements annihilated by mn for some n ≥ 0.

Lemma 3.1.4. Let d be a weight of z0, then we have

Bσ,λ(V )[z0 = d] =
⊕
δ,χ

Bσ,λ(V )[z0 = d][mχ][m∞δ ] =
⊕

m∈SpmZΩ,χ

Bσ,λ(V )[z0 = d][mχ][m∞]

where δ (resp. χ) runs through the smooth characters of ∆0
∼= ZLP (Qp) (resp. through the locally

algebraic characters of Z0
∼= Z0

LP
of weight d) and mδ ⊂ E[∆0] (resp. mχ ⊂ E[Z0]) is the maximal

ideal associated to δ (resp. χ). Moreover, each summand in the direct sums is finite dimensional
over E.

Proof. We have by definition using (3.2):

Bσ,λ(V )[z0 = d] = (JP (V )λ⊗̂ECQp−la(Z0
LP
, E)[zLP = d]⊗E σ∨)L

0
P

= (JP (V )λ[zLP = d ◦ detLP ]⊗̂ECQp−la(Z0
LP
, E)[zLP = d]⊗E σ∨)L

0
P . (3.6)

23



As CQp−la(Z0
LP
, E)[zLP = d] ∼= C∞(Z0

LP
, E) is topologically isomorphism to a direct limit of finite

dimensional E-vector spaces. We deduce by [64, Prop. 1.2] that (3.6) remains unchanged if ⊗̂E is
replaced by ⊗̂E . As in Lemma 3.1.3, let H be a compact open subgroup of L0

P such that H acts
trivially on σ and H ∼= HD × ZH where HD := H ∩ LDP and ZH := H ∩ Z0

LP
. By (3.6), we see

that Bσ,λ(V )[z0 = d] is a ∆0-equivariant direct summand of(
JP (V )λ[zLP = d ◦ detLP ]⊗E CQp−la(Z0

LP
, E)[zLP = d]⊗E σ∨

)H
.

It thus suffices to prove the statement for the latter. We have(
JP (V )λ[zLP = d ◦ detLP ]⊗E CQp−la(Z0

LP
, E)[zLP = d]⊗E σ∨

)H
∼=
((
JP (V )λ ⊗E σ∨

)HD

[zLP = d ◦ detLP ]⊗E CQp−la(Z0
LP
, E)[zLP = d]

)ZH
.

By [53, Thm. 4.10], we have

(JP (V )λ ⊗E σ∨
)HD

[zLP = d ◦ detLP ] =
⊕
δ′

(JP (V )λ ⊗E σ∨
)HD

[zLP = d ◦ detLP ][m∞δ′ ]

where δ′ runs though the locally algebraic characters of Z1
∼= ZLP (Qp) of weight d (and [m∞δ′ ] is

for the corresponding Z1-action). Moreover, by the proof of loc. cit. and the same argument as in

the proof of [20, Prop. 4.1], each
(
JP (V )λ ⊗E σ∨

)HD

[zLP = d ◦ detLP ][m∞δ′ ] is finite dimensional
over E. For such δ′, we easily get:((

JP (V )λ ⊗E σ∨
)HD

[zLP = d ◦ detLP ][m∞δ′ ]⊗E CQp−la(Z0
LP
, E)[zLP = d]

)ZH
(3.7)

∼=
⊕
δ,χ

((
JP (V )λ ⊗E σ∨

)HD

[zLP = d ◦ detLP ][m∞δ′ ]⊗E CQp−la(Z0
LP
, E)[zLP = d]

)ZH
[mχ][m∞δ ]

∼=
⊕
m,χ

((
JP (V )λ ⊗E σ∨

)HD

[zLP = d ◦ detLP ][m∞δ′ ]⊗E CQp−la(Z0
LP
, E)[zLP = d]

)ZH
[mχ][m∞]

where [m∞δ ] is for the smooth action of ∆0
∼= ZLP (Qp), [mχ] for the locally algebraic action of

Z0
∼= Z0

LP
(with χ as in the statement) and [m∞] for the smooth action of ZΩ (m as in the

statement), noting that smooth representations of Z0 over E are semi-simple. By unwinding the
actions of Z1 and ∆0, if a summand in the right hand side of (3.7) is non-zero, then δ′δ−1 is a
locally algebraic character of weight d ◦ detLP which is trivial on Z$ and δ′|ZH = (χ ◦ detLP )|ZH .
We deduce that for each smooth character δ of ∆0 and each locally algebraic character χ of Z0

of weight d, there exist at most finitely many δ′ such that (3.7) is non-zero. Likewise replacing
characters δ of ∆0 by maximal ideals m of ZΩ. The lemma follows.

We discuss the problem of the choice of σ and λ. We first introduce some notation.

Notation 3.1.5. (1) For a continuous character χ of Z0
LP

(resp. of ZLPi (OFi)), denote by χ$
(resp. χ$i) the character of ZLP (Qp) (resp. of ZLPi (Fi)) that is trivial on Z$ (resp. on Z$i =

Z$ ∩ ZLPi (Fi)) and is equal to χ on Z0
LP

(resp. on ZLPi (OFi)).

(2) For a continuous character δ of ZLP (Qp) (resp. of ZLPi (Fi)), put δ0 := δ|Z0
LP

(resp.

δ0 := δ|ZLPi (OFi )
), δ0

$ := (δ0)$ (resp. δ0
$i := (δ0)$i) and δunr

$ := δ(δ0
$)−1 (resp. δunr

$i := δ(δ0
$i)
−1).

Hence δunr
$ (resp. δunr

$i ) is an unramified character of ZLP (Qp) (resp. ZLPi (Fi)) and δ = δunr
$ δ0

$

(resp. δ = δunr
$i δ

0
$i).
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Let ψ be a smooth character of ZLP (Qp) over E, σ′ := σ⊗E (ψ0 ◦detLP ) and Ω′ the Bernstein
component associated to σ′. We have an LP (Qp)-equivariant isomorphism

c-ind
LP (Qp)

L0
P

σ′
∼−→
(

c-ind
LP (Qp)

L0
P

σ
)
⊗E (ψ ◦ detLP ), f 7→ [g 7→ f(g)ψ−1(detLP (g))]⊗ 1. (3.8)

Denote by ιψ the following composition

ιψ : EndLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ
) ∼−−→ EndLP (Qp)

(
(c-ind

LP (Qp)

L0
P

σ)⊗E (ψ ◦ detLP )
)

∼−−→ EndLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ′
)

where the first map is given by twisting by ψ ◦detLP , and the second map is induced by (3.8). We
easily check that ιψ : ZΩ → ZΩ′ sends π ∈ SpecZΩ′ to π ⊗E (ψ−1 ◦ detLP ) ∈ SpecZΩ. Let λ′ be
another integral P -dominant weight for G such that there exists an integral weight d of ZLP (Qp)
with λ′ − λ = d ◦ detLP (in particular L(λ)P |LDP (Qp)

∼= L(λ′)P |LDP (Qp)). Let δd be the algebraic

character of ZLP (Qp) (over E) of weight d. Recall δd = δunr
d,$δ

0
d,$ from Notation 3.1.5.

Lemma 3.1.6. There is a natural isomorphism of vector spaces of compact type

twψ,d : Bσ′,λ′(V )
∼−−→ Bσ,λ(V )

satisfying the following compatibility for the ZΩ′ × Z$ × Z0- and ZΩ × Z$ × Z0-actions, where
v ∈ Bσ′,λ′(V ), α ∈ ZΩ′, β ∈ Z$ and γ ∈ Z0:

twψ,d

(
(α, β, γ) · v

)
= (δd ◦ detLP )(β)(δdψ)−1(γ)

((
ιδunr

d,$

(
ι−1
ψ0
$

(α)
)
, β, γ

)
· twψ,d(v)

)
.

Proof. We have Z0-equivariant isomorphisms (using (3.8) for the second):

tw0 : Bσ′,λ′(V )
∼−−→ HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ′, JP (V )λ ⊗E (δ−1
d ◦ detLP )⊗̂ECQp−la(Z0

LP
, E)

)
∼−−→ HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ, JP (V )λ ⊗E (δ−1
d ◦ detLP )⊗̂ECQp−la(Z0

LP
, E)⊗E (ψ−1 ◦ detLP )

)
such that tw0((α, β) · v) = (ψ ◦ detLP )(β)

(
(ι−1
ψ (α), β) · tw0(v)

)
. We have an isomorphism

((δ−1
d ψ−1)0

$ ◦ detLP )⊗̂ECQp−la(Z0
LP
, E)

∼−−→ CQp−la(Z0
LP
, E) (3.9)

1⊗ f 7−→ [z 7→ f(z)(δdψ)0(z)]

which is LP (Qp)-equivariant (but not Z0-equivariant) where LP (Qp) acts on the left hand side
by the diagonal action (with LP (Qp) acting on CQp−la(Z0

LP
, E) via (3.2)). This isomorphism,

together with tw0, induce an isomorphism

tw1 : Bσ′,λ′
∼−→ HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ, JP (V )λ ⊗E ((δ−1
d ψ−1)unr

$ ◦ detLP )⊗̂ECQp−la(Z0
LP
, E)

)
satisfying tw1((α, β, γ) · v) = (ψ ◦ detLP )(β)(δ−1

d ψ−1)(γ)
(
(ι−1
ψ (α), β, γ) · tw1(v)

)
for (α, β, γ) ∈

ZΩ′ × Z$ ×Z0. We have isomorphisms:

tw2 : HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ, JP (V )λ ⊗E ((δ−1
d ψ−1)unr

$ ◦ detLP )⊗̂ECQp−la(Z0
LP
, E)

)
∼−−→ HomLP (Qp)

(
(c-ind

LP (Qp)

L0
P

σ)⊗E ((δdψ)unr
$ ◦ detLP ), JP (V )λ⊗̂ECQp−la(Z0

LP
, E)

)
∼−−→ HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ, JP (V )λ⊗̂ECQp−la(Z0
LP
, E)

)
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where the second isomorphism is induced by (3.8) (for the unramified character (δdψ)unr
$ ) and tw2

means the composition. It is straightforward to check that tw2 is Z0-equivariant and satisfies for
(α, β) ∈ ZΩ × Z$:

tw2((α, β) · v) = ((δ−1
d ψ−1)unr

$ ◦ detLP )(β)
(
(ι(δdψ)unr

$
(α), β) · tw2(v)

)
.

We put twψ,d := tw2 ◦ tw1. Forgetting the actions of ZΩ and ZΩ′ , we see that twψ,d is given by
the following composition

Bσ′,λ′(V ) ∼=
(

(σ′)∨ ⊗E JP (V )λ ⊗E (δ−1
d ◦ detLP )⊗̂ECQp−la(Z0

LP
, E)

)L0
P

∼−−→
(
σ∨ ⊗E JP (V )λ ⊗E ((δunr

d,$)−1 ◦ detLP )⊗E ((δ0
d,$ψ

0
$)−1 ◦ detLP )⊗̂ECQp−la(Z0

LP
, E)

)L0
P

∼−−→
(
σ∨ ⊗E JP (V )λ ⊗E ((δunr

d,$)−1 ◦ detLP )⊗̂ECQp−la(Z0
LP
, E)

)L0
P

∼=
(
σ∨ ⊗E JP (V )λ⊗̂ECQp−la(Z0

LP
, E)

)L0
P ∼= Bσ,λ(V )

where the third isomorphism is induced by (3.9). In particular, twψ,d is a topological isomorphism.

Let (J ′i,j , (σ
0
i,j)
′) be another maximal simple type of Ωi,j and K ′i,j be a maximal compact

open subgroup of GLni,j (Fi) containing J ′i,j . Define (σ′)0 := �i,j(σ
0
i,j)
′, σ′i,j := c-ind

K′i,j
J ′i,j

(σ0
i,j)
′,

σ′ := �i,jσ
′
i,j and K ′ :=

∏
i,jK

′
i,j (so that σ′ is an absolutely irreducible representation of K ′ over

E). By [23, Cor. 7.6], (J ′, (σ′)0) is conjugate to (J, σ0), i.e. there exist h ∈ LP (Qp) such that
J ′ = hJh−1 and a bijection ιh : σ0 ∼−→ (σ0)′ satisfying ιh(αv) = (hαh−1)ιh(v) for α ∈ J , v ∈ σ0.
The morphism ιh induces a bijection:

ι̃h : c-ind
LP (Qp)
J σ0 ∼−→ c-ind

LP (Qp)
J ′ (σ′)0, f 7→ [g 7→ ιh(f(h−1gh))]

satisfying ι̃h(gf) = (hgh−1)(ι̃h(f)) for g ∈ LP (Qp). We deduce isomorphisms

ZΩ
∼= EndLP (Qp)(c-ind

LP (Qp)
J σ0) ∼= EndLP (Qp)(c-ind

LP (Qp)
J ′ (σ′)0).

We fix such isomorphisms in the rest of this paragraph. We define:

Bσ′,λ(V ) :=
(
(σ′)∨ ⊗E JP (V )λ⊗̂ECQp−la(Z0

LP
, E)

)K′
where K ′ acts diagonally on JP (V )λ⊗̂ECQp−la(Z0

LP
, E) via the embedding K ′ ↪→ LP (Qp) and

(3.2). We endow Bσ′,λ(V ) with an action of Z0
∼= Z0

LP
, Z$ and ZΩ as in § 3.1.2.

Lemma 3.1.7. There exists a natural isomorphism of vector spaces of compact type which is
equivariant under the action of ZΩ × Z$ ×Z0:

Bσ,λ(V ) ∼= Bσ′,λ(V ).

Proof. We have a ZΩ × Z$ ×Z0-equivariant isomorphism

Bσ,λ(V ) ∼= HomJ(σ0, JP (V )λ⊗̂ECQp−la(Z0
LP
, E))
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and a similar isomorphism for Bσ′,λ(V ). Let W := JP (V )λ⊗̂ECQp−la(Z0
LP
, E), one can check that

the following diagram commutes

HomJ(σ0,W ) −−−−→ HomJ ′((σ
′)0,W )

o
y o

y
HomLP (Qp)

(
c-ind

LP (Qp)
J σ0,W

)
−−−−→ HomLP (Qp)

(
c-ind

LP (Qp)
J ′ (σ′)0,W

)
,

where the top map is given by f 7→ [v 7→ h(f(ι−1
h (v)))], and the bottom map is given by F 7→

[w 7→ h(F (ι̃−1
h (w)))]. One sees moreover that the top map is a topological isomorphism, that the

bottom map is bijective and ZΩ × Z$ ×Z0-equivariant. The lemma follows.

By Lemma 3.1.7, the ZΩ × Z$ × Z0-module Bσ,λ(V ) does not depend on the choice σ. We
denote hence BΩ,λ(V ) := Bσ,λ(V ) in the sequel.

3.1.3 Local Bernstein eigenvarieties

We keep the setting of § 3.1.2. We construct certain rigid analytic spaces parametrizing irreducible
ZΩ ×Z0-submodules of BΩ,λ(V ).

By Lemma 3.1.3 and [42, § 6.4], there exists a coherent sheafMΩ,λ(V ) over the rigid analytic

space Ẑ$ × Ẑ0 such that BΩ,λ(V ) is isomorphic to the global sections of MΩ,λ(V ). Moreover,
MΩ,λ(V ) is equipped with an O

Ẑ$×Ẑ0
-linear action of ZΩ. Using the fact that the action of Z$

factors through ZΩ (see before Lemma 3.1.2), we conclude thatMΩ,λ(V ) gives rise to a coherent

sheaf, still denoted by MΩ,λ(V ), over (SpecZΩ)rig × Ẑ0 such that

Γ
(
(SpecZΩ)rig × Ẑ0,MΩ,λ(V )

) ∼= BΩ,λ(V )∨. (3.10)

We let SuppMΩ,λ(V ) be the Zariski-closed support of MΩ,λ(V ) (defined by the annihilator of
MΩ,λ(V )).

Proposition 3.1.8. Let x = (πLP , χ) := ((πi,j), (χi,j)) ∈ (SpecZΩ)rig × Ẑ0. Then we have a
bijection of k(x)-vector spaces (χ$ as in Notation 3.1.5):(

x∗MΩ,λ(V )
)∨ ∼= HomLP (Qp)

(
πLP ⊗k(x) (χ$ ◦ detLP )⊗E L(λ)P , JP (V )

)
.

In particular, (πLP , χ) ∈ SuppMΩ,λ(V ) if and only if there is an LP (Qp)-equivariant embedding

πLP ⊗k(x) (χ$ ◦ detLP )⊗E L(λ)P ↪−→ JP (V ).

Proof. By definition, we have a bijection(
x∗MΩ,λ(V )

)∨ ∼= BΩ,λ(V )[ZΩ = πLP ,Z0 = χ].

By unwinding BΩ,λ(V ) (∼= Bσ,λ(V )), we see that the right hand side is isomorphic to (denoting
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by mπLP
the maximal ideal of ZΩ corresponding to πLP )

HomZΩ

(
ZΩ/mπLP

,HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ, JP (V )λ ⊗k(x) (χ−1
$ ◦ detLP )

))
∼−−→ HomLP (Qp)

(
πLP , JP (V )λ ⊗k(x) (χ−1

$ ◦ detLP )
)

∼= HomLP (Qp)

(
πLP ⊗k(x) (χ$ ◦ detLP ), JP (V )λ

)
∼= HomLP (Qp)

(
πLP ⊗k(x) (χ$ ◦ detLP ), JP (V )⊗E L(λ)∨P

)
∼= HomLP (Qp)

(
πLP ⊗k(x) (χ$ ◦detLP )⊗EL(λ)P , JP (V )

)
where the first isomorphism follows from Lemma 3.1.2, the second is obvious, the third follows
from (3.1) and the fact that πLP ⊗E (χ$ ◦detLP ) is smooth for the LDP (Qp)-action, and the fourth
is easily induced by the natural map L(λ)P ⊗E L(λ)∨P → E. The proposition follows.

The following proposition easily follows from Lemma 3.1.6:

Proposition 3.1.9. With the setting of Lemma 3.1.6, we have an isomorphism of rigid analytic
spaces

SuppMΩ,λ(V )
∼−→ SuppMΩ′,λ′(V ), (πLP , χ) 7→

(
πLP⊗E

(
(ψ0

$(δunr
d,$)−1)◦detLP

)
, χ(ψ0)−1(δ0

d)−1
)
.

Remark 3.1.10. Assume P = BI , we have ZΩ
∼= Z$, LP (Qp) ∼= TI (Qp) and L(λ)P = δλ.

Using the isomorphism

ιΩ,λ : (SpecZΩ)rig × Ẑ0
∼−−→ ̂ZLP (Qp) ∼= ̂TI (Qp), (πLP , χ) 7→ πLPχ$δλ

we can also view MΩ,λ(V ) as a coherent sheaf over ̂TI (Qp) and SuppMΩ,λ(V ) as a closed rigid

subspace of ̂TI (Qp). By Proposition 3.1.9, the resulting rigid subspaces SuppMΩ,λ(V ) of ̂TI (Qp)
for different (Ω, λ) are all the same. Moreover, in this case, one can directly associate to the
(essentially admissible) locally analytic representation JP (V ) of TI (Qp) a coherent sheaf M(V )

over ̂TI (Qp) without using L(λ)P and without tensoring by the factor CQp−la(Z0
LP
, E) such that

Γ( ̂TI (Qp),M(V )) ∼= JP (V )∨. For each point x = δ of ̂TI (Qp), the fibre (x∗M(V ))∨ is naturally
isomorphic to JP (V )[ZLP (Qp) = δ]. By Proposition 3.1.8 (and using ιΩ,λ), we see that M(V )
and MΩ,λ(V ) have isomorphic fibres (as E-vector spaces) at each point.

Set (see (2.1) for µΩi,j ):

µΩ :=
{

(ψi,j) i∈I
j=1,...,ri

: ZLP (Qp)→ E× | ψi,j ∈ µΩi,j

}
,

we define an action of µΩ on (SpecZΩ)rig × Ẑ0 such that ψ = (ψi,j) ∈ µΩ sends ((πi,j), (χi,j)) to((
πi,j ⊗E unr(ψi,j($i))

)
,
(
χi,jψi,j |O×Fi

))
.

By Proposition 3.1.9 (or by Proposition 3.1.8), we have

Corollary 3.1.11. For x ∈ (SpecZΩ)rig × Ẑ0, we have x ∈ SuppMΩ,λ(V ) if and only if ψ(x) ∈
SuppMΩ,λ(V ) for one (or any) ψ ∈ µΩ.
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Finally we show that, under certain assumptions, SuppMΩ,λ(V ) is closely related to Fredholm
hypersurfaces. We first unwind a bit the definition of the Jacquet-Emerton modules.

Let H be a compact open subgroup of Gp = G(Qp), and NH := H ∩NP (Qp). Let LP (Qp)+ =
{z ∈ LP (Qp) | zNHz

−1 ⊆ NH}. Recall that V NH is equipped with a natural Hecke action of
LP (Qp)+ given by

πz(v) =
1

|NH/(zNHz−1)|
∑

g∈NH/(zNHz−1)

gz(v). (3.11)

Then JP (V ) is defined to be (V NH )fs, where (−)fs denotes the finite slope part functor for the
action of ZLP (Qp)+ := LP (Qp)+ ∩ ZLP (Qp) (cf. [40, § 3.2]).

Lemma 3.1.12. We have JP (V )λ ∼=
(
(V NH ⊗E L(λ)∨P )l

D
P

)
fs
∼=
(
(V NH ⊗E L(λ)∨P )fs

)lDP .

Proof. Recall JP (V )λ ∼=
(
JP (V ) ⊗E L(λ)∨P

)lDP by (3.1). By [40, Prop. 3.2.9], we have JP (V ) ⊗E
L(λ)∨P

∼=
(
V NH ⊗E L(λ)∨P

)
fs

, where the Hecke action of z ∈ ZLP (Qp)+ on V NH ⊗E L(λ)∨P is given

by πz ⊗ z. It is clear that the action of lDP commutes with ZLP (Qp)+. By [40, Prop. 3.2.11], the
lemma follows.

We fix σ as in (3.3) and recall that we have an isomorphism BΩ,λ(V ) ∼= Bσ,λ(V ).

Lemma 3.1.13. We have an isomorphism of locally analytic representations of Z$ ×Z0:

BΩ,λ(V ) ∼=
((

(V NH ⊗E L(λ)∨P )⊗̂ECQp−la(Z0
LP
, E)⊗E σ∨

)L0
P

)
fs
,

where Z$ (resp. Z0) acts on the RHS by its action on V NH ⊗E L(λ)∨P (resp. on CQp−la(Z0
LP
, E)).

Proof. We have isomorphisms

BΩ,λ(V ) ∼=
((

(V NH ⊗E L(λ)∨P )l
D
P
)

fs
⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)L0
P

∼=
((

(V NH ⊗E L(λ)∨P )l
D
P ⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)
fs

)L0
P

∼=
((

(V NH ⊗E L(λ)∨P )l
D
P ⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)L0
P

)
fs

∼=
((

(V NH ⊗E L(λ)∨P )⊗̂ECQp−la(Z0
LP
, E)⊗E σ∨

)L0
P

)
fs
,

where the first isomorphism follows from Lemma 3.1.12, the second from [40, Prop. 3.2.9], the
third from [40, Prop. 3.2.11], and the last from the fact that lDP acts trivially on the factors
CQp−la(Z0

LP
, E) and σ∨.

Remark 3.1.14. Let z ∈ ZLP (Qp)+ and let Yz be the subgroup of ZLP (Qp) generated by z.
Assume YzZLP (Qp)+ = ZLP (Qp). By [40, Prop. 3.2.27], the lemmas also hold with “(−)fs” (for
the whole group ZLP (Qp)) replaced by the finite slope part “(−)Yz−fs” for Yz.

We now take H uniform pro-p in Gp and z ∈ Z$ such that

(1) H ∼= (NP−(Qp)∩H)×(LP (Qp)∩H)×(NP (Qp)∩H) =: N−H×LH×NH , and H is normalized
by L0

P ;
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(2) LH ∼= (LH ∩ LDP (Qp))× (LH ∩ ZLP (Qp)) =: LDH × ZLH ;

(3) LH acts trivially on σ;

(4) z ∈ ZLP (Qp)+ and satisfies ∩n(znNHz
−n) = 0, N−H ⊂ zN

−
Hz
−1 and YzZLP (Qp)+ = ZLP (Qp)

where Yz is the subgroup of ZLP (Qp) generated by z;

(5) H is normalized by z−1NHz.

The existence of H satisfying (1), (2) and (3) is clear. It is also clear that there exists z ∈
ZLP (Qp)+ such that (4) holds. By multiplying z by an element in Z0

LP
, we can take z ∈ Z$.

Finally, replacing H by Hpm for some m ≥ 1, (5) also holds (with the other properties unchanged).
As an example, one can take H to be

∏
i∈I (1 + $k

iMn(OFi)) for k sufficiently large, and z =∏
i∈I zi with

zi := diag
(
$ri−1
i , . . . , $ri−1

i︸ ︷︷ ︸
ni,1

, $ri−2
i , . . . , $ri−2

i︸ ︷︷ ︸
ni,2

, . . . , 1, . . . , 1︸ ︷︷ ︸
ni,ri

)
∈ ZLPi (Li).

By (1) and (5), one can deduce that

H ′ := (zHz−1)NH
∼= (zN−Hz

−1)× LH ×NH

contains H (note that H ′ is also an open uniform pro-p subgroup of Gp). The following proposition
is analogous to [17, Prop. 5.3] (see also [40, Prop. 4.2.36]).

Proposition 3.1.15. Assume that V |H′ ∼= CQp−la(H ′, E)⊕k for some k ∈ Z≥1. There exist an

admissible covering of Ẑ0 by affinoid opens U1 ⊂ U2 ⊂ · · · ⊂ Uh ⊂ · · · and the following data for
any h ≥ 1 where Ah := OẐ0

(Uh):

� a Banach Ah-module Mh satisfying the condition (Pr) of [24];

� an Ah-linear compact operator, denoted by zh, on the Ah-module Mh;

� Ah-linear continuous maps

{
αh : Mh −→Mh+1⊗̂Ah+1

Ah

βh : Mh+1⊗̂Ah+1
Ah −→Mh

such that βh ◦ αh = zh and

αh ◦ βh = zh+1 with βh Ah-compact;

� a topological O(Ẑ0)-linear isomorphism

M :=
((

(V NH ⊗E L(λ)∨P )⊗̂ECQp−la(Z0
LP
, E)⊗E σ∨

)L0
P

)∨ ∼= lim←−
h

Mh

commuting with the action induced by (πz⊗ z)⊗ 1⊗ 1 on the LHS and the action of (zh)h≥1

on the RHS.

One can visualize all the above conditions in the following commutative diagram

M · · · Mh+1 Mh+1 ⊗Ah+1
Ah Mh · · ·

M · · · Mh+1 Mh+1 ⊗Ah+1
Ah Mh · · ·

.................................................................................. ............ ............................................................................ ............ ..................................................................................................... ............ .................................................................................... ............
βh

.................................................................................. ............ ............................................................................ ............ ..................................................................................................... ............ .................................................................................... ............
βh

..........................................................
.....
.......
.....
πz

..........................................................
.....
.......
.....
zh+1

..........................................................
.....
.......
.....

zh+1 ⊗ 1Ah

..........................................................
.....
.......
.....
zh

....................................................................................................
...
............ αh

............................................................................... ............

............................................................................... ............ .
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Proof. We put

W :=
(
(V NH ⊗E L(λ)∨P )⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)LH (3.12)

and N := W∨. By definition, M is a direct summand of N equivariant under the action of Z0 and
of (πz⊗z)⊗1⊗1. Let s := |H ′/H|, thus V |H ∼= CQp−la(H,E)⊕ks. We have then an LH -equivariant

isomorphism V NH ∼=
(
CQp−la(N−H , E)⊗̂ECQp−la(LH , E)

)⊕ks
. Let r := dimE L(λ)∨P , we have LH -

equivariant isomorphisms (see for example [35, Lemma 2.19] for the second isomorphism):

V NH ⊗E L(λ)∨P
∼=

(
CQp−la(N−H , E)⊗̂ECQp−la(LH , E)

)⊕ks ⊗E L(λ)∨P

∼=
(
CQp−la(N−H , E)⊗̂ECQp−la(LH , E)

)⊕rks
∼=

(
CQp−la(N−H , E)⊗̂ECQp−la(LDH , E)⊗̂ECQp−la(ZLH , E)

)⊕rks
.

There exists s′ such that (CQp−la(Z0
LP
, E)⊗E σ∨)|LH ∼= CQp−la(ZLH , E)⊕s

′
, where the LH -action

on the right hand side is induced from the regular ZLH -action via LH
det−1

LP−−−−→ ZLH . Let m := krss′,
we then have

W ∼=
((
CQp−la(N−H , E)⊗̂ECQp−la(LDH , E)⊗̂ECQp−la(ZLH , E)⊗̂ECQp−la(ZLH , E)

)LH)⊕m
∼=

(
CQp−la(N−H , E)⊗̂E

(
CQp−la(ZLH , E)⊗̂ECQp−la(ZLH , E)

)ZLH)⊕m
∼=

(
CQp−la(N−H , E)⊗̂E

(
CQp−la(ZLH × ZLH , E)

)ZLH)⊕m,
where the ZLH -fixed vectors in the last term are for the ZLH -action induced from the regular
ZLH × ZLH -action via the morphism ZLH ↪→ ZLH × ZLH , a 7→ (a,det−1

LP
(a)). Using the isomor-

phism ZLH ×ZLH
∼−→ ZLH ×ZLH , (a, b) 7−→ (a,det−1

LP
(a)b), we finally deduce a ZLH -equivariant

isomorphism:
W ∼=

(
CQp−la(N−H , E)⊗̂ECQp−la(ZLH , E)

)⊕m
where ZLH acts on W via ZLH ↪→ Z0, i.e. by only acting on the factor CQp−la(Z0

LP
, E) in (3.12) by

the right regular action, and similarly with CQp−la(ZLH , E) on the right hand side. The proposition
follows then from (an easy variation of) the argument in the proof of [17, Prop. 5.3] (with ΠN0 of
loc. cit. replaced by W ).

3.2 Bernstein eigenvarieties

In this section, we first give our global setup. Then we apply the formalism of § 3.1.3 to construct
rigid analytic spaces, called Bernstein eigenvarieties, parametrizing certain p-adic automorphic
representations. We also show some basic properties of Bernstein eigenvarieties.

3.2.1 p-adic automorphic representations

We briefly recall the global setting of [14, § 5] (which will be the same as ours) and introduce
some notation.

We fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Qp. We let F be a CM field that is a totally
imaginary quadratic extension of a totally real field F+ such that all the places of F+ dividing
p split in F . We let G/F+ be a unitary group of rank n ≥ 2 associated to F/F+, i.e. such that
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G×F+ F ∼= GLn /F . We assume that G(F+
v ) is compact at all archimedean places v of F+. For a

finite place v of F+ such that v splits in F , we choose a place ṽ of F dividing v. For such places,
we have natural isomorphisms F+

v
∼= Fṽ and iṽ : G(F+

v )
∼−→ G(Fṽ)

∼−→ GLn(Fṽ).

We let Up be a compact open subgroup of G(A∞,p
F+ ) of the form Up =

∏
v-p,∞ Uv where Uv

is a compact open subgroup of G(F+
v ) which is hyperspecial when v is inert in F . We choose a

finite set S of finite places of F+ containing the set Sp of places dividing p and the set of places
v such that either v is ramified in F or Uv is not maximal at v. We assume moreover that for
all places v /∈ S that are split in F , Uv = i−1

ṽ (GLn(OFṽ)). We let TS := lim−→I
⊗v∈ITv where

Tv := OE [Uv\G(F+
v )/Uv] and I runs through the finite sets of places v of F+ which are not in

S and split in F (recall that E is a sufficiently large finite extension of Qp). Note that Tv is

polynomially generated over OE by the operators Tṽ,i =

[
Uvi
−1
ṽ

(
$ṽ1i 0

0 1n−i

)
Uv

]
for 1 ≤ i ≤ n.

We consider the usual spaces of p-adic automorphic forms of level Up in that context:

Ŝ(Up, E) := {f : G(F+)\G(A∞F+)/Up → E, f continuous},
Ŝ(Up,OE) := {f : G(F+)\G(A∞F+)/Up → OE , f continuous}.

We equip Ŝ(Up, E) with the norm defined using the unit ball Ŝ(Up,OE), in particular Ŝ(Up, E)
is a p-adic Banach space. This Banach space is also equipped with a natural continuous unitary
action of G(F+ ⊗Q Qp) ∼=

∏
v∈Sp GLn(Fṽ), and an action of TS (with each element acting via

a continuous operator) that commutes with G(F+ ⊗Q Qp). Note that all these actions preserve

Ŝ(Up,OE). We also have

Ŝ(Up,OE) ∼= lim←−
s

S(Up,OE/$s
E) ∼= lim←−

s

lim−→
Up

S(UpUp,OE/$s
E)

where S(UpUp,OE/$s
E) denotes the space of functions G(F+)\G(A∞F+)/(UpUp)→ OE/$s

E .

For an automorphic representation π ∼= π∞ ⊗C π∞ ∼= π∞ ⊗C π∞,p ⊗C πp of

G(AF+) ∼= G(F+ ⊗Q R)×G(A∞F+) ∼= G(F+ ⊗Q R)×G(A∞,p
F+ )×G(F+ ⊗Q Qp),

we associate an algebraic representation Wπ,p of G(F+ ⊗Q Qp) over Qp as in [14, Prop. 5.1] (and
as in the references therein). Recall that we have (for example see [14, Prop. 5.1] for (1) and part
(a) in the proof of [16, Lemma 6.1] for (2)):

Proposition 3.2.1. (1) We have a G(F+ ⊗Q Qp)× TS-equivariant isomorphism

Ŝ(Up, E)lalg ⊗E Qp ∼= ⊕π
(
(π∞,p)U

p ⊗Q (πp ⊗QWπ,p)
)⊕m(π)

,

where π runs through the automorphic representations of G(AF+).

(2) Assume Up is sufficiently small, then for any compact open subgroup H of G(F+ ⊗Q Qp),
there exists m such that Ŝ(Up, E)|H ∼= C(H,E)⊕m.

3.2.2 Bernstein eigenvarieties: construction and first properties

We apply the construction in § 3.1 to the locallyQp-analytic representation Ŝ(Up, E)an ofG(F+⊗Q
Qp) ∼=

∏
v∈Sp GLn(Fṽ).
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We first modify the notation in § 3.1 to be consistent with § 3.2.1 in an obvious way. The
index set I will be Sp, and Gp will be G(F+ ⊗Q Qp) ∼=

∏
v∈Sp GLn(Fṽ). The element i ∈ I will

be replaced by ṽ everywhere (for example, Fi in § 3.1 will be Fṽ etc.) and we fix a uniformizer $ṽ

for each Fṽ. As in 3.1, we fix a parabolic subgroup Pṽ ⊃ B of GLn for each ṽ with a fixed Levi
subgroup LPṽ ⊃ T and denote by NPṽ its nilpotent radical. We fix a cuspidal Bernstein component
Ω for LP (Qp) ∼=

∏
v∈Sp LPṽ(Fṽ)

∼=
∏
v∈Sp

∏rṽ
j=1 GLnṽ,j (Fṽ), and let σ ∼= �v∈Sp �rṽ

j=1 σṽ,j be a

smooth absolutely irreducible representation of L0
P :=

∏
v∈Sp

∏rṽ
j=1 GLnṽ,j (OFṽ) over E associated

to Ω as in § 3.1. We finally fix an integral P -dominant weight λ = (λṽ,i,τ ) v∈Sp
i=1,...,n
τ∈Σṽ

for Gp where

Σṽ := ΣFṽ . For i ∈ {1, . . . , rṽ} we set sṽ,i :=
∑i

j=1 nṽ,j and sṽ,0 = 0.

By the discussion above Proposition 3.1.8, BΩ,λ(Ŝ(Up, E)an)∨ gives rise to a coherent sheaf

MΩ,λ(Up) over (SpecZΩ)rig×Ẑ0 where Z0
∼= Z0

LP
. By functoriality, BΩ,λ(Ŝ(Up, E)an) is naturally

equipped with an action of TS that commutes with the action of ZΩ × Z0. We deduce that
MΩ,λ(Up) is equipped with a natural O

(SpecZΩ)rig×Ẑ0
-linear action of TS . For each affinoid open

U = SpmR of (SpecZΩ)rig × Ẑ0, the (commutative) R-subalgebra AR of EndR(MΩ,λ(Up)|U )
generated by TS is a finite type R-module. These {SpmAR} then glue to a rigid analytic space,

denoted by EΩ,λ(Up), which is finite over (SpecZΩ)rig × Ẑ0. From the definition of EΩ,λ(Up), we
see that MΩ,λ(Up) is also a coherent sheaf over EΩ,λ(Up).

The following properties follow easily from the construction, Proposition 3.1.8 and Corollary
3.1.11.

Proposition 3.2.2. (1) For a finite extension E′ of E, an E′-point of EΩ,λ(Up) can be identified
to a triple (η, πLP , χ) where η : TS → E′ is a system of Hecke eigenvalues and (πLP , χ) is an

E′-point of (SpecZΩ)rig × Ẑ0.

(2) We have an isomorphism equivariant under the action of ZΩ ×Z0 × TS:

Γ(EΩ,λ(Up),MΩ,λ(Up)) ∼= BΩ,λ(Ŝ(Up, E)an)∨.

Moreover, for x = (η, πLP , χ) ∈ EΩ,λ(Up), the above isomorphism induces an isomorphism of
k(x)-vector spaces:

(x∗MΩ,λ(Up))∨ ∼= HomLP (Qp)

(
πLP ⊗E

(
χ$ ◦detLP

)
⊗EL(λ)P , JP (Ŝ(Up, E)an)[TS = η]

)
. (3.13)

(3) For η : TS → E′ a system of Hecke eigenvalues and (πLP , χ) an E′-point of (SpecZΩ)rig×
Ẑ0, the following are equivalent:

� there exists a point x ∈ EΩ,λ(Up) of parameter (η, πLP , χ);

� there exists a point x ∈ EΩ,λ(Up) of parameter (η, ψ(πLP , χ)) for any ψ ∈ µΩ (see the

discussion above Corollary 3.1.11 for the action of µΩ on (SpecZΩ)rig × Ẑ0);

� the vector space on the right hand side of (3.13) is non-zero.

By Proposition 3.1.9, we have

Proposition 3.2.3. With the notation of Proposition 3.1.9, we have an isomorphism of rigid
spaces

EΩ,λ(Up)
∼−−→ EΩ′,λ′(U

p), (η, πLP , χ) 7→
(
η, πLP ⊗E

(
(ψ0

$(δunr
d,$)−1) ◦ detLP

)
, χ(ψ0

$)−1(δ0
d,$)−1

)
.
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Let z ∈ Z$ ⊂ ZLP (Qp) be as in the discussion above Proposition 3.1.15. We define κz as the
composition

κz : EΩ,λ(Up) −→ (SpecZΩ)rig × Ẑ0 −→ (SpecE[Z$])rig × Ẑ0 −→ Grig
m × Ẑ0 (3.14)

where the last two morphisms are induced by E[Yz] ↪→ E[Z$] → ZΩ (recall Yz is the subgroup
of Z$ generated by z). It follows from [40, Prop. 3.2.23] and Proposition 3.1.15 (see also the

proof of [17, Lemma 3.10]) that (κz)∗MΩ,λ(Up) is a coherent sheaf over Grig
m ×Ẑ0 and κz is finite.

We denote by Zz(U
p) its scheme-theoretic support in Grig

m × Ẑ0. Note that the first morphism

in (3.14) factors through the scheme-theoretic support of MΩ,λ(Up) in (SpecZΩ)rig × Ẑ0, and κz
factors through Zz(U

p). We define κ as the composition (the second map being the canonical
projection)

κ : EΩ,λ(Up)→ (SpecZΩ)rig × Ẑ0 � Ẑ0

which obviously factors through κz. By exactly the same argument as in the proofs of [17, Lemma
3.10] and [17, Prop. 3.11] (with [17, Prop. 5.3] replaced by Proposition 3.1.15), we have:

Proposition 3.2.4. (1) The rigid space Zz(U
p) ↪→ Grig

m × Ẑ0 is a Fredholm hypersurface of

Grig
m × Ẑ0 (cf. [17, § 3.3]). Moreover, there exists an admissible covering {U ′i} of Zz(U

p) by
affinoids U ′i such that the composition

g : Zz(U
p) ↪→ Grig

m × Ẑ0 � Ẑ0

induces a finite surjective morphism from U ′i to an affinoid open Wi of Ẑ0, and such that U ′i
is a connected component of g−1(Wi). For each i, Γ

(
U ′i , (κz)∗MΩ,λ(Up)

)
is a finitely generated

projective OẐ0
(Wi)-module.

(2) There exists an admissible covering {Ui} of EΩ,λ(Up) by affinoids Ui such that

� there exists an affinoid open Wi of Ẑ0 satisfying that κ is a finite surjective morphism from
each irreducible component of Ui to Wi;

� OEΩ,λ(Up)(Ui) is isomorphic to an OẐ0
(Wi)-algebra of endomorphisms of a finitely generated

projective OẐ0
(Wi)-module.

We also have as in [17, Cor. 3.12], [17, Cor. 3.13] and [18, Lemma 3.8] by the same arguments:

Corollary 3.2.5. (1) The rigid space EΩ,λ(Up) is nested ([3, Def. 7.2.10]), equidimensional of
dimension

∑
v∈Sp([Fṽ : Qp]rṽ), and has no embedded component.

(2) The morphism κz is finite and the image of an irreducible component of EΩ,λ(Up) is an
irreducible component of Zz(U

p). The image of an irreducible component of EΩ,λ(Up) by κ is a

Zariski-open of Ẑ0.

(3) The coherent sheaf MΩ,λ(Up) is Cohen-Macaulay over EΩ,λ(Up).

Remark 3.2.6. Assume P = Bp :=
∏
v∈Sp B(Fṽ), and let Tp :=

∏
v∈Sp T (Fṽ). Consider the

composition (cf. Remark 3.1.10)

EΩ,λ(Up) −→ (SpecZΩ)rig × Ẑ0
ιΩ,λ−−−→ T̂p.
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Using Proposition 3.2.3, the Bernstein eigenvarieties EΩ,λ(Up) equipped with the above morphism

over T̂p are all isomorphic for different (Ω, λ). Moreover by Remark 3.1.10 and (the same ar-
gument as in the proof of) [3, Prop. 7.2.8], one can show that EΩ,λ(Up)red is isomorphic to the

standard reduced eigenvariety E(Up)red constructed directly from JBp(Ŝ(Up, E)an) (see for example
[14, § 7]).

3.2.3 Density of classical points

We prove Theorem 3.2.11 below.

Definition 3.2.7. Let x = (ηx, πx,LP , χx) be a point in EΩ,λ(Up).

(1) We call x classical if

HomLP (Qp)

(
πx,LP ⊗E

(
(χx)$ ◦ detLP

)
⊗E L(λ)P , JP (Ŝ(Up, E)lalg)[TS = ηx]

)
6= 0. (3.15)

(2) We call x very classical if

� χx is locally algebraic and the weight λx := (wt(χx) ◦ detLP ) + λ is dominant;

� any irreducible constituent of the locally analytic parabolic induction(
Ind

G(Qp)

P−(Qp)

(
πx,LP ⊗E ((χx)$ ◦ detLP )⊗E L(λ)P

))an
(3.16)

which is not locally algebraic, does not admit a G(Qp)-invariant OE-lattice.

Lemma 3.2.8. A very classical point x = (ηx, πx,LP , χx) is classical.

Proof. We write (χx)$ in the form (χx)∞$ δwt(χx) where (χx)∞$ is a smooth character of ZLP (Qp)
(recall from § 3.1.1 that δwt(χx) is the algebraic character of ZLP (Qp) of weight wt(χx)). By
Proposition 3.2.2 (3) we have

HomLP (Qp)

(
πx,LP ⊗E (χx)$ ◦ detLP ⊗EL(λ)P , JP (Ŝ(Up, E)an)[TS = ηx]

)
6= 0.

By [14, Thm. 4.3] (the notation of which we freely use), any non-zero element in the above vector
space induces a non-zero morphism of G(Qp)-representations (recall g, p− denote the Lie algebra
of G(Qp), P−(Qp) respectively, and δP denotes the modulus character of P (Qp))

FGP−
((

U(g)⊗U(p−) L
−(−λx)P

)∨
, πx,LP ⊗E δ

−1
P ⊗E

(
(χx)∞$ ◦ detLP

))
−→ Ŝ(Up, E)an[TS = ηx] ↪−→ Ŝ(Up, E)an.

By the results of [74], the representation on the left hand side has the following properties:

� it has the same irreducible constituents as the representation (3.16);
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� there is a G(Qp)-equivariant surjection (where (Ind
G(Qp)

P−(Qp)
(−))∞ is the smooth parabolic

induction)

FGP−
((

U(g)⊗U(p−) L
−(−λx)P

)∨
, πx,LP ⊗E δ

−1
P ⊗E

(
(χx)∞$ ◦ detLP

))
−� FGp

P−

(
L−(−λx), πx,LP ⊗E δ

−1
P ⊗E

(
(χx)∞$ ◦ detLP

))
∼=
(

Ind
G(Qp)

P−(Qp)

(
πx,LP ⊗E δ

−1
P ⊗E ((χx)∞$ ◦ detLP )

))∞
⊗E L(λx)

and any irreducible constituent of the kernel is not locally algebraic.

The lemma then follows easily by definition.

We have the following numerical classicality criterion.

Proposition 3.2.9 (Numerical classicality). Let

x = (ηx, πx,LP , χx) =
(
ηx,⊗v∈Spπx,ṽ,⊗v∈Spχx,ṽ

)
∈ EΩ,λ(Up)

such that χx is locally algebraic and λx = (wt(χx) ◦ detLP ) + λ is dominant. Assume that for all
v ∈ Sp and k ∈ {1, . . . , rṽ}, we have

k∑
j=1

valṽ(ωπx,ṽ,j ($ṽ)) <

k∑
j=1

(sṽ,j + sṽ,j−1 − sṽ,k)−
∑
τ∈Σṽ

sṽ,k∑
j=1

λṽ,j,τ

+ inf
τ∈Σṽ

{
wt(χx)ṽ,k,τ − wt(χx)ṽ,k+1,τ + λṽ,sṽ,k,τ − λṽ,sṽ,k+1,τ + 1

}
, (3.17)

where valṽ denotes the p-adic valuation normalized by sending $ṽ to 1, wt(χx)ṽ,k′,τ ′ :=
wt(χx,ṽ)k′,τ ′, and where ωπx,ṽ,j denotes the central character of πx,ṽ,j. Then the point x is very
classical.

Proof. By [74, Thm. (i),(ii)], the representation
(

Ind
G(Qp)

P−(Qp)
(πx,LP⊗E ((χx)$◦detLP )⊗EL(λ)P )

)an

admits a Jordan-Holder filtration with graded pieces of the form:

FGP−(L−(−w · λx), πx,LP ⊗E ((χx)∞$ ◦ detLP )⊗E δ−1
P )

where L−(−w · λx) runs through irreducible constituents of U(g) ⊗U(p−) L
−(−λx)P . In par-

ticular, each w · λx is P -dominant. Assume that there exists an irreducible constituent V of(
Ind

G(Qp)

P−(Qp)
πx,LP ⊗E ((χx)$ ◦ detLP )⊗E L(λ)P

)an
such that V admits a G(Qp)-invariant lattice

and V is not locally algebraic. We deduce that there exists

1 6= w = (wṽ)v∈Sp = (wṽ,τ )v∈Sp
τ∈Σṽ

∈ W |Σp| ∼=
∏
v∈Sp

WFṽ =: WF

such that w · λx is P -dominant and V is a constituent of FGp
P−(L−(−w · λx), πx,LP ⊗E ((χx)∞$ ◦

detLP )⊗Eδ−1
P ). We letQṽ ⊃ Pṽ be the maximal parabolic of GLn such that w·λ is

∏
v∈Sp ResFṽQp Qṽ-

dominant, i.e. (w ·λx)ṽ,τ is Qṽ-dominant for all v ∈ Sp and τ ∈ Σṽ. We set Q :=
∏
v∈Sp ResFṽQp Qṽ.

We have by [74, Thm. (iii)]

FGP−
(
L−(−w · λx), πx,LP ⊗E

(
(χx)∞$ ◦ detLP

)
⊗E δ−1

P

)
∼= FGQ−

(
L−(−w · λx),

(
Ind

LQ(Qp)

LQ(Qp)∩P−(Qp)
(πx,LP ⊗E ((χx)∞$ ◦ detLP )⊗E δ−1

P )
)∞)

.
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By [74, Thm. (i),(ii),(iv)], there exists an irreducible constituent πLQ of the smooth representation(
Ind

LQ(Qp)

LQ(Qp)∩P−(Qp)
(πx,LP ⊗E ((χx)∞$ ◦ detLP )⊗E δ−1

P )
)∞

such that

V ∼= FGQ−
(
L−(−w · λx), πLQ

)
↪−→ FGQ−

(
L−(−w · λx),

(
Ind

LQ(Qp)

LQ(Qp)∩P−(Qp)
(πx,LP ⊗E ((χx)∞$ ◦ detLP )⊗E δ−1

P )
)∞)

.

Since V admits a G(Qp)-invariantOE-lattice, we see by [13, Cor. 3.5] that for any z ∈ ZLQ(Qp)+ ⊂
ZLP (Qp)+ we have (where ωπLQ denotes the central character of πLQ)

valp
(
δw·λx(z)δ−1

P (z)ωπLQ (z)
)
≥ 0. (3.18)

By [35, Lemma 3.18], we easily deduce (noting that βa in loc. cit. is independent of the choice
of λ) that for each v ∈ Sp such that wṽ 6= 1 there exists k ∈ {1, . . . , rṽ} such that z :=
($ṽ, . . . , $ṽ︸ ︷︷ ︸

sṽ,k

, 1, . . . , 1) ∈ ZLQṽ (Fṽ)
+ ⊂ ZLQ(Qp)+ and

valṽ
(
δw·λx−λx(z)

)
≤

∑
τ∈Σṽ
wṽ,τ 6=1

(
λxṽ,sṽ,k+1,τ

− λxṽ,sṽ,k,τ − 1
)

=
∑
τ∈Σṽ
wṽ,τ 6=1

(
wt(χx)ṽ,k+1,τ − wt(χx)ṽ,k,τ + λṽ,sṽ,k+1,τ − λṽ,sṽ,k,τ − 1

)
.

Together with (3.18), we deduce

valṽ
(
δλx(z)δ−1

P (z)ωπLQ (z)
)
≥

∑
τ∈Σṽ
wṽ,τ 6=1

(
wt(χx)ṽ,k,τ − wt(χx)ṽ,k+1,τ + λṽ,sṽ,k,τ − λṽ,sṽ,k+1,τ + 1

)
.

We compute:

valṽ
(
δ−1
P (z)

)
=

k∑
j=1

(
sṽ,k − sṽ,j − sṽ,j−1

)
valṽ

(
δλx(z)

)
=

∑
τ∈Σṽ

sṽ,k∑
j=1

λxṽ,j,τ =
∑
τ∈Σṽ

sṽ,k∑
j=1

λṽ,j,τ +
∑
τ∈Σṽ

k∑
j=1

(
nṽ,j wt(χx)ṽ,j,τ

)
valṽ

(
ωπLQ (z)

)
=

k∑
j=1

valṽ
(
ωπṽ,j ($ṽ)

)
−
∑
τ∈Σṽ

k∑
j=1

(
nṽ,j wt(χx)ṽ,j,τ

)
.

Hence we deduce

k∑
j=1

valṽ
(
ωπṽ,j ($ṽ)

)
≥

k∑
j=1

(
sṽ,j + sṽ,j−1 − sṽ,k

)
−
∑
τ∈Σṽ

sṽ,k∑
j=1

λṽ,j,τ

+
∑
τ∈Σṽ
wṽ,τ 6=1

(
wt(χx)ṽ,k,τ − wt(χx)ṽ,k+1,τ + λṽ,sṽ,k,τ − λṽ,sṽ,k+1,τ + 1

)
,

which contradicts (3.17) noting that wt(χx)ṽ,k,τ −wt(χx)ṽ,k+1,τ + λṽ,sṽ,k,τ − λṽ,sṽ,k+1,τ + 1 ≥ 1 for
all τ as λx is dominant and that the set {τ ∈ Σṽ | wṽ,τ 6= 1} is non-empty since wṽ 6= 1. The
proposition follows.
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Remark 3.2.10. (1) Similar results (but in the setting of overconvergent cohomology) were ob-
tained in [2].

(2) Note that all the terms on the right hand side of (3.17) except wt(χx)ṽ,k,τ −wt(χx)ṽ,k+1,τ

are constants for points in EΩ,λ(Up).

(3) Recall there is a finite morphism of E-algebras E[Z$] → ZΩ such that the associated
morphism SpecZΩ → SpecE[Z$] sends a point πx,LP ∈ SpecZΩ to the character z 7→ ωπx,LP (z).
We have hence finite morphisms (see also (3.14)):

EΩ,λ(Up) −→ (SpecZΩ)rig × Ẑ0 −→ (SpecE[Z$])rig × Ẑ0.

Note that the criterion in (3.17) only uses the information of the image of x in (SpecE[Z$])rig×
Ẑ0.

The following theorem follows from the classicality criterion (Proposition 3.2.9) by the same
argument as in the proof of [17, Thm. 3.19] (see also [28, § 6.4.5]).

Theorem 3.2.11. The set of very classical points is Zariski-dense in EΩ,λ(Up). Moreover, for
any point x = (η, πLP , χ) ∈ EΩ,λ(Up) with χ locally algebraic, and for any admissible open U ⊆
EΩ,λ(Up) containing x, there exists an admissible open V ⊆ U containing x such that the set of
very classical points in V is Zariski-dense in V .

3.2.4 Galois representations

We study families of Galois representations on EΩ,λ(Up). In particular, we show that the associated
(ϕ,Γ)-modules admit a special kind of filtration.

We now assume that that G is quasi-split at all finite places and that F/F+ is unramified at
all finite places. By [48, Thm. 2.3], to an automorphic representation π of G, one can associate
an n-dimensional continuous essentially self-dual representation ρπ of GalF over E (enlarging
E if necessary). In fact, if πU

p 6= 0, the TS-action on πU
p

is given by a system of eigenvalues
ηπ : TS → E. The representation ρπ is unramified outside S. And for any v /∈ S that splits in F ,
the characteristic polynomial of ρπ(Frobṽ) (where Frobṽ is a geometric Frobenius at ṽ), is given
by

Xn + · · ·+ (−1)j(Nṽ)
j(j−1)

2 ηπ(T
(j)
ṽ )Xn−j + · · ·+ (−1)n(Nṽ)

n(n−1)
2 ηπ(T

(n)
ṽ ), (3.19)

where Nṽ is the cardinality of the residue field at ṽ. Using Proposition 3.2.1, to all classical points
x = (ηx, πx,LP , χx) ∈ EΩ,λ(Up) (Definition 3.2.7 (1)), we can associate a continuous representation
ρx of GalF that is unramified outside S and satisfies (3.19) (with ηπ replaced by ηx). Denote by
GalSF the Galois group of the maximal extension of F that is unramified outside S. Put

O(EΩ,λ(Up))0 := {f ∈ O(EΩ,λ)(Up) | |f(x)|p ≤ 1 for all x ∈ EΩ,λ(Up)}.

Using that TS preserves Ŝ(Up,OE), it is easy to see that the natural morphism TS → O(EΩ,λ(Up))
has image in O(EΩ,λ(Up))0. Using the density of classical points (Theorem 3.2.11) and [28, Prop.
7.1.1], we deduce

Proposition 3.2.12. There exists a unique n-dimensional continuous pseudocharacter

T : GalSF −→ O(EΩ,λ(Up))0

such that the evaluation of T at any classical point x of EΩ,λ(Up) coincides with Trace(ρx).
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By [83, Thm. 1(2)], we deduce

Corollary 3.2.13. For each point x = (ηx, πx,LP , χx) ∈ EΩ,λ(Up), there exists a (unique) semi-
simple continuous representation ρx of GalF over k(x) which is unramified outside S and such
that Trace(ρx(Frobṽ)) = ηx(Tṽ,1) for any v /∈ S split in F .

Next, we study the behaviour of the restriction of the Galois representations {ρx}x∈EΩ,λ(Up)

at p-adic places.

Let x = (ηx, πx,LP , χx) ∈ EΩ,λ(Up). Recall πx,LP = �v∈Spπx,LPṽ = �v∈Sp
(
�rṽ
i=1 πx,ṽ,i

)
. Let

rx,ṽ,i := rec(πx,ṽ,i)(
1−nṽ,i

2 −sṽ,i−1), an irreducible Weil-Deligne representation of WFṽ of dimension
nṽ,i.

Assume first that the point x is classical. By Definition 3.15 and [17, Thm. 4.3], there exists
a non-zero Gp-equivariant morphism (recalling λx = (wt(χx) ◦ detLP ) + λ)(

Ind
G(Qp)

P−(Qp)
πx,LP ⊗k(x)

(
(χx)∞$ ◦ detLP

)
⊗E δ−1

P

)∞
⊗E L(λx) −→ Ŝ(Up, E)lalg[TS = ηx] (3.20)

where (χx)∞$ = �v∈Sp(χx,ṽ)
∞
$ṽ

= �v∈Sp �
rṽ
i=1 (χx,ṽ,i)

∞
$ṽ

denotes the smooth character of ZLP (Qp)
such that (χx)∞$ δwt(χx) = (χx)$. By Proposition 3.2.1 (1), there exists a classical automorphic
representation π = π∞�π∞,p�(�v∈Spπṽ) such that ηπ = ηx, and a GLn(Fṽ)-equivariant surjection(

Ind
GLn(Fṽ)

P−
ṽ

(Fṽ)
πx,LPṽ ⊗k(x)

(
(χx,ṽ)

∞
$ṽ
◦ detLPṽ

)
⊗E δ−1

Pṽ

)∞
−� πṽ.

We have then (see for example [80, Thm. 1.2(b)])

rec(πṽ)|WFṽ
=

rṽ⊕
i=1

(
rec(πx,ṽ,i)

(n− nṽ,i
2

− sṽ,i−1

)
⊗k(x) rec((χx,ṽ,i)

∞
$ṽ

)
)
. (3.21)

Denote by rx,ṽ the Weil-Deligne representation associated to (the Deligne-Fontaine module of)
ρx,ṽ, and rss

x,ṽ its F -semi-simplification. By the local-global compatibility in classical local Lang-

lands correspondence for ` = p (e.g. [25]), we have rss
x,ṽ
∼= rec(πṽ)(

1−n
2 ). We deduce hence

rss
x,ṽ|WFṽ

∼=
rṽ⊕
i=1

(
rx,ṽ,i ⊗k(x) rec((χx,ṽ,i)

∞
$ṽ

)
)
.

We call the point x generic if, for ε = 0, 1 and for all i 6= i′ and v ∈ Sp we have

rx,ṽ,i ⊗k(x) rec((χx,ṽ,i)
∞
$ṽ

) � rx,ṽ,i′(ε)⊗k(x) rec((χx,ṽ,i′)
∞
$ṽ

)

or equivalently

πx,ṽ,i ⊗k(x)

((
unr(q

sṽ,i−1−(1−nṽ,i)/2
ṽ )(χx,ṽ,i)

∞
$ṽ

)
◦ detLPṽ

)
� πx,ṽ,i′ ⊗k(x)

((
unr(q

sṽ,i′−1−(1−nṽ,i′ )/2+ε

ṽ )(χx,ṽ,i′)
∞
$ṽ

)
◦ detLPṽ

)
. (3.22)

Assume that x is generic, it is easy to see that ρx,ṽ is potentially crystalline and generic for all
v ∈ Sp (see § 2.3), hence we have (here there is no need to take semi-simplification and restriction
to WFṽ)

rx,ṽ ∼=
rṽ⊕
i=1

(
rx,ṽ,i ⊗k(x) rec((χx,ṽ,i)

∞
$ṽ

)
)
. (3.23)
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We obtain thus a Pṽ-filtration Fṽ on rx,ṽ (§ 2.3) given by

FilFṽ
i rx,ṽ :=

i⊕
j=1

(
rx,ṽ,j ⊗k(x) rec((χx,ṽ,j)

∞
$ṽ

)
)
, i ∈ {0, . . . , rṽ}. (3.24)

Recall also that ρx,ṽ is de Rham of Hodge-Tate weights

hx,ṽ := (hx,ṽ,i)1≤i≤n := {hx,ṽ,i,τ := λxṽ,i,τ − i+ 1} τ∈Σṽ
1≤i≤n

.

As in § 2.3, we associate to (ρx,ṽ,Fṽ) an element wx,Fṽ
∈ WFṽ

∼= W ⊕|Σṽ | (denoted by wF in loc.
cit.). Let ∆x,ṽ be the p-adic differential equation associated to rx,ṽ and ∆x,ṽ,i the p-adic differential
equation associated to rx,ṽ,i (§ 2.2). We have Drig(ρx,ṽ)[1/t] ∼= ∆x,ṽ[1/t] and by (3.23):

∆x,ṽ
∼=

rṽ⊕
i=1

(
∆x,ṽ,i ⊗Rk(x),Fṽ

Rk(x),Fṽ((χx,ṽ,i)
∞
$ṽ

)
)
.

As discussed in § 2.3, the Pṽ-filtration Fṽ on rx,ṽ induces a Pṽ-filtration on ∆x,ṽ which further
induces a Pṽ-filtration (still denoted) Fṽ on Drig(ρx,ṽ). Recall also that, if Fṽ is non-critical, then

grFṽ
i Drig(ρx,ṽ) is de Rham of Hodge-Tate weights {hx,ṽ,j,τ} τ∈Σṽ

sṽ,i−1<j≤sṽ,i
. Let

hṽ := (hṽ,i)1≤i≤n = (hṽ,i,τ := λṽ,i,τ − i+ 1) τ∈Σṽ
1≤i≤n

, (3.25)

and note that hṽ is strictly Pṽ-dominant. Suppose that Fṽ is non-critical, we have then injections
for i ∈ {1, . . . , rṽ} (cf. (2.4)):

grFṽ
i Drig(ρx,ṽ)⊗Rk(x),Fṽ

Rk(x),Fṽ

(
(χx,ṽ,i)

−1
$ṽ
z−hṽ,si

)
↪−→ ∆x,ṽ,i.

Lemma 3.2.14. Let x = (ηx, πx,LP , χx) ∈ EΩ,λ(Up) be a classical point. Assume

valṽ(ωπx,ṽ,i($ṽ))− valṽ(ωπx,ṽ,i′ ($ṽ))

6=
∑
τ∈Σṽ

(
wt(χx)ṽ,i,τ − wt(χx)ṽ,i′,τ

)
+ [Fṽ : Qp](sṽ,i − sṽ,i′ + ε)

for ε = 0, 1 and for all i 6= i′, then ρx,ṽ is generic. If moreover (3.17) holds then (ρx,ṽ,Fṽ) is
non-critical.

Proof. The first part of the lemma is straightforward to check. By the proof of Proposition 3.2.9,
if (3.17) holds, then for any 1 6= wṽ ∈ (W Pṽ

min)⊕|Σṽ |, there exists z ∈ ZLPṽ (Fṽ)
+ such that

δwṽ ·λxṽ (z)δ−1
Pṽ

(z)ωπx,LPṽ
(z) /∈ Ok(x).

By [13, Thm. 7.6], we deduce wx,Fṽ
= w0,Fṽ (noting that the walg of loc. cit. is wx,Fṽ

w0,Fṽ in our
case). Hence (ρx,ṽ,Fṽ) is non-critical by definition (§ 2.3).

We call a classical point x ∈ EΩ,λ(Up) non-critical if (ρx,ṽ,Fṽ) is non-critical for all v ∈ Sp. By
the same argument as in the proof of [17, Thm. 3.9] and using Proposition 3.2.9, Lemma 3.2.14,
we have the following strengthening of Theorem 3.2.11:
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Theorem 3.2.15. The set of very classical non-critical generic points is Zariski-dense in
EΩ,λ(Up). Moreover, for any point x = (η, πLP , χ) ∈ EΩ,λ(Up) with χ locally algebraic, and for any
admissible open U ⊆ EΩ,λ(Up) containing x, there exists an admissible open V ⊆ U containing x
such that the set of very classical non-critical generic points in V is Zariski-dense in V .

The following theorem is an analogue of the statement “Galois representations on eigenvarieties
are trianguline”.

Theorem 3.2.16. Let x = (ηx, πx,LP , χx) be a point of EΩ,λ(Up). Then for v ∈ Sp, Drig(ρx,ṽ)
admits a Pṽ-filtration Fṽ = FilFṽ

• Drig(ρx,ṽ) of saturated (ϕ,Γ)-submodules of Drig(ρx,ṽ) such that(
grFṽ
i Drig(ρx,ṽ)

)
[1/t] ∼=

(
∆x,ṽ,i ⊗Rk(x),Fṽ

Rk(x),Fṽ((χx,ṽ,i)$ṽ)
)
[1/t].

Proof. Since EΩ,λ(Up)red is nested, by [3, Lemma 7.2.9] and Theorem 3.2.15, there exists an
irreducible affinoid neighbourhood U of x in EΩ,λ(Up)red such that the set C(U) of very classical
generic non-critical points in U is Zariski-dense in U . By pulling-back the universal character of
Z0 over Ẑ0 via the composition

U ↪→ EΩ,λ(Up)red ↪→ EΩ,λ(Up)→ (SpecZΩ)rig × Ẑ0 � Ẑ0,

we obtain a continuous character χU = �v∈Sp�
rṽ
i=1χU,ṽ,i : Z0

LP
→ O(U)×. For v ∈ Sp and 1 ≤ i ≤

rṽ, by pulling-back the “universal” p-adic differential equation over (SpecZΩṽ,i)
rig constructed in

§ 2.2 via the composition

U ↪→ EΩ,λ(Up)→ (SpecZΩ)rig × Ẑ0 � (SpecZΩ)rig '
∏
v∈Sp

rṽ∏
i=1

(SpecZΩṽ,i)
rig � (SpecZΩṽ,i)

rig,

we obtain a (ϕ,Γ)-module ∆′U,ṽ,i over RU,Fṽ . We let

∆U,ṽ,i := ∆′U,ṽ,i ⊗RE,Fṽ RE,Fṽ
(

unr(q
sṽ,i−1−(1−nṽ,i)/2
ṽ )

)
.

Thus for each point x in U , the evaluation x∗∆U,ṽ,i is isomorphic to ∆x,ṽ,i. Applying [3, Lemma

7.8.11], we obtain a rigid analytic space Ũ with a finite dominant (surjective) morphism g : Ũ → U
and a locally free O(Ũ)-module ρ

Ũ
of rank n equipped with a continuous GalSF -action such that

g−1(C(U)) is Zariski-dense in Ũ and ρ
Ũ
|x = ρg(x) for all x ∈ Ũ . Applying Corollary A.1.2 and

Corollary A.1.3 (1) to (noting that, for x ∈ Ũ red, ∆i|x = ∆g(x),ṽ,i and δi|x = χg(x),ṽ,i){
X = Ũ red,M = Drig(ρ

Ũred,ṽ
),∆i := g∗∆U,ṽ,i|Ũred , δi := (g∗χU,ṽ,i)z

hṽ,si |
Ũred

}
,

the theorem follows.

Proposition 3.2.17. Let x = (ηx, πx,LP , χx) be a point of EΩ,λ(Up). Then for v ∈ Sp, and
τ ∈ Σṽ, the Sen τ -weights of ρx,ṽ are given by {hji,τ + wt(χx,ṽ,i)τ} 1≤i≤r

si−1+1≤ji≤si
.

Proof. We use the notation in the proof of Theorem 3.2.16. The statement holds for very classical
non-critical generic points, hence for points in g−1(C(U)) ⊂ Ũ . Since the Sen τ -weights are
analytic functions on Ũ (see for example [60, Def. 6.2.11]), we deduce the statement holds for any
point in Ũ . The proposition follows.
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Let ρ be a continuous representation of GalF of dimension n over kE such that ρ(c · c) ∼=
ρ∨ ⊗ χcyc

1−n (where Gal(F/F+) = {1, c}) and ρ is unramified outside S. To ρ, we associate a
maximal ideal mρ of TS of residue field kE such that, denoting ηρ : TS/mρ � kE the corresponding
morphism, the characteristic polynomial of ρ(Frobṽ) is given by (3.19) with ηπ replaced by ηρ
for all v /∈ S that splits in F . The representation ρ is called Up-modular if the localization
S(Up,OE/$s

E)ρ := S(Up,OE/$s
E)mρ is non-zero (by e.g. [16, Lemma 6.5]) there exist only finitely

many ρ such that ρ is Up-modular). We define

Ŝ(Up,OE)ρ := lim←−
s

S(Up,OE/$s
E)ρ and Ŝ(Up, E)ρ := Ŝ(Up,OE)ρ ⊗OE E.

We construct EΩ,λ(Up, ρ) from Ŝ(Up, E)ρ exactly as we construct EΩ,λ(Up). Since Ŝ(Up, E)ρ is a

direct summand of Ŝ(Up, E) (equivariant under the action of G(F ⊗Q Qp)× TS), one easily sees
that all the previous results hold with EΩ,λ(Up) replaced by EΩ,λ(Up, ρ).

3.2.5 Locally analytic socle and companion points

We recall the locally analytic socle conjecture of [13], [14] for generic potentially crystalline rep-
resentations and discuss its relation with companion points on Bernstein eigenvarieties.

To any n-dimensional continuous representation ρ of GalF over E we associate a maximal ideal
mρ of TS ⊗OE E of residue field E such that, denoting ηρ : TS � E the corresponding morphism,
the characteristic polynomial of ρ(Frobṽ) is given by (3.19) with ηπ replaced by ηρ for all v /∈ S that

splits in F . Let ρ be such a representation and assume that Ŝ(Up, E)[mρ] = Ŝ(Up, E)[TS = ηρ]
is non-zero. For v ∈ Sp, assume also that ρṽ is generic potentially crystalline (see § 2.3) of
Hodge-Tate weights (hṽ,1,τ > hṽ,2,τ > · · · > hṽ,n,τ )τ∈Σṽ . Let Fṽ be a minimal parabolic filtration
of r(ρṽ), and Pṽ be the associated parabolic subgroup of GLn (cf. § 2.3). We use the notation
nṽ,i, rṽ and sṽ,i of § 3.2.2. We let πLPṽ := �rṽ

i=1πṽ,i be the smooth irreducible representation of

LPṽ(Fṽ) over E such that rec(πṽ,i)((1−nṽ,i)/2−sṽ,i) ∼= grFṽ
i r(ρ). For τ ∈ Σṽ and j = 1, . . . , n, let

λṽ,τ,j = hṽ,,τ,j + j− 1, then λṽ := (λṽ,1,τ , . . . , λṽ,n,τ )τ∈Σṽ is a dominant weight of ResFṽQp GLn (with

respect to ResFṽQp B). For wṽ ∈ W Pṽ
min,Fṽ

, consider the following locally Qp-analytic representation

of GLn(Fṽ) over E:

C(wṽ,Fṽ) := FGLn(Fṽ)

P−
ṽ

(Fṽ)

(
L−(−wṽ · λṽ), πLPṽ ⊗E δ

−1
Pṽ

)
.

It is topologically irreducible by [74, Thm. (iv)]) (indeed, since ρṽ is generic, the smooth induc-

tion (Ind
LQ(Fṽ)

Pṽ(Fṽ)∩LQ(Fṽ) πLPṽ ⊗E δ
−1
Pṽ

)∞ is irreducible for any parabolic Q ⊃ Pṽ). Note that we have

C(1,Fṽ) ∼= πṽ ⊗E L(λṽ) where πṽ := (IndGLn
P−
ṽ

πLPṽ ⊗E δ
−1
Pṽ

)∞ is the smooth irreducible represen-

tation of GLn(Fṽ) such that rec(πṽ)(
1−n

2 ) ∼= r(ρṽ). As discussed in § 2.3, to the filtration Fṽ, we

associate an element wFṽ
∈ W Pṽ

max,Fṽ
. The following conjecture is a special case of [14, Conj. 5.3]:

Conjecture 3.2.18. For v ∈ Sp, let wṽ ∈ W Pṽ
min,Fṽ

. Then ⊗̂v∈SpC(wṽ,Fṽ) is a subrepresentation

of Ŝ(Up, E)[mρ] if and only if wṽ ≤ wFṽ
w0,Fṽ for all v ∈ Sp.

Conjecture 3.2.18 in the crystalline case has been proved in [19] under Taylor-Wiles hypothesis.
However, almost nothing (except for some very partial results in [38]) was known when ρṽ is not
trianguline. As already mentioned in § 1, one main motivation for this paper is to prove Conjecture
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3.2.18 for certain parabolic Pṽ (under the Taylor-Wiles hypothesis 3.3.1) by using the Bernstein
eigenvarieties of § 3.2.2.

We now state a weaker version of Conjecture 3.2.18 which is formulated in terms of companion
points on Bernstein eigenvarieties.

For w = (wṽ)v∈Sp ∈ W P
min
∼=
∏
v∈Sp W Pṽ

min,Fṽ
, the weight w · λ is P -dominant where λ :=

(λṽ)v∈Sp . Let ΩF be the Bernstein component of πLP := �v∈SpπLPṽ .

Conjecture 3.2.19. We have (
ηρ,�v∈SpπLPṽ , 1

)
∈ EΩF ,w·λ(Up) (3.26)

if and only if wṽ ≤ wFṽ
w0,Fṽ for all v ∈ Sp.

Lemma 3.2.20. (1) Conjecture 3.2.18 implies Conjecture 3.2.19.

(2) The “only if” part of Conjecture 3.2.19 implies the “only if” part of Conjecture 3.2.18.

Proof. (1) Suppose Conjecture 3.2.18 holds. By (3.13), (3.26) is equivalent to

HomLP (Qp)

(
πLP ⊗E L(w · λ)P , JP (Ŝ(Up, E)an)[mρ]

)
6= 0. (3.27)

If wṽ ≤ wFṽ
w0,Fṽ for all v ∈ Sp, then by assumption

FGp
P−(L−(−w · λ), πLP ⊗E δ

−1
P ) ∼= ⊗̂v∈SpC(wṽ,Fṽ) ↪→ Ŝ(Up, E)[mρ].

By [14, Thm. 4.3], this implies (3.27). Conversely, suppose (3.27) holds. By [14, Thm. 4.3] and
[74, Thm.] (and the fact that the ρṽ are all generic), one deduces there exists w′ = (w′ṽ) with
w′ṽ ≥ wṽ for all v ∈ Sp such that one has an embedding

FGp
P−(L−(−w′ · λ), πLP ⊗E δ

−1
P ) ∼= ⊗̂v∈SpC(w′ṽ,Fṽ) ↪→ Ŝ(Up, E)[mρ].

By Conjecture 3.2.18, this implies w′ṽ ≤ wFṽ
w0,Fṽ , and hence wṽ ≤ wFṽ

w0,Fṽ .

(2) Suppose the “only if” part of Conjecture 3.2.19 holds. For w = (wṽ), if one has an
embedding ⊗̂v∈SpC(wṽ,Fṽ) ↪→ Ŝ(Up, E)[mρ], then as in the proof of (1), we deduce using [14,
Thm. 4.3] that (3.27) holds and hence (3.26) holds. This implies wṽ ≤ wFṽ

w0,Fṽ .

Remark 3.2.21. Suppose Ŝ(Up, E)lalg[mρ] 6= 0 (for ρṽ generic potentially crystalline with distinct
Hodge-Tate weights for all v ∈ Sp). Then using [25], we have an embedding

�v∈Spπṽ ↪→ Ŝ(Up, E)lalg[mρ].

To each minimal parabolic filtration F (that can be viewed as an analogue of a refinement in the
crystalline case), we can associate (using [14, Thm. 4.3]) a classical point(

ηρ,�v∈SpπLPṽ , 1
)
∈ EΩF ,λ(Up).

When wF 6= w0,F := (w0,Fṽ)v∈Sp, Conjecture 3.2.19 then predicts the existence of some non-
classical points on the Bernstein eigenvarieties such that the associated Galois representation is
still isomorphic to ρ. Such points are referred to as companion points of the classical point.
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3.3 Patched Bernstein eigenvarieties

As in [17, § 3] for the “usual” eigenvarieties, we construct patched Bernstein eigenvarieties by
applying the formalism in § 3.1 to the patched p-adic automorphic representations of [26]. We give
some basic properties of patched Bernstein eigenvarieties, and show that they have a close relation
with certain (purely local) “paraboline” varieties (on the Galois side) that will be constructed in
§ 4.1.

Let ρ be a Up-modular continuous representation of GalF over kE (see the end of § 3.2.4). We
assume henceforth the following so-called Taylor-Wiles hypothesis (see [19, § 1]):

Hypothesis 3.3.1. (1) p > 2;

(2) the field F is unramified over F+, F does not contain a non trivial root p
√

1 of 1 and G is
quasi-split at all finite places of F+;

(3) Uv is hyperspecial when the finite place v of F+ is inert in F ;

(4) ρ is absolutely irreducible and ρ(GalF ( p
√

1)) is adequate.

The following functor{
Local artinian OE-algebras

of residue field kE

}
→ {Sets}, A 7→

{ Deformations ρA of ρ over A
such that ρA unramified outside S

and ρA(c·c)∼=ρ∨A⊗χ
1−n
cyc

}
/ ∼

is pro-representable by a complete local Noetherian OE-algebra of residue field kE , denoted by
Rρ,S . For s ∈ Z≥1, and a compact open subgroup Up ⊂

∏
v∈Sp GLn(OFṽ), let T(UpUp,OE/$s

E)ρ

be the image of TS in the OE/$s
E-algebra of endomorphisms of S(UpUp,OE/$s

E)ρ. Put

T(Up)ρ := lim←−
s

lim←−
Up

T(UpUp,OE/$s
E)ρ,

which is a complete local OE-algebra. By [84, Prop. 6.7], there is a natural surjective morphism
of OE-algebras (hence T(Up)ρ is also Noetherian)

Rρ,S −� T(Up)ρ.

The rigid space EΩ,λ(Up, ρ) is then a closed subspace of the rigid spaces

(Spf T(Up)ρ)
rig × (SpecZΩ)rig × Ẑ0 ↪→ (Spf Rρ,S)rig × (SpecZΩ)rig × Ẑ0.

Indeed BΩ,λ(Ŝ(Up, E)
Qp−an
ρ )∨ gives rise to a coherent sheaf over (Spf Rρ,S)rig× (SpecZΩ)rig×Ẑ0,

whose Zariski-support is exactly EΩ,λ(Up, ρ).

We let Rρṽ be the maximal reduced and Zp-flat quotient of the framed local deformation ring

of ρṽ (which was denoted by R�
ρṽ

in [17]) and we put

Rloc := ⊗̂v∈SRρṽ , Rρp := ⊗̂v∈S\SpRρṽ ,
Rρp := ⊗̂v∈SpRρṽ , R∞ := Rloc[[x1, . . . , xg]], R

p
∞ := Rρp [[x1, . . . , xg]],

where g ≥ 1 is an integer which will be fixed below. We let S∞ := OE [[y1, . . . , yt]] where

t = g + [F+ : Q]n(n−1)
2 + |S|n2 and a := (y1, . . . , yt) ⊂ S∞. Shrinking Up (and S), we can and do

assume
G(F ) ∩ (hUpKph

−1) = {1} for all h ∈ G(A∞F+)
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where Kp :=
∏
v∈Sp Kv :=

∏
v∈Sp i

−1
ṽ (GLn(OFṽ)). Then the action of Rρ,S on Ŝ(Up, E)ρ fac-

tors through a quotient Rρ,S � Rρ,S , where Rρ,S denotes the universal deformation ring of the
deformation problem:

S = (F/F+, S, S̃,OE , ρ, χ1−n
cyc δ

n
F/F+ , {Rρṽ}v∈S).

By [17, Thm. 3.5] (generalizing [26]), there exist an integer g ≥ 1 and

(1) a continuous R∞-admissible unitary representation Π∞ of Gp over E together with a Gp-
stable and R∞-stable unit ball Π0

∞ ⊂ Π∞;

(2) a morphism of local OE-algebras S∞ → R∞ such that M∞ := HomOE (Π0
∞,OE) is a finite

projective S∞[[Kp]]-module;

(3) a surjection R∞/aR∞ � Rρ,S and a compatible Gp-equivariant isomorphism Π∞[a] ∼=
Ŝ(Up, E)ρ.

Denote by ΠR∞−an
∞ the subrepresentation of Gp of locally R∞-analytic vectors of Π∞ (cf. [17,

§ 3.1]. Let Ω, σ, λ be as in § 3.2.2 and consider (with JP (ΠR∞−an
∞ )λ defined as in (3.1)):

BΩ,λ(ΠR∞−an
∞ ) := Bσ,λ(ΠR∞−an

∞ ) = HomKp

(
σ, JP (ΠR∞−an

∞ )λ⊗̂ECQp−la(Z0
LP
, E)

)
.

By [17, Prop. 3.4] and an easy variation of the proof of Lemma 3.1.3, we see that BΩ,λ(ΠR∞−an
∞ )∨

is a coadmissible module over O((Spf R∞)rig × Ẑ$ × Ẑ0) which corresponds to a coherent sheaf

M∞,0Ω,λ over (Spf R∞)rig × Ẑ$ × Ẑ0. Taking into account the ZΩ-action, M∞,0Ω,λ gives rise to a

coherent sheaf M∞Ω,λ over (Spf R∞)rig × (SpecZΩ)rig × Ẑ0, such that

Γ
(
(Spf R∞)rig × (SpecZΩ)rig × Ẑ0,M∞Ω,λ

) ∼= BΩ,λ(ΠR∞−an
∞ )∨. (3.28)

We let
E∞Ω,λ(ρ) ↪→ (Spf R∞)rig × (SpecZΩ)rig × Ẑ0 (3.29)

be the Zariski-closed support of M∞Ω,λ, and call E∞Ω,λ(ρ) a patched Bernstein eigenvariety.

Let W∞ := (Spf S∞)rig × Ẑ0, and z ∈ Z$ be as in the discussion above Proposition 3.1.15.
As in (3.14) denote by κz the following composition

κz : E∞Ω,λ(ρ) ↪→ (Spf R∞)rig × (SpecZΩ)rig × Ẑ0

→ (Spf S∞)rig × (SpecE[Z$])rig × Ẑ0 → (Spf S∞)rig ×Grig
m × Ẑ0

∼=W∞ ×Grig
m

where the second and third maps come from E[Yz] ↪→ E[Z$]→ ZΩ. Denote by ω the composition:

ω : E∞Ω,λ(ρ)
κz−−→W∞ ×Grig

m −→W∞.

By an easy generalization of Proposition 3.1.15 to the case G̃p := Gp×Zqp, V = ΠR∞−an
∞ = ΠS∞−an

∞
(adding the extra factor Zqp everywhere in the proof), one can show that BΩ,λ(ΠR∞−an

∞ )∨ is a

coherent sheaf over W∞×Grig
m . We denote by Zz(ρ) ↪→W∞×Grig

m its Zariski-closed support. We
have the following analogue of Proposition 3.2.4, which is proven by the same argument as in the
proofs of [17, Lemma 3.10] and [17, Prop. 3.11].
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Proposition 3.3.2. (1) The rigid variety Zz(ρ) is a Fredholm hypersurface in W∞×Grig
m . More-

over, there exists an admissible covering {U ′i} of Zz(ρ) by affinoids U ′i such that the morphism

g : Zz(ρ) ↪→W∞ ×Grig
m �W∞

induces a surjective finite morphism from U ′i to an affinoid open Wi of W∞, and such that U ′i is a
connected component of g−1(Wi). For each i, Γ

(
U ′i , (κz)∗M∞Ω,λ

)
is a finitely generated projective

OW∞(Wi)-module.

(2) There exists an admissible covering {Ui} of E∞Ω,λ(ρ) by affinoids Ui such that

� there exists an affinoid open Wi of W∞ satisfying that ω is a finite surjective morphism
from each irreducible component of Ui to Wi;

� OE∞Ω,λ(ρ)(Ui) is isomorphic to an OW∞(Wi)-algebra of endomorphisms of a finitely generated

projective OW∞(Wi)-module.

We deduce the following analogue of Corollary 3.2.5 by the same arguments as in the proofs
of [17, Cor. 3.12], [17, Cor. 3.13] and [18, Lemma 3.8]:

Corollary 3.3.3. (1) The rigid analytic space E∞Ω,λ(ρ) is equidimensional of dimension

g + |S|n2 +
∑
v∈Sp

(
[Fṽ : Qp]

(n(n− 1)

2
+ rṽ

))
and has no embedded component.

(2) The morphism κz is finite and the image of an irreducible component of E∞Ω,λ(ρ) is an
irreducible component of Zz(ρ). The image of an irreducible component of E∞Ω,λ(ρ) under ω is a
Zariski-open of W∞.

(3) The coherent sheaf M∞Ω,λ is Cohen-Macaulay over E∞Ω,λ(ρ).

We say that a point x = (y, πx,LP , χx) ∈ E∞Ω,λ(ρ) ↪→ (Spf R∞)rig× (SpecZΩ)rig×Ẑ0 is classical

if (3.15) is satisfied with Ŝ(Up, E)lalg replaced by (ΠR∞−an
∞ )lalg and [TS = ηx] replaced by [my],

where my is the maximal ideal of R∞[1
p ] associated to y. We say x is very classical if the

conditions in Definition 3.2.7 (2) hold (these conditions only concern πx,LP and χx). For v ∈ S,
denote by ρx,ṽ the GalFṽ -representation associated to x via the image of y ∈ (Spf R∞)rig ∼=∏
v∈Sp(Spf Rρṽ)

rig ×Ug in (Spf Rρṽ)
rig where U denotes the open unit ball in A1. Let rx,ṽ be the

Weil-Deligne representation associated to ρx,ṽ, rx,ṽ,i := rec(πx,ṽ,i)(
1−nṽ,i

2 − sṽ,i−1), and (χx,ṽ,i)
∞
$ṽ

be the smooth character of F×ṽ associated to χx,ṽ as in the discussion below (3.20). A classical
point x is called generic if (3.22) holds for ε = 0, 1 and i 6= i′.

Proposition 3.3.4. Let (y, πx,LP , χx) ∈ E∞Ω,λ(ρ) be a generic classical point. For all v ∈ Sp, ρx,ṽ
is potentially crystalline of Hodge-Tate weights {λxṽ,i,τ − i+ 1} τ∈Σṽ

1≤i≤n
. Moreover, we have

rx,ṽ ∼=
rṽ⊕
i=1

(
rx,ṽ,i ⊗E rec((χx,ṽ,i)

∞
$ṽ

)
)
. (3.30)
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Proof. The proposition follows from the results in [26, § 4] by similar arguments as in the proof of
[17, Prop. 3.16]. Since x is classical, we have a non-zero morphism (recall λx = λ+(wt(χx)◦detLP ))(

Ind
Gp
P−(Qp)

(
πx,LP ⊗E ((χx)∞$ ◦ detLP )⊗E δ−1

P

))∞
⊗E L(λx) −→ (ΠR∞−an

∞ )lalg[my]. (3.31)

Since x is generic, the representation on the left hand side is absolutely irreducible and hence
(3.31) is injective. For v ∈ Sp, let Gṽ := GLn(Fṽ), and ΩGṽ be the Bernstein component of

πx,ṽ :=
(

IndGṽ
P−
ṽ

(Fṽ)

(
πx,LPṽ ⊗E ((χx,ṽ)

∞
$ṽ
◦ detLPṽ )⊗E δ−1

Pṽ

))∞
(do not confuse ΩGṽ with the Bernstein component Ωṽ of LPṽ(Fṽ)). By [26, Thm. 3.7] and [26,
Cor. 3.12], there exists a smooth irreducible representation σṽ of Kṽ := GLn(OFṽ) such that

EndGṽ(c-indGṽKṽ σṽ)
∼= ZΩGṽ

and πx,ṽ ∼=
(

c-indGṽKṽ σṽ
)
⊗ZΩGṽ

,θx,ṽ E, where θx,ṽ : ZΩGṽ
→ E denotes

the character corresponding to πx,ṽ. Let Kp :=
∏
v∈Sp Kṽ, σKp := �v∈SpσKṽ , ΩGp :=

∏
v∈Sp ΩGṽ ,

and

πx := �v∈Spπx,ṽ
∼=
(

c-ind
Gp
Kp
σKp

)
⊗ZΩGp

,θxE
∼=
(

Ind
Gp
P−(Qp)

(
πx,LP ⊗E ((χx)∞$ ◦detLP )⊗E δ−1

P

))∞
(where θx : ZΩGp

→ E denotes the character corresponding to πx). By Frobenius reciprocity, we
have

Π∞(σKp , λ
x) := HomKp

(
σKp ,Π∞ ⊗E L(λx)∨

) ∼= HomGp

(
c-ind

Gp
Kp
σKp ,Π∞ ⊗E L(λx)∨

)
.

By the injection (3.31), we deduce that Π∞(σKp , λ
x)[my] 6= 0 and that there exists a non-zero

subspace of Π∞(σKp , λ
x)[my] on which ZΩGp

acts via θx. Let ξṽ be the inertial type associated
to σṽ, hxṽ := (hxṽ,i,τ )i=1,...,n

τ∈Σṽ

with hxṽ,i,τ = λxṽ,i,τ − i + 1. By [26, Lemma 4.17 (1)], the action of

⊗̂v∈SpRρṽ on Π∞(σKp , λ
x) factors through ⊗̂v∈SpR

pcr
ρṽ

(ξṽ,h
x
ṽ). The first part of the proposition

follows. By [26, Thm. 4.1], there is a morphism ZΩGṽ
→ Rpcr

ρṽ
(ξṽ, λ

x
ṽ)[1/p] that interpolates the

local Langlands correspondence (with the same normalization as in § 2.1). By [26, Lemma 4.17
(2)], the action of ZΩGp

on Π∞(σKp , λ
x) factors through ZΩGp

→ (⊗̂v∈SpR
pcr
ρṽ

(ξṽ, λ
x
ṽ))[1/p]. We

deduce rx,ṽ ∼= rec(πx,ṽ)((1− n)/2), and the second part follows then from (3.21).

For a generic classical point x ∈ E∞Ω,λ(ρ), we use (3.30) to define a Pṽ-filtration Fṽ on rx,ṽ as
in (3.24). We call x non-critical if (ρx,ṽ,Fṽ) is non-critical for all v ∈ Sp. Using Proposition 3.2.9,
Lemma 3.2.14, and by the same argument as in the proof of [17, Thm. 3.9], we have the following
analogue of Theorem 3.2.15:

Theorem 3.3.5. The set of very classical non-critical generic points is Zariski-dense in E∞Ω,λ(ρ).
Moreover, for any point x = (y, πLP , χ) ∈ E∞Ω,λ(ρ) with χ locally algebraic, and for any admissible
open U ⊆ E∞Ω,λ(ρ) containing x, there exists an admissible open V ⊆ U containing x such that the
set of very classical non-critical generic points in V is Zariski-dense in V .

Proposition 3.3.6. The rigid space E∞Ω,λ(ρ) is reduced.

Proof. The proposition follows by an easy variation of the proof of [17, Cor. 3.20]. We briefly
indicate below the changes. We define verbatim the R∞-module Σ of loc. cit. In [17], it was a finite
length Tp-module on which T 0

p :=
∏
v∈Sp T (OFṽ) acts by the character δλ of loc. cit. In our case, it

becomes a finite length ZΩ-module on which Z0
∼= Z0

LP
acts by an algebraic character. Similarly
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as in loc. cit., we are reduced to show that the R∞-action and the ZΩ-action on Σ are both
semi-simple. To obtain an analogue of [17, (3.13)], we use Lemma 3.1.2 and [14, Thm. 4.3]. The
“H” in the proof of [17, Cor. 3.20] has to be replaced by a Bernstein component ΩGp = �v|pΩGṽ

of Gp similarly as the one appearing in the proof of Proposition 3.3.4, and “ind
Gp

Kp
1” is replaced

by c-ind
Gp
Kp
σKp where σKp = ⊗vσṽ is the Kp-representation associated to ΩGp as in the proof of

Proposition 3.3.4. Finally, “R�,k−cr
ρp

” has to be replaced by ⊗̂v∈SpR
pcr
ρṽ

(ξṽ,h
x
ṽ) (as in the proof of

Proposition 3.3.4).

Remark 3.3.7. Assume P = Bp where Bp is as in Remark 3.2.6. Using the isomorphism ιΩ,λ in

Remark 3.1.10, we can view E∞Ω,λ(ρ) as a (reduced) closed rigid analytic subspace of (Spf R∞)rig×T̂p
(Tp as in Remark 3.2.6), which is independent of the choice of (Ω, λ) by Proposition 3.2.3 (trivially
generalized to the patched case). By construction, the rigid analytic space E∞Ω,λ(ρ) has the same
points as the patched eigenvariety Xp(ρ) of [17]. Using Proposition 3.3.6 and [17, Cor. 3.20], we
actually obtain E∞Ω,λ(ρ) ∼= Xp(ρ).

Proposition 3.3.8. Let (Spf S∞)rig → SpecE be the morphism corresponding to the quotient by
the ideal a. We have a natural morphism of rigid analytic spaces

EΩ,λ(Up, ρ) −→ E∞Ω,λ(ρ)×(Spf S∞)rig SpecE

which is bijective on points.

Proof. By the same argument as in the proof of [17, Thm. 4.2], we have

JP (ΠR∞−an
∞ )[a] ∼= JP (ΠR∞−an

∞ [a]) ∼= JP (Ŝ(Up, E)an
ρ ).

Hence BΩ,λ(ΠR∞−an
∞ )[a] ∼= BΩ,λ(Ŝ(Up, E)an

ρ ). The proposition follows.

For v ∈ Sp, let ṽ denote the isomorphism

ṽ : (SpecZΩṽ)
rig ∼−−→ (SpecZΩṽ)

rig

such that πṽ(x)i
∼= πxi⊗E unr

(
q
sṽ,i−1−

1−nṽ,i
2

ṽ

)
◦det for x = (xi) ∈ (SpecZΩṽ)

rig. Let  := (ṽ)v∈Sp :

(SpecZΩ)rig → (SpecZΩ)rig. Denote by Z0,ṽ := ZLPṽ (OFṽ), thus Ẑ0
∼=
∏
v∈Sp Ẑ0,ṽ. Consider the

composition:

E∞Ω,λ(ρ) ↪−→ (Spf Rp∞)rig ×
∏
v∈Sp

(
(Spf Rρṽ)

rig × (SpecZΩṽ)
rig × Ẑ0,ṽ

)
−−→ (Spf Rp∞)rig ×

∏
v∈Sp

(
(Spf Rρṽ)

rig × (SpecZΩṽ)
rig × Ẑ0,ṽ

)
(3.32)

where the second map (still denoted by ) is the identity on the factors other than
∏
v(SpecZΩṽ)

rig

and is  on
∏
v(SpecZΩṽ)

rig ∼= (SpecZΩ)rig. Let h = (hṽ)v∈Sp be associated to λ as in (3.25).
In the next section (see § 4.2 below), we construct a reduced closed subspace XΩṽ ,hṽ(ρṽ) of

(Spf Rρṽ)
rig × (SpecZΩṽ)

rig × Ẑ0,ṽ. We let XΩ,h(ρp) :=
∏
v∈Sp XΩṽ ,hṽ(ρṽ).

Theorem 3.3.9. The composition in (3.32) factors through (Spf Rp∞)rig ×XΩ,h(ρp), and induces
an isomorphism between E∞Ω,λ(ρ) and a union of irreducible components of (Spf Rp∞)rig×XΩ,h(ρp)
equipped with the reduced closed rigid subspace structure.
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Proof. By Proposition 3.3.4, and the construction of {XΩṽ ,hṽ(ρṽ)} in § 4.2, one sees that all the
generic classical points of E∞Ω,λ(ρ) are sent to

(Spf Rp∞)rig ×
∏
v∈Sp

UΩ,h(ρṽ) ↪→ (Spf Rp∞)rig ×XΩ,h(ρp)

where we refer to the discussion above Proposition 4.2.2 for the rigid analytic space UΩ,h(ρṽ).
The first part then follows from the density of generic classical points (Theorem 3.3.5). The
second part follows from Proposition 3.3.6, from the fact E∞Ω,λ(ρ) is closed in the right hand side

of (3.32), hence in (Spf Rp∞)rig ×XΩ,h(ρp), and from the fact that both rigid spaces E∞Ω,λ(ρ) and

(Spf Rp∞)rig ×XΩ,h(ρp) have the same dimension (by Corollary 3.3.3 for the first and Proposition
4.2.5 (1) for XΩṽ ,hṽ(ρṽ) together with dim(Spf Rp∞)rig = g+

∑
v∈S\Sp dim(Spf Rρṽ)

rig = g+n2|S \
Sp|).

Remark 3.3.10. Let Xp be an irreducible component of (Spf Rp∞)rig. Call an irreducible compo-
nent Xp of XΩ,h(ρp) Xp-automorphic if Xp × Xp is contained in the image of (3.32). One may
expect that Xp is Xp-automorphic if and only if Xp contains a generic potentially crystalline point
with distinct Hodge-Tate weights. We refer to [17, § 3.6] for related discussions in the trianguline
case.

We finally discuss the problem of companion constituents and companion points in the patched
setting. Let m be a maximal ideal of R∞[1/p] such that Π∞[m] 6= 0. For v ∈ Sp, we assume that
the GalFṽ -representation ρṽ associated to m (as above Proposition 3.3.4) is generic potentially
crystalline with distinct Hodge-Tate weights. We use the notation in § 3.2.5.

Conjecture 3.3.11. For v ∈ Sp, let w = (wṽ) ∈ W P
min =

∏
v∈Sp W Pṽ

min,Fṽ
.

(1) The representation ⊗̂v∈SpC(wṽ,Fṽ) is a subrepresentation of ΠR∞−an
∞ [m] if and only if

wṽ ≤ wFṽ
w0 for all v ∈ Sp.

(2) The point (m,�v∈SpπLPṽ , 1) ∈ (Spf R∞)rig× (SpecZΩ)rig×Ẑ0 lies in E∞Ω,w·λ(ρ) if and only
if wṽ ≤ wFṽ

w0 for all v ∈ Sp.

Remark 3.3.12. The point (m,�v∈SpπLPṽ , 1) ∈ E∞Ω,w·λ(ρ) of Conjecture 3.3.11 (2) may be referred
to as “a companion point of x = (m,�v∈SpπLPṽ , 1) seen in E∞Ω,λ(ρ)”. In the case of the patched

eigenvariety Xp(ρ) of [19], there is a canonical embedding Xp(ρ) ↪→ (Spf R∞)rig × T̂p and the
companion points are the distinct points that lie above a same point y ∈ (Spf R∞)rig. In our case
however, as there are different rigid spaces depending on (Ω, λ), it seems more convenient to fix

the point x ∈ (Spf R∞)rig×(SpecZΩ)rig×Ẑ0 and let the Bernstein patched eigenvarieties (together

with the embedding into (Spf R∞)rig × (SpecZΩ)rig × Ẑ0) vary. See also Remark 4.3.10.

By the same argument, we have as in Lemma 3.2.20:

Lemma 3.3.13. (1) Conjecture 3.3.11 (1) implies Conjecture 3.3.11 (2).

(2) The “only if” part of Conjecture 3.3.11 (2) implies the “only if” part of Conjecture 3.3.11
(1).

Finally, using the isomorphism Π∞[a] ∼= Ŝ(Up, E)ρ (resp. using Proposition 3.3.8), one easily
deduces:

Lemma 3.3.14. Conjecture 3.3.11 (1) (resp. Conjecture 3.3.11 (2)) implies Conjecture 3.2.18
(resp. Conjecture 3.2.19).
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4 Bernstein paraboline varieties

We now move to the Galois side. In § 4.1, we study certain paraboline deformations of (ϕ,Γ)-
modules which admit an Ω-filtration (where Ω is a cuspidal Bernstein component as in § 3.1.1).
In § 4.2, we construct and study what we call Bernstein paraboline varieties (analogous to the
trianguline variety of [17, § 2.2] when P = B). Finally in § 4.3, we study the relation between
Bernstein paraboline varieties and potentially crystalline deformation spaces, and show the exis-
tence of local companion points. We frequently denote a point in a Bernstein component by its
associated Weil-Deligne representation.

4.1 Deformations of (ϕ,Γ)-modules

We prove various results on deformations of (ϕ,Γ)-modules D that admit an Ω-filtration (where
Ω is a cuspidal Bernstein component as in § 3.1.1). We first study in § 4.1.1 deformations of
irreducible constituents of D. By combining the results in § 4.1.1 with results of Chenevier on
paraboline deformations, we study deformations of type Ω in § 4.1.2 (which are special cases of
paraboline deformations).

4.1.1 Deformations of certain irreducible (ϕ,Γ)-modules

We study deformations of certain irreducible (ϕ,Γ)-modules which are de Rham up to twist. The
results in this section will be used in our study of deformations of type Ω in § 4.1.2.

We let L be a finite extension of Qp and we use the notation in § 2.1. We begin with some
useful facts on extensions of p-adic differential equations. Let ∆ be an irreducible (ϕ,Γ)-module
of rank k over RE,L, de Rham of constant Hodge-Tate weight 0.

Lemma 4.1.1. (1) Let M be a (ϕ,Γ)-module over RE,L. Assume that M admits an increasing
filtration Fil•M by (ϕ,Γ)-submodules such that the graded pieces are all isomorphic to ∆. Let
N be a saturated (ϕ,Γ)-submodule of M . Then both N and M/N admit a filtration by (ϕ,Γ)-
submodules such that the graded pieces are all isomorphic to ∆.

(2) Let M1, M2 be (ϕ,Γ)-modules over RE,L which both admit an increasing filtration by
(ϕ,Γ)-submodules such that the graded pieces are all isomorphic to ∆. Let f : M1 → M2 be a
morphism of (ϕ,Γ)-modules, then Im(f) is saturated in M2.

(3) Let M be as in (1), and N1, N2 be two saturated (ϕ,Γ)-submodules of M . Then N1 +N2

is also saturated in M .

Proof. (1) We endow N with the induced filtration from M and M/N with the quotient filtration,
and want to prove that all graded pieces are ∆. By induction on the rank of M , we only
need to show the statement in the case N is irreducible. By dévissage on Fil•M , we have
Hom(ϕ,Γ)(N,∆) 6= 0. Hence we have an injection N ↪→ ∆, and so N is de Rham. By considering
the Sen weights and using the fact N is saturated, we see that N is of constant Hodge-Tate
weights 0. We deduce that N is actually isomorphic to ∆. Let i ∈ Z such that the injection
j : N ↪→ M has image contained in FiliM but not in Fili−1M . The non-zero composition

N
j−→ FiliM � griM

∼= ∆ has to be an isomorphism, and gives a splitting FiliM ∼= N⊕Fili−1M .
The filtration Fil• then induces a filtration on M/N such that all the graded pieces are isomorphic
to ∆.
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(2) Using (1), we are reduced to the case where f is injective. Then by induction on the rank
of M2, we are reduced to the case where M1

∼= ∆. But in this case, by the argument at the end
of (1), there exists i such that FiliM2

∼= Im(f)⊕ Fili−1M2. In particular Im(f) is saturated.

(3) We have that N1 ∩ N2 is saturated in M . By (1) and (2), we see that the image of the
composition

(N1 +N2)/(N1 ∩N2) ∼= N1/(N1 ∩N2)⊕N2/(N1 ∩N2) ↪→ N/(N1 ∩N2)

is saturated. (3) follows.

We let Art(E) denote the category of local artinian E-algebras of residue field E. Let D
be a (ϕ,Γ)-module of rank k over RE,L. Denote by FD the functor of deformations of D on
A ∈ Art(E). Suppose that there exist a continuous character δ : L× → E× such that one has an
embedding of (ϕ,Γ)-modules

D ⊗RE,L RE,L(δ−1) ↪−→ ∆

(which implies that D is irreducible). We consider the following functor

F 0
D : Art(E) −→ {sets}, A 7−→ {(DA, πA, δA)}/ ∼

where DA is a (ϕ,Γ)-module over RA,L, πA,1 : DA ⊗A E
∼−→ D, δA : O×L → A× such that δA ≡ δ

(mod mA) (mA is the maximal ideal of A), and there is an injection of (ϕ,Γ)-module over RA,L:

DA ↪−→ ∆⊗RE,L RA,L(δA). (4.1)

For τ ∈ ΣL, let h1,τ be the maximal τ -Hodge-Tate weight of D ⊗RE,L RE,L(δ−1) (thus h1,τ ≥
0), and put h1 := (h1,τ )τ∈ΣL . By comparing the Hodge-Tate weights of ∆ ⊗RE,L RA,L and

DA ⊗RA,L RA,L(δ−1
A ), and using [6, Thm. A], we see that the existence of the injection (4.1) is

equivalent to the existence of an injection

∆⊗RE,L RA,L(zh1δA) ↪−→ DA. (4.2)

Indeed, both are equivalent to the existence of an isomorphism of (ϕ,Γ)-modules over RA,L[1/t]:
DA[1/t] ∼= ∆⊗RE,L RA,L(δA)[1/t].

Lemma 4.1.2. F 0
D is a subfunctor of FD.

Proof. Let A ∈ Art(E), and (DA, πA, δA) ∈ F 0
D(A). It is enough to show that δA is uniquely

determined by DA. Suppose we have another δ′A such that δ′A ≡ δA (mod mA) and DA ↪→
∆⊗RE,L RA,L(δ′A). This map, together with (4.2), induce

∆⊗RE,L RA,L(zh1δA) ↪−→ DA ↪−→ ∆⊗RE,L RA,L(δ′A).

Hence we have ∆⊗RE,L RA,L ↪→ ∆⊗RE,L RA,L(δ′Aδ
−1
A z−h1). Since ∆⊗RE,L RA,L is de Rham, so

is ∆⊗RE,L RA,L(δ′Aδ
−1
A z−h1) (using that both have the same rank over RE,L). By looking at the

Sen weights and using δ′A ≡ δA (mod mA), we deduce that δ′Aδ
−1
A is smooth. Then by comparing

the Hodge-Tate weights (and using [6, Thm. A]), we obtain an isomorphism

∆⊗RE,L RA,L ∼= ∆⊗RE,L RA,L(δ′Aδ
−1
A ). (4.3)
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Let (∆ ⊗RE ,L ∆∨)0 := (∆ ⊗RE ,L ∆∨)/RE,L, then ∆ ⊗RE ,L ∆∨ ∼= (∆ ⊗RE ,L ∆∨)0 ⊕ RE,L and
H0

(ϕ,Γ)((∆⊗RE ,L ∆∨)0) = 0. We have isomorphisms

H0
(ϕ,Γ)

(
∆∨ ⊗RE,L ∆⊗RE,L RA,L(δ′Aδ

−1
A )
)

∼= H0
(ϕ,Γ)(RA,L(δ′Aδ

−1
A ))⊕H0

(ϕ,Γ)

(
(∆∨ ⊗RE,L ∆)0 ⊗RE,L RA,L(δ′Aδ

−1
A )
)

∼= H0
(ϕ,Γ)(RA,L(δ′Aδ

−1
A )) (4.4)

where the second isomorphism follows fromH0
(ϕ,Γ)((∆

∨⊗RE,L∆)0) = 0 and an easy dévissage using

δ′Aδ
−1
A ≡ 1 (mod mA). From (4.3) and (4.4), we deduce an embedding A ↪→ H0

(ϕ,Γ)(RA,L(δ′Aδ
−1
A )),

hence an injection RA,L ↪→ RA,L(δ′Aδ
−1
A ) that has to be an isomorphism by comparing the Hodge-

Tate weights (recall δ′Aδ
−1
A is smooth). By [3, Prop. 2.3.1], we obtain δ′Aδ

−1
A = 1, which concludes

the proof.

Proposition 4.1.3. The functor F 0
D is relatively representable over FD.

Proof. As in [3, Prop. 2.3.9], the proposition follows from the following three properties that we
will prove.

(1) If A→ A′ is a morphism in Art(E) and (DA, πA, δA) ∈ F 0
D(A), then (DA⊗AA′, πA⊗AA′) ∈

F 0
D(A′).

(2) Let A ↪→ A′ be an injection in Art(E), (DA, πA) ∈ FD(A), and assume (DA ⊗A A′, πA ⊗A
A′) ∈ F 0

D(A′) ↪→ FD(A′) (Lemma 4.1.2), then (DA, πA) ∈ F 0
D(A).

(3) For A and A′ in Art(E), if (DA, πA, δA) ∈ F 0
D(A) and (DA′ , πA′ , δA′) ∈ F 0

D(A′), then for
B = A×E A′ we have (DB := DA×DDA′ , πB := πA ◦ pr = πA′ ◦ pr′) ∈ F 0

D(B) where pr : B � A,
pr′ : B � A′.

The properties (1) and (3) are straightforward to verify. We prove (2). By (the proof of)
Lemma 4.1.2, there is a unique continuous character δA′ : L× → (A′)× such that DA ⊗A A′ ↪→
∆ ⊗RE,L RA′,L(δA′) and δA′ ≡ δ (mod mA). Let M be the saturated closure of DA in ∆ ⊗RE,L
RA′,L(δA′) (see [3, § 2.2.3]). Since ∆ ⊗RE,L RA′,L(δA′) admits a filtration with graded pieces
all isomorphic to ∆ ⊗RE,L RE,L(δ), so does M by Lemma 4.1.1 (1) (twisting by RE,L(δ)). For
x ∈ mA, consider the morphism x : M → M given by multiplying by x. By Lemma 4.1.1 (2),
we know xM is saturated in M and hence by induction mAM is saturated in M . We deduce
M ⊗A E ∼= M/mAM is a (ϕ,Γ)-module over RE,L (in particular is free of finite type over RE,L).
Using the isomorphism DA[1/t] ∼= M [1/t], and DA[1/t]⊗A E ∼= D[1/t], we see M ⊗A E is of rank
k over RE,L. From Lemma 4.1.1 (1), we deduce M ⊗A E ∼= ∆⊗RE,L RE,L(δ).

Consider the following (ϕ,Γ)-module over RE,L:

Q := ∆⊗RE,L ∆∨ ∼= RE,L ⊕ (∆⊗RE,L ∆∨)0

QA :=
(
∆∨ ⊗RE,L RE,L(δ−1)

)
⊗RE,L M

QA′ :=
(
∆∨ ⊗RE,L RE,L(δ−1)

)
⊗RE,L

(
∆⊗RE,L RA′,L(δA′)

)
∼= RA′,L(δA′δ

−1)⊕
(
(∆⊗RE,L ∆∨)0 ⊗RE,L RA′,L(δA′δ

−1)
)
.

We have QA ↪→ QA′ and both QA′ , QA are isomorphic to a successive extension of Q. We apply the
functor F defined right above [3, Lemma 2.3.8]. By [3, Lemma 2.3.8] and Hom(ϕ,Γ)(RE,L, (∆⊗RE,L
∆∨)0) = 0, we see F (Q) ∼= E and

F (QA′) ∼= F (RA′,L(δA′δ
−1)) ∼= A′. (4.5)
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By the left exactness of the functor F and an obvious dévissage, we deduce

dimE F (QA) ≤ dimE A. (4.6)

Consider the exact sequence

0→ F (QA)→ F (QA′)→ F (QA′/QA).

We have
QA′/QA ∼=

(
∆∨ ⊗RE,L RE,L(δ−1)

)
⊗RE,L

((
∆⊗RE,L RA′,L(δA′)

)
/M
)

which, by Lemma 4.1.1 (1) applied to
(
∆⊗RE,LRA′,L(δA′)

)
/M , is also isomorphic to a successive

extension of Q. By dévissage, we deduce dimE F (QA′/QA) ≤ dimE(A′/A) over E. This, together
with (4.5), (4.6) and an easy dimension counting, imply (4.6) is in fact an equality. Consider now

0→ F (mAQA)→ F (QA)→ F (Q). (4.7)

By dévissage, we have again dimE F (mAQA) ≤ dimE mA. Using dimE F (QA) = dimE A, we
deduce that the right morphism is surjective (and dimE F (mAQA) = dimE mA). Noting that (4.7)
is a sequence of A-modules (with mA acting by 0 on F (Q)) and considering the A-submodule of
F (QA) generated by a lifting of a generator of F (Q) ∼= E, we easily deduce A

∼→ F (QA).

Consider the (ϕ,Γ)-submoduleQ0
A ofQA generated by F (QA). We claim it is a rank one (ϕ,Γ)-

module over RA,L. Let Q0
A′ be the (ϕ,Γ)-submodule of QA′ generated by F (QA′). Since we have

F (RA′,L(δA′δ
−1))

∼−→ F (QA′), we see Q0
A′ is also the (ϕ,Γ)-submodule of RA′,L(δA′δ

−1) generated
by F (QA′). Since RA′,L(δA′δ

−1) has a filtration with all graded pieces isomorphic to RE,L, by
dévissage and [3, Lemma 2.3.8 (ii)] any strict (saturated) (ϕ,Γ)-submodule C of RA′,L(δA′δ

−1)
is such that dimE F (C) < dimE A

′. As dimE F (Q0
A′) = dimE F (QA′) = dimE A

′ by (4.5), we

deduce Q0
A′
∼−→ RA′,L(δA′δ

−1). We also see that the natural morphism RA′,L ⊗A′ F (QA′) → Q0
A′

is an isomorphism. Now consider

RA,L ⊗A F (QA) ↪→ RA,L ⊗A F (QA′) ∼= RA′,L ⊗A′ F (QA′)
∼−→ Q0

A′ ↪→ QA′ .

The composition is injective and factors through QA. We deduce then RA,L ⊗A F (QA)
∼−→ Q0

A

and hence the latter is a (ϕ,Γ)-module of rank 1 over RA,L as A ∼= F (QA).

Let εA : L× → A× be the continuous character such that Q0
A
∼= RA,L(εA). By [3, Lemma 2.3.8

(1)] and the fact Q0
A is generated by F (Q0

A), it is not difficult to see εA ≡ 1 (mod mA). Twisting
by ∆ on both sides, the injection RA,L(εA) ↪→ QA induces a morphism

ι : ∆⊗RE,L RA,L(εA) −→M ⊗RE,L RE,L(δ−1).

We prove that ι is an isomorphism. It is sufficient to show it is surjective since both source and
target have the same rank over RE,L. One easily checks that the morphism RA,L(εA) ↪→ QA
factors as

RA,L(εA) ↪→ ∆∨ ⊗RE,L ∆⊗RE,L RA,L(εA)→ ∆∨ ⊗RE,L M ⊗RE,L RE,L(δ−1) ∼= QA

where the second map is induced by ι tensored with ∆∨. In particular, RA,L(εA) ↪→ QA factors
through RA,L(εA) ↪→ ∆∨ ⊗RE,L Im(ι). Since Im(ι) ∼= (∆ ⊗RE,L RA,L(εA))/Ker(ι), by Lemma
4.1.1 (1) it admits a filtration with graded pieces all isomorphic to ∆. If ι is not surjective, the
multiplicity of ∆ in this filtration on Im(ι) is strictly smaller than the multiplicity of ∆ in the
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filtration of M ⊗RE,L RE,L(δ−1), which is dimE A using the above equality of ranks over RE,L.
Applying the functor F and using again a dévissage, we have in that case dimE F (Im(ι) ⊗RE,L
∆∨) < dimE A = dimE F (RA,L(εA)), which contradicts RA,L(εA) ↪→ Im(ι)⊗RE,L ∆∨. We deduce
thus M ∼= ∆ ⊗RE,L RA,L(δεA). Since DA ↪→ M ∼= ∆ ⊗RE,L RA,L(δεA), we have DA ∈ F 0

D(A).
This finishes the proof.

Now suppose moreover D has distinct Sen weights, hence D ⊗RE,L RE,L(δ−1) has distinct
Hodge-Tate weights. Twisting δ by some algebraic character of L×, we can and do assume that
the Hodge-Tate weights of D ⊗RE,L RE,L(δ−1) are given by h = (h1,τ > h2,τ · · · > hk,τ = 0)τ∈ΣL .

Proposition 4.1.4. The functor F 0
D is formally smooth of dimension 1 + [L : Qp](1 + k(k−1)

2 ).

Proof. Let A� A/I be as surjection in Art(E) with I2 = 0. We show the natural map F 0
D(A)→

F 0
D(A/I) is surjective. Let (DA/I , πA/I , δA/I) ∈ F 0

D(A/I). Let δA : L× → A× be a continuous
character such that δA ≡ δA/I (mod I). We have by definition an embedding

DA/I ⊗RA/I,L RA/I,L(δ−1
A/I) ↪→ ∆⊗RE,L RA/I,L.

We choose a basis e of DdR(∆⊗RE,L RA,L) over L⊗Qp A (note that the latter is a free L⊗Qp A-
module), and denote by eA/I the image of e in DdR(∆⊗RE,LRA/I,L). In the basis eA/I , the Hodge

filtration on DdR

(
DA/I ⊗RA/I,L RA/I,L(δ−1

A/I)
) ∼= DdR(∆ ⊗RE,L RA/I,L) induces an increasing

filtration by free L⊗Qp A/I-submodules:

0 6= Fil−hk DdR

(
∆⊗RE,L RA/I,L

)
(

· · · ( Fil−h1 DdR

(
∆⊗RE,L RA/I,L

)
= DdR

(
∆⊗RE,L RA/I,L

)
(4.8)

which then corresponds to an element νA/I ∈ (ResLQp(GLk /B))(A/I). Since the flag variety is

smooth (hence formally smooth), we can choose a lifting νA ∈ (ResLQp(GLk /B))(A) of νA/I . Then
νA gives an increasing filtration by free L⊗Qp A-submodules in DdR(∆⊗RE,L RA,L), to which we
associate the Hodge filtration (still denoted by νA) on DdR(∆⊗RE,L RA,L) defined by (4.8) with
A/I replaced by A. By [6, Thm. A], the filtered Deligne-Fontaine module (Dpst(∆⊗RE,LRA,L), νA)
corresponds to a (ϕ,Γ)-submodule MA of ∆ ⊗RE,L RA,L. Then we see that DA := MA ⊗RA,L
RA,L(δA) satisfies DA ≡ DA/I (mod I) and DA ↪→ ∆ ⊗RE,L RA,L(δA). Hence F 0

D is formally
smooth.

We next compute the dimension of the E-vector space F 0
D(E[ε/ε2]). Recall that F 0

D(E[ε/ε2]) ↪→
FD(E[ε/ε2]) and that FD(E[ε/ε2]) is identified with Ext1

(ϕ,Γ)(D,D) ∼= Ext1
(ϕ,Γ)(D0, D0), where we

put D0 := D ⊗RE,L RE,L(δ−1) ↪→ ∆. Consider the following morphisms

Ext1
(ϕ,Γ)(D0, D0) −→ Ext1

(ϕ,Γ)(D0,∆), (4.9)

Ext1
(ϕ,Γ)(∆,∆) −→ Ext1

(ϕ,Γ)(D0,∆). (4.10)

For a (ϕ,Γ)-module D′ over RE,L, denote by WdR+(D′) the B+
dR ⊗Qp E-representation of GalL

associated to D′ (see for example [5, Prop. 2.2.6(2)]). For τ ∈ ΣL, let B+
dR,τ,E := B+

dR⊗L,τ E. We
have

W+
dR(∆⊗RE,L D

∨
0 )/W+

dR(∆⊗RE,L ∆∨) ∼=
⊕
τ∈ΣL

k⊕
i=1

(t−hi,τB+
dR,τ,E/B

+
dR,τ,E)⊕k.
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Using [15, Lemma 5.1.1] (which easily generalizes to finite extensions of Qp), we get

H0
(ϕ,Γ)

((
∆⊗RE,L D

∨
0

)
/
(
∆⊗RE,L ∆∨

))
= 0

and we deduce that the morphism (4.10) is injective. Consider then

Hom(L×, E) ↪−→ Ext1
(ϕ,Γ)(∆,∆) ↪−→ Ext1

(ϕ,Γ)(D0,∆)

where the first map sends ψ ∈ Hom(L×, E) to ∆ ⊗RE,L RE[ε]/ε2(1 + ψε). We denote by V the
image of the composition and by [Dψ] the element in V associated to ψ. Then it is not difficult
to see that [D⊗RE,LRE[ε]/ε2(δ−1(1 +ψε))] is sent to [Dψ] via (4.9) (up to non-zero scalars). This
implies V is contained in the image of (4.9). By definition, [DE[ε]/ε2 ] ∈ F 0

D(E[ε]/ε2) if and only if
[DE[ε]/ε2 ⊗RE,L RE,L(δ−1)] lies in the preimage of V via (4.9). We compute the dimension of the
kernel of (4.9). We have

W+
dR(∆⊗RE,L D

∨
0 )/W+

dR(D0 ⊗RE,L D
∨
0 ) ∼=

⊕
τ∈ΣL

k⊕
i=1

k⊕
j=1

t−hi,τB+
dR,τ,E/t

hj,τ−hi,τ .

By [15, Lemma 5.1.1], we deduce then

dimE H
0
(ϕ,Γ)

(
(∆⊗RE,L D

∨
0 )/(D0 ⊗RE,L D

∨
0 )
)

= dimE H
0
(

GalL,W
+
dR(∆⊗RE,L D

∨
0 )/W+

dR(D0 ⊗RE,L D
∨
0 )
)

=
∑
τ∈ΣL

∑
hj,τ>hi,τ

1 =
∑
τ∈ΣL

k(k − 1)

2
=
k(k − 1)

2
[L : Qp].

Using Ext0
(ϕ,Γ)(D0, D0) ∼= Ext0

(ϕ,Γ)(D0,∆), we see that the kernel of (4.9) is isomorphic to the

above vector space and hence has dimension k(k−1)
2 [L : Qp] over E. As dimE V = [L : Qp] + 1,

the proposition follows.

At last, we discuss some relations between F 0
D and de Rham deformations. Denote by F tw,dR

D

the functor Art(E)→ {sets} sending A to the isomorphism class of (DA, πA, χA) where (DA, πA) ∈
FD(A), χA : O×L → A× such that χA ≡ 1 (mod mA) and DA ⊗RE,L RA,L(δ−1χA,$L) is de Rham.
As D is irreducible and de Rham, D ∼= Drig(V ) ⊗RE,L RE,L(ψ) for a certain de Rham GalL-

representation V and a smooth character ψ of L×. Let RdR
D be the universal deformation ring

of de Rham deformations of D on Art(E), and RdR
V the universal deformation ring of de Rham

deformations of V on Art(E). Recall that RdR
V is isomorphic to the completion at V of the

generic fibre of the universal potentially semi-stable deformation ring of the modulo p reduction
of (a lattice in) V , cf. [62, § 2.3]. The functor Drig(−)⊗RE,LRE,L(ψ) induces then an isomorphism

RdR
V

∼−→ RdR
D . Let (Ô×L )1 be the completion of Ô×L at the trivial character. One directly checks

that the E-formal scheme RdR
D ⊗̂E(Ô×L )1 (pro-)represents the functor F tw,dR

D . In particular, using

[63, Thm. 3.3.8], we see that F tw,dR
D is formally smooth of dimension 1 + [L : Qp](1 + k(k−1)

2 ).

When (DA, πA, δA) ∈ F 0
D(A), we have that DA ⊗RE,L RA,L(δ−1

A ) is de Rham, and thus

(DA, πA, χA) ∈ F tw,dR
D (A) where χA := (δ−1

A δ)|O×L .

Lemma 4.1.5. The morphism F 0
D → F tw,dR

D , (DA, πA, δA) 7→ (DA, πA, χA) is an isomorphism.

Proof. As both functors are formally smooth of dimension 1 + [L : Qp](1 + k(k−1)
2 ), we only need

to show F 0
D(E[ε]/ε2)→ F tw,dR

D (E[ε]/ε2) is injective. But this is clear.
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4.1.2 Deformations of type Ω

In this section, we study the universal deformation functor for certain paraboline deformations
of (ϕ,Γ)-modules which admit an Ω-filtration (where Ω is a cuspidal Bernstein component as
in § 3.1.1). In particular, we show that, under a genericness assumption, this functor is pro-
representable and formally smooth.

Let r ∈ Z≥1. For 1 ≤ i ≤ r, let ni ∈ Z≥1 with
∑r

i=1 ni = n. For 1 ≤ i ≤ r, let Ωi be a cuspidal
type for GLni(L) and ZΩi the associated Bernstein centre over E. Recall that for each E-point
xi of SpecZΩi , we have a smooth irreducible cuspidal representation πxi of GLni(L) over E, an
F -semi-simple Weil-Deligne representation rxi := rec(πxi), and a (ϕ,Γ)-module ∆xi of rank ni
over RE,L, de Rham of constant Hodge-Tate weight 0 (see § 2.1). Let P ⊆ GLn be the parabolic
subgroup as in (2.2). We let Ω := (Ωi)i=1,...,r and ZΩ := ⊗ri=1ZΩi . We let Z0,L := ZLP (OL) (to
be consistent with the notation in § 3).

In this paragraph we fix a (ϕ,Γ)-module D of rank n over RE,L.

Definition 4.1.6. (1) We say that D admits an Ω-filtration F if D admits an increasing filtration
by (ϕ,Γ)-submodules 0 = Fil0D ( Fil1D ( · · · ( FilrD = D such that, for i = 1, . . . , r:

� griD is a (ϕ,Γ)-module of rank ni;

� there exist an E-point xi ∈ SpecZΩi and a continuous character δi : L× → E× such that
one has an embedding griD ⊗RE,L RE,L(δ−1

i ) ↪→ ∆xi.

(2) Let F , x = (xi), δ = �r
i=1δi be as in (1), we call the corresponding point (x, δ) in

(SpecZΩ)rig × ẐLP (L) a parameter of the Ω-filtration F if, for each τ ∈ ΣL, 0 is a τ -Hodge-Tate
weight (hence is the minimal τ -Hodge-Tate weight) of griD ⊗RE,L RE,L(δ−1

i ).

(3) Let F be as in (1). We call (x, χ = �r
i=1χi) ∈ (SpecZΩ)rig × Ẑ0,L a parameter of the Ω-

filtration F in (SpecZΩ)rig×Ẑ0,L if (x, χ$L = �r
i=1χi,$L) is a parameter of F in (SpecZΩ)rig×

ẐLP (L).

Remark 4.1.7. (1) Let F , x, δ be as in Definition 4.1.6 (1). We can twist each δi by a certain
algebraic character of L× so that (x, δ) is parameter of F .

(2) For convenience, we may use these two kinds of parameters depending on the situation.

Note that the parameters of F
(
either in (SpecZΩ)rig× ẐLP (L) or in (SpecZΩ)rig× Ẑ0,L

)
are in

general not unique (see Lemma 4.1.9 below).

Example 4.1.8. (1) By Theorem 3.2.16 (using the notation there), for any point x ∈ EΩ,λ(Up),
Drig(ρx,ṽ) admits an Ωṽ-filtration. This is our main motivation to study (ϕ,Γ)-modules with
Ω-filtrations.

(2) Let ρ be as in § 2.3 and use the notation of loc. cit. Let x ∈ (SpecZΩ)rig be the point such
that ∆xi

∼= grF
i ∆ for i = 1, . . . , r. Then by (2.4) (and comparing the Hodge-Tate weights), we see

that F in (2.3) is an Ω-filtration of parameter (x, δ = �r
i=1δi := �r

i=1z
wF (h)si ) ∈ (SpecZΩ)rig ×

ẐLP (L). Let x′ = (x′i) be such that ∆x′i
∼= ∆xi⊗RE,LRE,L

(
unr($

wF (h)si
L )

)
, then (x′, δ0 = δ|Z0,L

) ∈
(SpecZΩ)rig × Ẑ0,L is a parameter of F .

Lemma 4.1.9. Let F be an Ω-filtration of D.

56



(1) Let (x, δ) ∈ (SpecZΩ)rig × ẐLP (L) be a parameter of F , then all parameters of F in

(SpecZΩ)rig × ẐLP (L) are of the form (x′, δ′) such that, for i = 1, · · · , r, rx′i
∼= rxi ⊗E unr(αi)

and δ′i = δi unr(α−1
i )ηi for some αi ∈ E

×
and ηi ∈ µΩi.

(2) Let (x, χ) ∈ (SpecZΩ)rig × Ẑ0,L be a parameter of F , then all parameters of F in

(SpecZΩ)rig × Ẑ0,L are of the form (x′, χ′) such that, for i = 1, · · · , r, rx′i
∼= rxi ⊗E unr(ηi($L))

and χ′i = χiηi|O×L for some ηi ∈ µΩi.

Proof. (2) is an easy consequence of (1). We prove (1). Let (x′, δ′) ∈ (SpecZΩ)rig × Ẑ0,L be
another parameter of F . By definition, we have injections

griD ⊗RE,L RE,L(δ−1
i ) ↪−→ ∆xi (4.11)

griD ⊗RE,L RE,L((δ′i)
−1) ↪−→ ∆x′i

∼= ∆xi ⊗RE,L RE,L(unr(αi)). (4.12)

From (4.12), we deduce

griD⊗RE,LRE,L((δ′i)
−1 unr(αi)) ∼= griD⊗RE,LRE,L(δ−1

i )⊗RE,LRE,L(δi(δ
′
i)
−1 unr(α−1

i )) ↪−→ ∆xi .

Since both griD ⊗RE,L RE,L(δ−1
i ) and griD ⊗RE,L RE,L((δ′i)

−1 unr(αi)) are de Rham and have
0 as the minimal τ -Hodge-Tate weight for all τ ∈ ΣL, we deduce δi(δ

′
i)
−1 is smooth. Using (4.2)

(applied to (4.11) and (4.12)), we see that there exists N ∈ Z≥0 sufficiently large such that

∆xi ↪−→ t−N griD ⊗RE,L RE,L(δ−1
i ) ↪−→ t−N∆xi ⊗RE,L RE,L(δ−1

i δ′i unr(αi)).

Using [6, Thm. A] and comparing the Hodge-Tate weights, we deduce ∆xi
∼= ∆xi ⊗RE,L

RE,L(δ−1
i δ′i unr(αi)), hence rxi

∼= rxi ⊗E (δ−1
i δ′i unr(αi)), implying δ−1

i δ′i unr(αi) ∈ µΩi . This
concludes the proof.

Remark 4.1.10. In particular, F only has finitely many parameters in SpecZΩ × Ẑ0,L.

Let (x, δ) ∈ SpecZΩ× ẐLP (L) be a parameter of the Ω-filtration F . We call F generic if the
following condition is satisfied:

for i 6= j, if rxj
∼= rxi ⊗E η for some smooth character η of L×,

then δiδ
−1
j η 6= z−k and δiδ

−1
j η 6= unr(q−1

L )zk for any k ∈ Z|ΣL|≥0 .
(4.13)

By Lemma 4.1.9, this definition is independent of the choice of the parameter of F .

Example 4.1.11. Let D be as in Example 4.1.8 (2), one directly checks that the Ω-filtration F
is generic if ρ is generic in the sense of § 2.3.

Lemma 4.1.12. Assume that the Ω-filtration F on D is generic, then we have

Hom(ϕ,Γ)(griD, grj D) = Ext2
(ϕ,Γ)(griD, grj D) = 0 (4.14)

for i 6= j, i, j ∈ {1, . . . , r}.

Proof. We prove the statement for Hom, the proof for Ext2 being similar using
Ext2

(ϕ,Γ)(griD, grj D) = H2
(ϕ,Γ)((griD)∨ ⊗RE,L grj D) and Tate duality ([66, Thm. 1.2 (2)]). We
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let (x, δ) ∈ (SpecZΩ)rig × ẐLP (L) be a parameter of F . Suppose we have a non-zero morphism
f : griD → grj D for i 6= j. Let N ∈ Z≥0 be sufficiently large, then f induces a non-zero hence
injective morphism (see (4.2))

tN∆xi → griD ⊗RE,L RE,L(δ−1
i )→ grj D ⊗RE,L RE,L(δ−1

i )→ ∆xj ⊗RE,L RE,L(δ−1
i δj). (4.15)

Consider the induced injective morphism ∆xi → ∆xj⊗RE,LRE,L(δ−1
i δjz

−N) where N := (N)τ∈ΣL .
Since both the source and target are irreducible, the morphism (and hence (4.15)) becomes an
isomorphism inverting t. Since the left hand side of (4.15) is de Rham, so is ∆xj⊗RE,LRE,L(δ−1

i δj).

This implies (e.g. by considering the Sen weights) that δ−1
i δj is locally algebraic, say of the form

ηzk for a smooth character η of L× and some k ∈ Z|ΣL|. By using [6, Thm. A] and comparing the
Hodge-Tate weights, we see that (4.15) induces ∆xi

∼−→ ∆xj ⊗RE,L RE,L(η) (so rxi
∼= rxj ⊗E η).

We next show k ∈ Z|ΣL|≤0 . By definition, 0 is the minimal τ -Hodge-Tate weight of griD ⊗RE,L
RE,L(δ−1

i ) for all τ , while wt(δ−1
i δj)τ is the minimal τ -Hodge-Tate weight of

grj D ⊗RE,L RE,L(δ−1
i ) ∼= grj D ⊗RE,L RE,L(δ−1

j )⊗RE,L RE,L(δjδ
−1
i ).

The second (injective) morphism in (4.15) then implies wt(δ−1
i δj)τ ≤ 0 for all τ , hence k ∈ Z|ΣL|≤0 .

But δ−1
i δjη

−1 = zk with k ∈ Z|ΣL|≤0 contradicts the genericity (4.13) of F .

Corollary 4.1.13. Assume that D admits a generic Ω-filtration F , and let (x, δ) ∈ SpecZΩ ×
ẐLP (L) be a parameter of F . Then D has a unique Ω-filtration of parameter (x, δ).

Proof. Suppose D has two Ω-filtrations Fil•, Fil′• of parameter (x, δ). By Lemma 4.1.12 and
a standard dévissage, we easily deduce Hom(ϕ,Γ)(Filr−1D, gr′rD) = 0 and hence the injection

Filr−1D ↪→ D induces an isomorphism Filr−1D
∼−→ Fil′r−1D. We go on replacing D by Filr−1D =

Fil′r−1D, and we see that FiliD ↪→ D induces an isomorphism FiliD
∼−→ Fil′iD for i = 1, . . . , r.

Assume that D admits a (uniquely determined) generic Ω-filtration F and let FD,F denote
the functor Art(E)→ {Sets} which sends A ∈ Art(E) to the set of isomorphism classes

FD,F (A) = {(DA, πA,FA)}/ ∼

where (the isomorphisms being defined in an obvious way)

(1) DA is a (ϕ,Γ)-module of rank n over RA,L with πA : DA ⊗A E
∼−→ D;

(2) FA = Fil•DA is an increasing filtration by (ϕ,Γ)-submodules over RA,L on DA such that
FiliDA, i ∈ {0, . . . , r} is a direct summand ofDA asRA,L-modules and πA(FiliDA) = FiliD.

Lemma 4.1.14. Assume Hom(ϕ,Γ)(griD, grj D) = 0 for i 6= j. Then FD,F is a subfunctor of
FD.

Proof. By the assumption and a dévissage similar to the one for Lemma 4.1.13, we easily deduce
that, if Fil•DA and Fil′•DA are two filtrations on (DA, πA) ∈ FD(A), then they have to be equal.
The lemma follows.

Denote by EndF (D) := {f ∈ EndRE,L(D) | f(FiliD) ⊂ FiliD, ∀i}, which is equipped with a
natural (ϕ,Γ)-action as in the discussion below [29, Rem. 3.5]. Recall the following result:
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Proposition 4.1.15 ([29, Prop. 3.6 (2), (3)]). (1) There is a natural isomorphism of E-vector
spaces FD,F (E[ε/ε2])

∼−→ H1
(ϕ,Γ)(EndF (D)) and

dimE FD,F (E[ε/ε2]) = dimE H
0
(ϕ,Γ)(EndF (D)) + dimE H

2
(ϕ,Γ)(EndF (D)) + [L : Qp]

∑
i≤j

ninj .

(2) Assume H2
(ϕ,Γ)(EndF (D)) = 0, then the functor FD,F is formally smooth of dimension

dimE H
0
(ϕ,Γ)(EndF (D)) + [L : Qp]

∑
i≤j ninj.

We have a natural morphism

FD,F −→
∏
i

FgriD

sending (DA, πA,FA) to (griDA, πA|griDA)i=1,...,r.

Proposition 4.1.16 ([29, Prop. 3.7]). Assume H2
(ϕ,Γ)(HomRE,L(D/FiliD, griD)) = 0 for all i,

then the morphism FD,F →
∏
i FgriD is formally smooth.

Let (x, δ) ∈ SpecZΩ × ẐLP (L) be a parameter of F , and let F 0
D,F be the functor Art(E) →

{Sets} sending A ∈ Art(E) to the set of isomorphism classes

F 0
D,F (A) = {(DA, πA,FA, δA)}/ ∼

where (the isomorphisms being again defined in an obvious way)

(1) (DA, πA,FA) ∈ FD,F (A);

(2) δA = (δA,i)i=1,...,r where δA,i : L× → A× is a continuous character such that δA,i ≡ δi
(mod mA) and there exists an injection of (ϕ,Γ)-modules over RA,L:

griDA ↪−→ ∆i ⊗RE,L RA,L(δA,i).

By definition, we have F 0
D,F
∼= FD,F ×∏

i Fgri D

∏
i F

0
griD

.

Proposition 4.1.17. (1) Assume Hom(ϕ,Γ)(griD, grj D) = 0 for i 6= j, then the functor F 0
D,F is

a subfunctor of FD.

(2) Assume H2
(ϕ,Γ)(HomRE,L(D/FiliD, griD)) = 0 and griD ⊗RE,L RE,L(δ−1

i ) has distinct

Hodge-Tate weights for i = 1, . . . , r. Then F 0
D,F is formally smooth of dimension

dimE H
2
(ϕ,Γ)(EndF (D)) + dimE H

0
(ϕ,Γ)(EndF (D)) + [L : Qp]

(n(n− 1)

2
+ r
)
.

Proof. (1) By Lemma 4.1.2 F 0
D,F is a subfunctor of FD,F , and by Lemma 4.1.14 FD,F is a

subfunctor of FD.
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(2) From Proposition 4.1.16, we deduce that F 0
D,F is formally smooth over

∏
i F

0
griD

and hence
is formally smooth by Proposition 4.1.4. We have then

dimE F
0
D,F (E[ε/ε2])

=dimE FD,F (E[ε/ε2])−
∑
i

dimE FgriD(E[ε/ε2]) +
∑
i

dimE F
0
griD

(E[ε/ε2])

=dimE H
0
(ϕ,Γ)(EndF (D)) + dimE H

2
(ϕ,Γ)(EndF (D)) + [L : Qp]

(∑
i<j

ninj

+
∑
i

(ni(ni − 1)

2
+ 1
))

=dimE H
0
(ϕ,Γ)(EndF (D)) + dimE H

2
(ϕ,Γ)(EndF (D)) + [L : Qp]

(n(n− 1)

2
+ r
)
,

where the second equality follows from Proposition 4.1.15 (1), Proposition 4.1.4 and the standard
fact that dimE FgriD(E[ε/ε2]) = 1 + [L : Qp]n2

i (noting that griD is irreducible).

Let ρ : GalL → GLn(E) be a continuous group morphism and V the associated representation
of GalL over E. We let Fρ (resp. FV ) denote the deformation functor of ρ (resp. V ) over Art(E).
So Fρ can be viewed as the framed deformation functor of V over Art(E). Assume D ∼= Drig(V ),
then we have FD ∼= FV . Let F 0

ρ,F := F 0
D,F ×FV Fρ. Recall that Fρ is pro-representable and is

formally smooth over FV of relative dimension n2 − dimE H
0
(ϕ,Γ)(EndRE,L(D)).

Corollary 4.1.18. (1) Assume Hom(ϕ,Γ)(griD, grj D) = 0 for i 6= j, then F 0
ρ,F is a subfunctor

of Fρ and is pro-representable.

(2) Assume H2
(ϕ,Γ)(HomRE,L(D/FiliD, griD)) = 0 and griD ⊗RE,L RE,L(δ−1

i ) has distinct

Hodge-Tate weights for i = 1, . . . , r. Then F 0
ρ,F is formally smooth of dimension

dimE H
2
(ϕ,Γ)(EndF (D)) + dimE H

0
(ϕ,Γ)(EndF (D))− dimE H

0
(ϕ,Γ)(EndRE,L(D))

+ n2 + [L : Qp]
(n(n− 1)

2
+ r
)
. (4.16)

Proof. By Proposition 4.1.17 (1), F 0
ρ,F is a subfunctor of Fρ. By Lemma 4.1.14, Fρ,F := FD,F×FD

Fρ is a subfunctor of (the pro-representable functor) Fρ. Together with [29, Prop. 3.4], we can
deduce that Fρ,F is pro-representable (noting that we only need to show that

Fρ,F (A′ ×A A′′) −→ Fρ,F (A′)×Fρ,F (A) Fρ,F (A′′)

is surjective whenever A′′ → A is surjective). It then follows from Proposition 4.1.3 that F 0
ρ,F

is pro-representable. By base change, F 0
ρ,F is formally smooth over F 0

D,F of relative dimension

n2 − dimE H
0
(ϕ,Γ)(EndRE,L(D)). Together with Proposition 4.1.17 (2), (2) follows.

Remark 4.1.19. Assume that (D,F ) satisfies the properties in (4.14) and that griD ⊗RE,L
RE,L(δ−1

i ) has distinct Hodge-Tate weights for i = 1, . . . , r. Then using a dévissage, one easily
deduces that the assumptions in Corollary 4.1.18 (1) and (2) are satisfied, and that the terms in
the first line of (4.16) are all zero. So in this case F 0

ρ,F is (pro-representable) formally smooth of

dimension n2 + [L : Qp](n(n−1)
2 + r).
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4.2 Bernstein paraboline varieties

By generalizing results in [17, § 2.2] on the trianguline variety, we construct and study a certain
local Galois deformation space of a modulo p Galois representation which consists of Galois
representations admitting an Ω-filtration.

The following lemma follows easily from [60, Thm.]. We formulate it here since we will
frequently use it.

Lemma 4.2.1. Let X be a reduced rigid analytic space over E and D a (ϕ,Γ)-module over RX,L.
Assume that, for i = 0, 1, 2, there exists di ∈ Z≥0 such that for all x ∈ X, dimk(x)H

i
(ϕ,Γ)(Dx) = di

where Dx := x∗D. Then H i
(ϕ,Γ)(D) is a locally free sheaf of rank di over X and for any morphism

f : Y → X of rigid spaces, we have H i
(ϕ,Γ)(f

∗D) ∼= H i
(ϕ,Γ)(D)⊗OXOY .

Proof. By [60, Thm. 4.4.5 (1)] and [60, Thm.], H i
(ϕ,Γ)(D) is a coherent sheaf over X, and there

exists a complex [C0 d0

−→ C1 d1

−→ C2] of locally free sheaves of finite type over X such that, for
f : Y → X, H i

(ϕ,Γ)(f
∗D) is isomorphic to the i-th cohomology of the complex

[C0⊗OXOY → C1⊗OXOY → C2⊗OXOY ].

In particular, we have H2
(ϕ,Γ)(D)⊗OXOY ∼= H2

(ϕ,Γ)(f
∗D). Applying this to points of X, we deduce

that H2
(ϕ,Γ)(D)⊗OXk(x) ∼= H2

(ϕ,Γ)(Dx) has constant dimension d2 for all x ∈ X. Since X is reduced

(and H2
(ϕ,Γ)(D) is coherent), this implies that H2

(ϕ,Γ)(D) is locally free of rank d2. We deduce that

Ker(d1) is also locally free of finite type (as the kernel of a surjection between two locally free OX -
modules of finite type is locally free of finite type), and thus H1

(ϕ,Γ)(D)⊗OXOY ∼= H1
(ϕ,Γ)(f

∗D).

Repeating the above argument, we obtain that H1
(ϕ,Γ)(D) is locally free of rank d1, that Im(d0)

is locally free, and then again that H0
(ϕ,Γ)(D) is locally free of rank d0 and H0

(ϕ,Γ)(D)⊗OXOY ∼=
H0

(ϕ,Γ)(f
∗D).

We keep the setting of the beginning of § 4.1.2 and fix h = (hi)i=1,...,n = (hi,τ )i=1,...,n
τ∈ΣL

∈ Z⊕n|ΣL|

strictly P -dominant. Let (ri) ∈ (SpecZΩ)an, we say that a character δ of ZLP (L) is generic for
(Ω,h) if the following condition is satisfied:

if there exist i 6= j such that rj = ri ⊗E η for some smooth character η of L× (noting there

are finitely many choices of η), then δiδ
−1
j ηzhsi−hsj 6= z−k and δiδ

−1
j ηzhsi−hsj 6= unr(q−1

L )zk

for all k = (kσ)σ∈ΣL ∈ Z
|ΣL|
≥0 .

The set of such points is Zariski open and Zariski dense in ẐLP (L). For each ri, we have a natural

finite morphism Gm → SpecZΩi , α 7→ ri ⊗E unr(α) (note that ZΩi
∼= E[x, x−1]

µunr
Ωi ). We have

and fix an isomorphism (depending on the choice of $L) Grig
m × Ô×L

∼−→ L̂×, (a, χ) 7→ unr(a)χ$L .
We define

Z := (SpecZΩ)rig × Ẑ0,L,

ιri as the composition ιri : L̂×
∼−→ Grig

m × Ô×L → (SpecZΩi)
rig × Ô×L , and ιr as the composition:

ιr : ẐLP (L)
∼−→

r∏
i=1

L̂×
∼−→

r∏
i=1

(Grig
m × Ô×L )

(ιri )−−→
r∏
i=1

(
(SpecZΩi)

rig × Ô×L
) ∼= Z .
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A point of Z is called generic if its preimage in ẐLP (L) is generic for (Ω,h). One can check that
this notion is independent of the choice of {ri}. Denote by Z gen ⊂ Z the set of points that are
generic. One can also check that if (x, χ) ∈ Z gen then (x, χ$L) satisfies the condition in (4.13).
Any affinoid open in Z can only have finitely many points that are not generic (since the same

holds for ẐLP (L)). Hence Z gen is Zariski-open and Zariski-dense in Z .

Let ρ : GalL → GLn(kE) be a continuous group morphism. Let UΩ,h(ρ) be the subset of
(Spf Rρ)

rig ×Z of the points (ρ, x, χ) such that

(1) (x, χ) ∈ Z gen;

(2) Drig(ρ) admits an Ω-filtration F = {FiliDrig(ρ)} such that

griDrig(ρ)⊗Rk(x),L
Rk(x),L(χ−1

i,$L
) ↪−→ ∆xi ⊗Rk(x),L

Rk(x),L(zhsi ) (4.17)

and the image has Hodge-Tate weights (hsi−1+1, . . . ,hsi).

We define XΩ,h(ρ) to be the Zariski-closure of UΩ,h(ρ) in (Spf Rρ)
rig ×Z . By definition XΩ,h(ρ)

is reduced and we have a natural morphism

ω : XΩ,h(ρ) −→ Z .

We define an action of µΩ = {ψ = (ψi) : ZLP (L)→ E× | ψi ∈ µΩi} on Z such that ψ = (ψi) ∈ µΩ

sends
(
(ri), (χi)

)
to
(
(ri⊗E unr(ψi($L))), (χiψ

0
i )
)
. It induces an action of µΩ on (Spf Rρ)

rig×Z
by acting trivially on (Spf Rρ)

rig. By Lemma 4.1.9 (2), UΩ,h(ρ) is preserved by the action of µΩ.
We then deduce that XΩ,h(ρ) is also preserved by µΩ:

Proposition 4.2.2. A point
(
ρ, (ri), (χi)

)
∈ (Spf Rρ)

rig × Z lies in XΩ,h(ρ) if and only if the
point

(
ρ, (ri ⊗E unr(ψi($L))), (χiψ

0
i )
)

lies in XΩ,h(ρ) for all ψ = (ψi) ∈ µΩ.

Let ψ = (ψi) be a smooth character of ZLP (L), and Ω be the Bernstein component {π ⊗E
ψ}π∈Ω. Let h′ = (h′i)i=1,...,n = (h′i,τ )i=1,...,n

τ∈ΣL

∈ Z⊕n|ΣL| be strictly P -dominant such that h′ − h =

d ◦ detLP for a weight d = (di)i=1,...,r of zLP ,L. The condition (4.17) is then equivalent to

griDrig(ρ)⊗Rk(x),L
Rk(x),L

(
χ−1
i,$L

δ0
di,$L

ψ0
i,$L

)
↪−→ ∆xi ⊗Rk(x),L

Rk(x),L

(
ψ0
i,$L

unr(δ−1
di

($L))
)
⊗Rk(x),L

Rk(x),L(zh
′
si ).

The isomorphism

(Spf Rρ)×Z
∼−→ (Spf Rρ)×Z ,

(
ρ, (ri), (χi)

)
7→
(
ρ, (ri ⊗E (ψ0

i,$L
(δunr

di,$L
)−1), (χi(δ

0
diψ

0
i )
−1)
)

sends bijectively UΩ,h(ρ) to UΩ′,h′(ρ). We then deduce (compare with Proposition 3.2.3):

Proposition 4.2.3. We have an isomorphism:

XΩ,h(ρ)
∼−−→ XΩ′,h′(ρ),

(
ρ, (ri), (χi)

)
7−→

(
ρ, (ri ⊗ (ψ0

i )$L(δunr
di,$L

)−1), (χi(δ
0
diψ

0
i )
−1)
)
.

Remark 4.2.4. (1) Assume P = B, hence LP = ZLP = T . Using the isomorphism (where
�r
i=1πxi is the smooth character of T (L) = LP (L) associated to x):

ιΩ,h : Z
∼−−→ T̂ (L), (x, χ) 7→ (�r

i=1πxi)χz
h,
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we view XΩ,h(ρ) as a closed rigid subspace of (Spf Rρ)
rig× T̂ (L) via the following morphism, that

we still denote by ιΩ,h:

ιΩ,h : XΩ,h(ρ) −→ (Spf Rρ)
rig ×Z

id×ιΩ,h−−−−−→ (Spf Rρ)
rig × T̂ (L).

Such a closed rigid subspace is in fact independent of the choice of (Ω,h) by Proposition 4.2.3. By
assumption, the injection in (4.17) is actually an isomorphism. We then deduce that UΩ,h(ρ) ⊂
(Spf Rρ)

rig × T̂ (L) coincides with U�
tri(r)

reg in [17, § 2.2], hence XΩ,h(ρ) coincides with the trian-
guline variety X�

tri(r) of loc. cit.

(2) By definition, for (ρ, x, χ) ∈ UΩ,h(ρ),
(
x,�r

i=1(χi,$Lz
hsi )
)
∈ (SpecZΩ)rig × ẐLP (L) is a

(generic) parameter of the Ω-filtration F on Drig(ρ). We will show in Corollary 4.2.6 below that,
for any point (ρ, x, χ) ∈ XΩ,h(ρ), Drig(ρ) is naturally equipped with an Ω-filtration F . However,
(x, (χi,$Lz

hsi )) is not forcedly in general a parameter of F . This phenomenon is closely related
to the problem of (local) companion points (see Remark 4.3.10 and Example 4.1.8).

The following theorem, generalizing [17, Thm. 2.6], is the main result of this section.

Theorem 4.2.5. (1) The rigid analytic space XΩ,h(ρ) is equidimensional of dimension

n2 + [L : Qp]
(n(n− 1)

2
+ r
)
.

(2) The set UΩ,h(ρ) is Zariski-open and Zariski-dense in XΩ,h(ρ).

(3) The rigid space UΩ,h(ρ) is smooth over E, and the morphism ω|UΩ,h(ρ) : UΩ,h(ρ) → Z is
smooth.

By Theorem 4.2.5, Corollary A.1.2 and Corollary A.1.3 (1) (applied to X = XΩ,h(ρ)), we get:

Corollary 4.2.6. Let x = (ρ, x, χ) ∈ XΩ,h(ρ), then Drig(ρ) admits an Ω-filtration F =
{FiliDrig(ρ)} such that, for all i = 1, . . . , r,

griDrig(ρ)⊗Rk(x),L
Rk(x),L(χ−1

i,$L
)
[1

t

]
∼= ∆xi

[1

t

]
.

In the rest of this section, we prove Theorem 4.2.5 by generalizing the proof of [17, Thm. 2.6].
One difference is that, instead of having a smooth rigid space (the S(r) of loc. cit.) mapping onto
the whole UΩ,h(ρ) (Utri(r)

reg of loc. cit.), we only have smooth rigid spaces mapping onto certain
open subspaces of UΩ,h(ρ) that cover UΩ,h(ρ).

We start with the construction of some auxiliary smooth rigid analytic spaces. For a reduced
rigid space X, we denote by O+

X the subsheaf of OX of functions of norm less than 1. For
i = 1, . . . , r, let αi ∈ E×, %i : GalL → GLni(kE) be a continuous representation and let ξi be the
(cuspidal) inertial type associated to Ωi. We consider the following functor:

X 7−→
{
ρX , %i,X , χi,X ,Fil•, νi

}
/ ∼ (4.18)

where (the isomorphisms being defined in an obvious way)

(1) X is a reduced rigid analytic space over E;
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(2) ρX : GalL → GLn(O+
X) (resp. %i,X : GalL → GLni(O+

X) for i = 1, . . . , r) is a continuous
morphism such that, for all x ∈ X, the reduction modulo the maximal ideal of Ok(x) of
ρx := ρX ⊗O+

X
Ok(x) (resp. of %i,x := %i,X ⊗O+

X
Ok(x)) is equal to ρ (resp. %i);

(3) %i,x is de Rham of Hodge-Tate weights hi := (hsi−1+1, . . . ,hsi) and of type ξi for all x ∈ X;

(4) χi,X : O×L → O
×
X is a continuous morphism such that, for all points x ∈ X, ({r(%i,x) ⊗E

unr(αi)}, {χi,x}) ∈ Z gen where χi,x = x∗χi,X and r(%i,x) is the Weil-Deligne representation
associated to %i,x;

(5) Fil•Drig(ρX) =
(
0 = Fil0Drig(ρX) ( Fil1Drig(ρX) ( · · · ( FilrDrig(ρX) = Drig(ρX)

)
is an

increasing filtration on Drig(ρX) by (ϕ,Γ)-submodules overRX,L which are direct summands
of Drig(ρX) as RX,L-modules;

(6) νi : griDrig(ρX)
∼−→ Drig(%i,X) ⊗RX,L RX,L((χi,X)$L unr(αi)) is an isomorphism of (ϕ,Γ)-

modules over RX,L.

Proposition 4.2.7. The functor in (4.18) is representable by a smooth reduced rigid analytic space

over E of dimension (
∑r

i=1 n
2
i + n2) + [L : Qp](n(n−1)

2 + r), that we denote by S0
ρ(Ω,h, α, {%i}).

Proof. For i = 1, . . . , r, consider

(Spf Rpcr
%i

(ξi,h
i))rig → (SpecZΩi)

rig twαi−−−→ (SpecZΩi)
rig (4.19)

where the first morphism is induced by the morphism in [26, Thm. 4.1] (see also [26, Prop. 4.3]),
and the second morphism sends ri to ri ⊗E unr(αi). The morphism (4.19) is given pointwise by

%i 7→ r(%i)⊗E unr(αi). Taking their product (with the identity map on Ẑ0,L), we define

ηα,{%i} :
r∏
i=1

(Spf Rpcr
%i

(ξi,h
i))rig × Ẑ0,L −→ (SpecZΩ)rig × Ẑ0,L

∼= Z . (4.20)

Let U := η−1
α,{%i}

(Z gen), which is Zariski-open and Zariski-dense in
∏r
i=1(Spf Rpcr

%i
(ξi,h

i))rig×Ẑ0,L.

Indeed, the Zariski-density follows from the fact that any affinoid open in the left hand side of
(4.20) contains points with Ẑ0,L-entry χ = �χi satisfying wt(χi(χj)

−1)τ /∈ Z for all i 6= j and
τ ∈ ΣL, and such points are sent to generic points via ηα,{%i}. Let %univ

i be the universal Galois

deformation over (Spf Rpcr
%i

(ξi,h
i))rig and %univ

i,U be its pull-back over U via the composition

U ↪→
r∏
i=1

(Spf Rpcr
%i

(ξi,h
i))rig × Ẑ0,L � (Spf Rpcr

%i
(ξi,h

i))rig.

Likewise, let χuniv
i,U be the pull-back over U of the universal character over Ô×L via the composition

U ↪→
r∏
i=1

(Spf Rpcr
%i

(ξi,h
i))rig × Ẑ0,L � Ẑ0,L

∼= (Ô×L )r
pri−−→ Ô×L .

Put
Di,U := Drig(%univ

i,U )⊗RU,L RU ,L
(
(χuniv
i,U )$L unr(αi)

)
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and Di,z := z∗Di,U for each z ∈ U . Since ξi is a cuspidal inertial type, Di,z is irreducible for all z.
Using the fact that ηα,{%i}(z) ∈ Z gen, one can calculate:

dimk(z)H
s
(ϕ,Γ)(Di,z ⊗Rk(z),L

D∨i,z) =


1 s = 0

n2
i [L : Qp] + 1 s = 1

0 s = 2

and by Lemma 4.1.12, for i 6= j:

dimk(z)H
s
(ϕ,Γ)(Di,z ⊗Rk(z),L

D∨j,z) =


0 s = 0

ninj [L : Qp] s = 1

0 s = 2.

We deduce by Lemma 4.2.1 that for any rigid analytic space U ′ over U , all Hs
(ϕ,Γ)(Di,U ′⊗RU′,LD

∨
j,U ′)

are locally free over U ′, where Di′,U ′ denotes the base change of Di′,U over U ′.

Now we let U1 := U , C1,U1 := D1,U1 and ν1 : C1,U1

∼−→ D1,U1 be an isomorphism. Let
U2 → U1 be the vector bundle of rank n1n2[L : Qp] associated to the locally free OU1-module
Ext1

(ϕ,Γ)(D2,U1 , C1,U1) (see also the proof of [30, Thm. 3.3] and [52, Thm. 2.4]). We have a univer-

sal extension of (ϕ,Γ)-modules over RU2,L:

0→ C1,U2 → C2,U2

ν2−→ D2,U2 → 0.

By similar arguments as in the previous paragraph and a dévissage, we prove that the OU2-module
H1

(ϕ,Γ)(C2,U2⊗RU2,L
D3,U2) is locally free of rank [L : Qp](n1 +n2)n3. We let U3 → U2 be the vector

bundle associated to H1
(ϕ,Γ)(C2,U2 ⊗RU2,L

D∨3,U2
). By induction, we finally obtain a sequence of

rigid analytic spaces
V := Ur → Ur−1 → · · · → U1 = U

such that

(1) for i ≥ 2, Ui is a vector bundle of rank [L : Qp](
∑i−1

j=1 nj)ni over Ui−1;

(2) there is a (universal) (ϕ,Γ)-module Ci,Ui over RUi,L equipped with an increasing filtration
(0 = Fil0 ( Fil1 ( · · · ( Fili = Ci,Ui) given by (ϕ,Γ)-submodules over RUi,L which are direct
summands of Ci,Ui as RUi,L-modules;

(3) there are isomorphisms of (ϕ,Γ)-modules over RUi,L: νj : grj Ci,Ui
∼−→ Dj,Ui for j ≤ i.

By construction and [63, Thm. 3.3.8], V is smooth of dimension (recall nP is the Lie algebra over
E of the nilpotent radical NP of P )

dimU + [L : Qp] dimE nP =

r∑
i=1

(
n2
i + [L : Qp]

ni(ni − 1)

2

)
+ [L : Qp]r + [L : Qp] dimE nP .

Now we apply the same argument as in the proof of [17, Thm. 2.6] for the representability of S�(r)
of loc. cit. Let Vadm be the maximal adic open of V such that there exist a vector bundleM over
Vadm and a continuous morphism ρVadm : GalL → AutOVadm

(M) satisfying Drig(ρVadm) ∼= DVadm

(cf. [51, Thm. 1.3]). Note that Vadm is also a rigid space by [56, (1.1.11)]. Let Vadm,� be the
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GLn-torsor of the trivialization of the vector bundle M . Let Vadm,�
0 ⊂ Vadm,� be the admissible

open of points such that ρVadm,�
0

:= ρVadm,� |Vadm,�
0

has image in Γ(Vadm,�
0 ,O+

Vadm,�
0

). Finally let

S0
ρ(Ω,h, α, {%i}) be the admissible open of Vadm,�

0 such that the reduction modulo the maximal

ideal of Ok(x) of ρVadm,�
0

⊗O+

Vadm,�
0

Ok(x) is equal to ρ for x ∈ S0
ρ(Ω,h, α, {%i}). We see that

S0
ρ(Ω,h, α, {%i}) is smooth of dimension

r∑
i=1

(
n2
i + [L : Qp]

ni(ni − 1)

2

)
+ [L : Qp]r + [L : Qp] dimE nP + n2

=
( r∑
i=1

n2
i + n2

)
+ [L : Qp]

n(n− 1)

2
+ [L : Qp]r.

It is then formal to check that S0
ρ(Ω,h, α, {%i}) represents the functor (4.18).

We write S0
ρ := S0

ρ(Ω,h, α, {%i}) for simplicity. Consider the composition:

S0
ρ −→

( r∏
i=1

(Spf Rpcr
ρ (ξi,h

i))rig
)
× Ẑ0,L

ηα,{%i}−−−−→ (SpecZΩ)rig × Ẑ0,L
∼= Z .

where the first map follows from the construction of S0
ρ (note that this map is smooth). Let ∆Ωi

be the universal p-adic differential equation over (SpecZΩi)
rig constructed in § 2.2 and χuniv

i be

the universal character of O×L over Ô×L . We let χuniv
i,S0

ρ
, ∆Ωi,S0

ρ
be the pull-back of χuniv

i , ∆Ωi over S0
ρ .

Let ρuniv
S0 be the universal GalL-representation over S0

ρ . Similarly as in the proof of Proposition
4.2.9 below (using Lemma 4.2.1 and a direct computation of the cohomology of (ϕ,Γ)-modules
over Robba rings with coefficients in finite extensions of E), we can show that

Hom(ϕ,Γ)

(
griDrig(ρuniv

S0
ρ

)⊗RS0
ρ
,L
RS0

ρ ,L

(
(χuniv
i,S0

ρ
)−1
$L

)
,∆Ωi,S0

ρ
⊗RE,L RE,L(zhsi )

)
(4.21)

is locally free of rank 1 over S0
ρ for any i = 1, . . . , r. We let Sρ(Ω,h, α, {%i}) be the fibre product

over S0
ρ for all i of the Grig

m -torsors trivializing the invertible modules in (4.21), which is hence a

(Grig
m )r-torsor over S0

ρ and a reduced rigid analytic space over E of dimension

(
r +

r∑
i=1

n2
i + n2

)
+ [L : Qp]

(n(n− 1)

2
+ r
)
. (4.22)

We have a natural commutative diagram

Sρ(Ω,h, α, {%i}) −−−−→ (Spf Rρ)
rig × (

∏r
i=1(Spf Rpcr

ρ (ξi,h
i))rig)× Ẑ0,L

κα,{%i}

y y
XΩ,h(ρ) −−−−→ (Spf Rρ)

rig ×Z .

(4.23)

The existence of the upper horizontal morphism follows from the construction of Sρ(Ω,h, α, {%i}),
and it is also clear that the composition of the upper horizontal with the right vertical morphism
has image included in XΩ,h(ρ), from which we obtain the left vertical morphism κα,{%i}.
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Let ρuniv be the universal framed Galois deformation of ρ over (Spf Rρ)
rig. And we let ρuniv

XΩ,h(ρ),

∆Ωi,XΩ,h(ρ), χ
univ
i,XΩ,h(ρ) be the pull-back of ρuniv, ∆Ωi , χ

univ
i over XΩ,h(ρ). Applying Corollary A.1.2

in the Appendix, we see that there exist a projective birational morphism

f : X̃Ω,h(ρ) −→ XΩ,h(ρ),

a Zariski closed subset Z ⊂ X̃Ω,h(ρ) disjoint from f−1(UΩ,h(ρ)) and line bundles Li over U :=

X̃Ω,h(ρ)\Z such that DU := f∗Drig(ρuniv
XΩ,h(ρ))|U admits an increasing filtration Fil•DU by (ϕ,Γ)-

submodules over RU ,L such that

(1) FiliDU are direct summands of DU as RU ,L-modules;

(2) one has embeddings griDU ⊗Li ↪−→ ∆Ωi,U ⊗RU ,L
RU ,L((χi,U )$Lz

hsi ) where ∆Ωi,U , χi,U
are the pull-backs of ∆Ωi,XΩ,h(ρ), χ

univ
i,XΩ,h(ρ) over U respectively;

(3) for all x ∈ U , the above embedding restrict to injections (griDU )x ↪→ ∆Ωi,f(x) ⊗Rk(x),L

Rk(x),L(χi,f(x),$Lz
hsi ) and (griDU )x ⊗Rk(x),L

Rk(x),L(χ−1
i,f(x),$L

) is de Rham of Hodge-Tate

weights hi = (hsi−1+1, . . . ,hsi).

Note that, by the proof of Theorem A.1.1, we can and do assume that f factors through a
surjective birational morphism X̃Ω,h(ρ) � XΩ,h(ρ)′ where XΩ,h(ρ)′ denotes the normalization of
XΩ,h(ρ).

Let U0 be the preimage of Z gen via the natural composition

U −→ X̃Ω,h(ρ) −→ XΩ,h(ρ)
ω−−→ Z .

Note that U0 is Zariski-open in U hence also in X̃Ω,h(ρ). It is also clear that f−1(UΩ,h(ρ)) ⊂ U0

(in fact UΩ,h(ρ) is equal to the set of rigid analytic points of f(U0)). Let U1 be the fibre product

over U for all i of the Grig
m -torsors trivializing the line bundle Li. Let x ∈ U , and αi ∈ E×

(enlarging E if necessary) for i = 1, . . . , r such that gri(DU )x ⊗RE,L RE,L(χ−1
i,f(x),$L

unr(α−1
i ))

is étale. Let U1(α)adm be the maximal adic open subset of U1 such that there exist a vector
bundle %i,U1(α)adm over U1(α)adm and a continuous morphism GalL → AutO

U1(α)adm
(%i,U1(α)adm)

satisfying (cf. [51, Thm. 1.3]):

Drig(%i,U1(α)adm) ∼=
(

griDU1 ⊗RU1,L
RU1,L(χ−1

i,U1,$L
unr(α−1

i ))
)
|U1(α)adm .

Since f is projective and XΩ,h(ρ) is quasi-separated, X̃Ω,h(ρ) is quasi-separated. We then deduce
that both U1 and U1(α)adm are also quasi-separated, and hence that U1(α)adm is a rigid analytic
space by [56, (1.1.11)]. It is also clear that any preimage of x lies in U1(α)adm. Let U1(α)adm,�

be the fibre product over U1(α)adm for all i of the GLni-torsors of the trivialization of %i,U1(α)adm

as OU1(α)adm-module. Let U (α)adm,� ⊂ U1(α)adm,� be the admissible open subset of points such
that

%i,U1(α)adm,� : GalL −→ GLni
(
Γ(U (α)adm,�,OU1(α)adm,�)

)
has image in Γ(U (α)adm,�,O+

U1(α)adm,�). Finally, fix some continuous %i : GalL → GLni(kE)

and let U (α, {%i})adm,� ⊂ U (α)adm,� be the open locus such that, for z ∈ U (α, {%i})adm,�,
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%i,U (α,{%i})adm,� ⊗ Ok(z) has reduction (modulo the maximal ideal of Ok(z)) equal to %i for all i.
From the universal property of Sρ(Ω,h, α, {%i}), we obtain a natural morphism

U (α, {%i})adm,� −→ Sρ(Ω,h, α, {%i}).

Moreover, using the universal property of (Spf Rρ)
rig × Ẑ0,L and the “universal” property of

(SpecZΩ)rig as in [26, Prop. 4.3], we see that the following diagram commutes

U (α, {%i})adm,� −−−−→ Sρ(Ω,h, α, {%i})y y
XΩ,h(ρ) −−−−→ (Spf Rρ)

rig ×Z .

By (4.23) and the fact that XΩ,h(ρ) is a reduced closed subspace of (Spf Rρ)
rig ×Z , we deduce

a commutative diagram:

U (α, {%i})adm,� Sρ(Ω,h, α, {%i})

XΩ,h(ρ).

.......................................................................................................... ............

..........................................................
.....
.......
.....

κα,{%i}
....................................................................................................................................................................... ..........

..

(4.24)

By Corollary A.1.2, there exists a Zariski-open and Zariski-dense subset V ⊂ XΩ,h(ρ) disjoint

from f(Z) such that the morphism f induces an isomorphism f−1(V )
∼−→ V . Consider

V (α, {%i})adm,� := f−1(V )×U U (α, {%i})adm,�.

Note that V (α, {%i})adm,� can also be constructed from f−1(V ) in the same way U (α, {%i})adm,�

was constructed from U . Using the same argument as in the first paragraph on page 1598 of [17],
one can prove an isomorphism

V (α, {%i})adm,� ∼−−→ κ−1
α,{%i}

(V )

hence by (4.22), V (α, {%i})adm,� is smooth of dimension (r+
∑r

i=1 n
2
i +n2)+ [L : Qp](n(n−1)

2 + r).
By [59, Thm. 0.2], for any x ∈ V , there exist an admissible open neighbourhood Vx of x in V
and αi, %i such that Vx is contained in the image of V (α, {%i})adm,� → V (for the corresponding
α, {%i}). As the morphism V (α, {%i})adm,� → V is smooth of relative dimension r +

∑r
i=1 n

2
i ,

we deduce that V is equidimensional of dimension n2 + [L : Qp](n(n−1)
2 + r). Since V is Zariski

dense in XΩ,h(ρ), (1) of Theorem 4.2.5 follows.

Proposition 4.2.8. The morphism κα,{%i} : Sρ(Ω,h, α, {%i})→ XΩ,h(ρ) is smooth.

Proof. Let x ∈ Sρ(Ω,h, α, {%i}), y := κα,{%i}(x), B := ÔSρ(Ω,h,α,{%i}),x, A := ÔXΩ,h(ρ),y. Let N :=∑r
i=1 n

2
i + r, it is enough to show that there exist x1, . . . , xN ∈ B such that B ∼= A[[x1, . . . , xN ]].

Let ρx : GalL → GLn(k(x)) be the image of x in (Spf Rρ)
rig. Recall we have a natural isomorphism

Ô(Spf Rρ)rig,ρx
∼= Rρx where Rρx is the universal framed deformation ring of ρx. Let F be the

associated filtration onDrig(ρx) (as in (4.18)), and denote byR0
ρx,F

the local complete k(x)-algebra

which (pro-)represents the functor F 0
ρx,F

(see Corollary 4.1.18 (1)). By Corollary 4.1.18 and
Remark 4.1.19 (note that, as x is sent to Z gen, the hypothesis there are satisfied for F by Lemma
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4.1.12), R0
ρx,F

is a quotient of Rρx and is formally smooth of dimension n2 + [L : Qp](n(n−1)
2 + r).

We have a natural morphism
R0
ρx,F −→ B. (4.25)

Indeed, for an ideal I ⊂ mB (the maximal ideal of B) with dimk(x)B/I < ∞, by the construc-
tion of Sρ(Ω,h, α, %) and by Lemma 4.1.5, we have a deformation of (ρx,F ) over B/I lying in
F 0
ρx,F

(B/I). By the universal property of R0
ρx,F

, this gives a natural morphism R0
ρx,F

→ B/I.
Taking the projective limit over all ideals I, we obtain (4.25). Let %i,x be the image of x in

(Spf Rpcr
%i

(ξi,h
i))rig. Using the fact that Ô(Spf Rpcr

%i
(ξi,h

i))rig,%i,x
(pro-)represents the functor of

framed de Rham deformations of %i,x and using Lemma 4.1.5, one can show that the tangent
map (mB/m

2
B)∨ → F 0

ρx,F
(k(x)[ε]/ε2) of (4.25) is surjective (we leave the details to the reader).

Together with the fact that both B and R0
ρx,F

are formally smooth, we deduce that (4.25) is
formally smooth of relative dimension N . There exist thus x1, . . . , xN ∈ B, such that

B ∼= R0
ρx,F [[x1, . . . , xN ]].

Since R0
ρx,F

is a quotient of Rρx , we deduce from the above isomorphism a surjective morphism

Rρx [[x1, . . . , xN ]] � B. The morphism XΩ,h(ρ) → (Spf Rρ)
rig induces a morphism Rρx → A.

Using the commutative diagram (4.23), we see that the morphism Rρx → B factors through A.
To sum up, we have obtained a surjective morphism

A[[x1, . . . , xN ]] −� B.

Since dimA = dimB − N and B is formally smooth, the above morphism is an isomorphism
if A is integral. But this follows from exactly the same argument as in the first paragraph on
page 1599 of [17] with X�

tri(r), U
�, S�(r) of loc. cit. replaced by XΩ,h(ρ), U (α, {%i})adm,� and

Sρ(Ω,h, α, {%i}) respectively.

We use Proposition 4.2.8 to prove (2) of Theorem 4.2.5 (following the strategy in the proof
of [17, Thm. 2.6]). We also need to use adic spaces. By [56, Prop. 1.7.8], Im(κα,{%i}) is an
adic open subset of (the adic space associated to) XΩ,h(ρ) with rigid analytic points contained
in UΩ,h(ρ). Letting α, {%i} vary, the union of the Im(κα,{%i}) is also an adic open subset U of
XΩ,h(ρ). But it is easy to see that any point of the rigid space UΩ,h(ρ) lies in Im(κα,{%i}) for
some α and {%i}, hence UΩ,h(ρ) coincides with the rigid analytic points of the adic open subset
U of XΩ,h(ρ). We show that U is a Zariski-constructible subset (see [17, Lemma 2.13]). Since

U0 is Zariski-open in X̃Ω,h(ρ) and f is projective, we see by [52, Lemma 2.14] that the set f(U0)
is Zariski-constructible in (the adic space associated to) XΩ,h(ρ). We claim U = f(U0). Indeed,
both sets have the same rigid analytic points, i.e. those in UΩ,h(ρ). Using [52, Lemma 2.15],
the inclusion of adic spaces κ−1

α,{%i}
(f(U0)) ⊆ Sρ(Ω,h, α, {%i}) is an isomorphism, which implies

Im(κα,{%i}) ⊆ f(U0) (as subsets of the adic space associated to XΩ,h(ρ)) and hence U ⊂ f(U0).

On the other hand, using (4.24) and the fact that the image of U (α, {%i})adm,� in U0 forms an
adic open covering of U0 when α, {%i} vary, we can deduce f(U0) ⊂ U . Hence we see that the
adic open subset U of XΩ,h(ρ) is Zariski-constructible. It then follows from [52, Lemma 2.13] that
U is Zariski-open in the adic space associated to XΩ,h(ρ), hence a fortiori UΩ,h(ρ) is Zariski-open
in the rigid space XΩ,h(ρ). This concludes the proof of (2) of Theorem 4.2.5.

Finally, by [17, Lemma 5.8] (applied to Sρ(Ω,h, α, {%i}) → UΩ,h(ρ) → Z ), to show (3) of
Theorem 4.2.5, i.e. the smoothness of the morphism ω : UΩ,h(ρ)→ Z , it is sufficient to show that
the morphism Sρ(Ω,h, α, {%i}) → Z is smooth. From the construction of Sρ(Ω,h, α, {%i}), this
is a consequence of the following proposition.
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Proposition 4.2.9. The morphism η : (Spf Rpcr
%i

(ξi,h
i))rig → (SpecZΩi)

rig of [26, Prop. 4.3]
which sends a deformation %i to r(%i) is smooth.

Proof. Since both source and target of η are smooth, we only need to show that the tangent
map dηx : T(Spf Rpcr

%i
(ξi,h

i))rig,x → T(SpecZΩi
)rig,η(x) is surjective for any x ∈ (Spf Rpcr

%i
(ξi,h

i))rig,

where TY,z denotes the tangent space of Y at z for a point z of a rigid space Y . For x ∈
(Spf Rpcr

%i
(ξi,h

i))rig, let %i,x be the associated GalL-representation and ∆i,η(x) be the p-adic differ-

ential equation associated to η(x). For a (ϕ,Γ)-module D, we put D(hsi) := D⊗RE,LRE,L(zhsi ).
One easily computes for any point x

dimk(x)H
i
(ϕ,Γ)

(
Drig(%i,x)∨ ⊗Rk(x),L

∆i,η(x)(hsi)
)

=


1 i = 0

n2
i [L : Qp] + 1 i = 1

0 i = 2.

By Lemma 4.2.1, we deduce in particular that Hom(ϕ,Γ)(Drig(%univ
i ), η∗∆Ωi(hsi)) is an invertible

sheaf over (Spf Rpcr
%i

(ξi,h
i))rig. Now fix x ∈ (Spf Rpcr

%i
(ξi,h

i))rig and let

ψ ∈ Spec k(x)[ε]/ε2 −→ (SpecZΩi)
rig

be an element in T(SpecZΩi
)rig,η(x). Let ∆ψ := ψ∗∆Ωi . By the proof of Proposition 4.1.4, there

exists a deformation %̃i,x of %i,x over k(x)[ε]/ε2 such that one has an embedding of (ϕ,Γ)-modules
over RSpec k(x)[ε]/ε2,L:

 : Drig(%̃i,x) ↪→ ∆ψ(hsi).

As ∆ψ is de Rham, so is %̃i,x (recall they have the same rank over Rk(x),L). Thus %̃i,x corresponds
to an element

ψ′ : Spec k(x)[ε]/ε2 −→ (Spf Rpcr
%i

(ξi,h
i))rig

in the tangent space at x. Let us prove that dηx maps ψ′ to ψ, or equivalently η ◦ ψ′ = ψ.
Consider ∆η◦ψ′ := (η ◦ψ′)∗∆Ωi(hsi). Using Lemma 4.2.1, a local generator of the invertible sheaf
Hom(ϕ,Γ)(Drig(%univ

i ), η∗∆Ωi(hsi)) induces by pull-back via ψ′ a morphism

ι : Drig(%̃i,x) −→ (η ◦ ψ′)∗∆Ωi(hsi)

which is a generator of the k(x)[ε]/ε2-module Hom(ϕ,Γ)(Drig(%̃i,x),∆η◦ψ′). Since Drig(%i,x) is
irreducible, it is not difficult to see that ι has to be injective. From the two injections , ι, by
comparing the Hodge-Tate weights and using [6, Thm. A], we can deduce ∆η◦ψ′ ∼= ∆ψ. By the

discussion in § 2.2, we see that there exists a bijection T(SpecZΩi
)rig,η(x)

∼−→ k(x), f 7→ af such

that f∗∆Ωi
∼= ∆i,η(x) ⊗Rk(x),L

Rk(x)[ε]/ε2,L(unr(1 + afε)). Hence, for ∗ ∈ {ψ, η ◦ ψ′}, there is
a∗ ∈ k(x) such that ∆∗ ∼= ∆i,η(x)⊗Rk(x),L

Rk(x)[ε]/ε2,L(unr(1+a∗ε)). By the proof of Lemma 4.1.2,
∆ψ
∼= ∆η◦ψ′ implies unr(1 + aψε) = unr(1 + aη◦ψ′ε), which further implies aψ = aη◦ψ′ and hence

η ◦ ψ′ = ψ. The proposition follows.

We end this paragraph by the following proposition on Sen weights which will be used in § 6.4.

Proposition 4.2.10. Let x = (ρ, x, χ) ∈ XΩ,h(ρ). Then for τ ∈ ΣL, the set {wt(χi)τ +hji,τ | i =
1, . . . , r, ji = si−1 + 1, . . . , si} is the set of the Sen τ -weights of ρ.
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Proof. Since UΩ,h(ρ) is Zariski-open and Zariski-dense in XΩ,h(ρ) and the Sen τ -weights are
analytic functions on XΩ,h(ρ) (cf. [60, Def. 6.2.11]), we only need to prove the statement for points
in UΩ,h(ρ). Since any point of UΩ,h(ρ) lies in the image of κ(α, {%i}) for certain α, {%i}, using the
commutative diagram (4.23) we are reduced to prove the statement for points in Sρ(Ω,h, α, {%i}).
For such a point x = (ρ, %, χ,Fil•, ν), by definition, the filtration Fil•Drig(ρ) satisfies griDrig(ρ) ∼=
Drig(%i,x)⊗Rk(x),L

Rk(x),L(χi unr(αi)). We see that {wt(χi)τ + hj,τ}j=si−1+1,...,si is the set of Sen
τ -weight of griDrig(ρ). The proposition follows.

4.3 Potentially crystalline deformation spaces

We study a variant of potentially crystalline deformation spaces, and we show it admits a cell
decomposition with respect to Schubert cells of GLn /P . By studying the embeddings of the cells
into our (various) Bernstein paraboline varieties, we prove the existence of local companion points
on the Bernstein paraboline varieties for generic potentially crystalline representations.

We first recall some facts on inertial types. Let d ∈ Z≥1, ξ : IL → GLd(E) a cuspidal inertial
type and rd an absolutely irreducible Weil-Deligne representation over E such that rd|IL ∼= ξ.
Assume E contains all d-th roots of unity µd. Let L′ be a finite extension of L such that the action
of IL on ξ factors through the inertia subgroup I(L′/L) ⊂ Gal(L′/L). Using rd ∼= rd⊗E unr(α)⇒
∧drd ⊗E unr(αd) = ∧drd, there exists d0|d such that {α ∈ E× | rd ∼= rd ⊗E unr(α)} = µd0 . Note
that d0 only depends on the inertial type ξ.

Let ξ0 ⊆ ξ be an absolutely irreducible subrepresentation, and fix F ∈ WL a lifting of the
arithmetic Frobenius. We denote by F (ξ0) the conjugate of ξ0 by F (so it is an absolutely
irreducible representation of I(L′/L)). The following lemma follows from [26, Lemma 4.4].

Lemma 4.3.1. The integer d0 is the minimal positive integer such that F d0(ξ0) ⊆ ξ0. Moreover,
we have ξ ∼= ⊕d0−1

i=0 F i(ξ0) as I(L′/L)-representations and the F i(ξ0), i = 0, . . . , d0−1 are pairwise
non-isomorphic.

We fix a basis e = (e0, . . . , ed0−1) of ξ such that ei is a basis of ξi := F i(ξ0). Let r1, r2 be
two Weil-Deligne representations of inertial type ξ and fix I(L′/L)-equivariant isomorphisms for
i ∈ {1, 2}:

Ee = ξ
∼−−→ ri. (4.26)

Consider the operators ri(F ) acting on (the underlying vector space of) ξ via the above isomor-
phisms. Then r2(F ) ◦ r1(F )−1 : ξ → ξ is I(L′/L)-equivariant, hence r2(F ) ◦ r1(F )−1 preserves ξi
for i = 0, . . . , d0 − 1 and is equal to a scalar αi ∈ E× when restricted to ξi (note that αi depends
on the choices of the isomorphisms (4.26)). Let α :=

∏
i∈Z/d0

αi, we have r2(F d0)◦r1(F d0)−1 = α
on each ξi hence on ξ. Moreover α is independent of the choice of the isomorphisms (4.26).

Lemma 4.3.2. Let β ∈ E be a d0-th root of α (enlarging E if necessary), then r2
∼= r1⊗E unr(β).

Proof. Since r2 and r1 have the same cuspidal inertial type, there exists β′ such that r2
∼=

r1 ⊗E unr(β′). Note that β′ is unique up to multiplication by an element in µd0 . It follows that
r2(F d0) = r1(F d0)(β′)d0 , hence (β′)d0 = α.

We now go back to the setting of § 4.2. We let Ω0 be the Bernstein component of GLn(L)
associated to the cuspidal Bernstein component Ω of LP (L), i.e. Ω0 is the Bernstein component
with cuspidal type (LP (L), πLP

∼= �r
i=1πi). Let ZΩ0 be the centre of Ω0, and ξi be the inertial
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type of Ωi for i = 0, . . . , r (note that ξ0 is different here from the ξ0 of Lemma 4.3.1). We
have thus ξ0

∼= ⊕ri=1ξi. Moreover, by [33, Prop. 4.1] (see also [26, § 3.6]), there is a one-to-one
correspondence between closed points of SpecZΩ0 and semi-simple Weil-Deligne representations
r of inertial type ξ0 (so N = 0 on r and r ∼= ⊕ri=1ri for certain absolutely irreducible Weil-Deligne
representations ri of inertial type ξi). Let WΩ := {w ∈ Sr | Ωi = Ωw−1(i), ∀ i = 1, . . . , r}. By [33,
Prop. 2.1], there is a natural isomorphism of E-algebras

ZWΩ
Ω

∼−−→ ZΩ0 .

On closed points, the corresponding map SpecZΩ → (SpecZΩ)/WΩ
∼= SpecZΩ0 sends the r-tuple

(r1, . . . , rr) to ⊕ri=1ri.

Let {ξ̃1, . . . , ξ̃s} be the set of isomorphic classes of {ξ1, . . . , ξr}, and for j ∈ {1, . . . , s} let
mj := |{i | ξi ∼= ξ̃j}|. Thus

∑s
j=1mj = r, WΩ

∼=
∏s
j=1 Smj , and we have an isomorphism

ξ0
∼= ⊕sj=1ξ̃

⊕mj
j . By Lemma 4.3.1, we have a decomposition ξ̃j ∼= ⊕k∈Z/djZξ̃j,k for some integer

dj ≥ 1 dividing dimE ξ̃j , where ξ̃j,k := F k(ξ̃j) for j = 1, . . . , s and k ∈ Z/djZ are pairwise non-
isomorphic absolutely irreducible representations of I(L′/L) over E (note that distinct inertial
types do not have any common irreducible constituents). Let fj := dimE ξ̃j,0 (= dimE ξ̃j,k for

all k ∈ Z/djZ). Hence
∑s

j=1mjdjfj = n,
∑s

j=1mj = r, djfj = ni if ξi ∼= ξ̃j and we have a
decomposition

ξ0
∼=

s⊕
j=1

( ⊕
k∈Z/djZ

(
ξ̃j,k ⊕ · · · ⊕ ξ̃j,k︸ ︷︷ ︸

mj

))
. (4.27)

In order to describe a Weil representation of inertial type ξ0 in a more concrete way, we now fix
a basis of ξ0 with respect to the decomposition (4.27):

e = (ej,k) j=1,...,s
k∈Z/djZ

= (ej,k,i) j=1,...,s
k∈Z/djZ
i=1,...,mj

where each (ej,k,i) for i = 1, . . . ,mj means a choice of a basis on the fj-dimensional E-vector

space ξ̃j,k. We choose these basis so that the following conditions are satisfied:

Condition 4.3.3. (1) For 1 ≤ i, i′ ≤ mj, the E-linear map ξ̃j,k → ξ̃j,k sending the basis ej,k,i to
the basis ej,k,i′ is I(L′/L)-equivariant.

(2) The E-linear map ιj,k,i : ξ̃j,k → ξ̃j,k+1 sending the basis ej,k,i to the basis ej,k+1,i satisfies

ιj,k,i(gv) = (FgF−1)ιj,k,i(v)

for all v ∈ ξ̃j,k and g ∈ I(L′/L).

Condition (1) is equivalent to the fact that, for any element g ∈ I(L′/L), the matrices of g
in the basis ej,k,i and ej,k,i′ are the same. Condition (2) is equivalent to the fact that, for any
element g ∈ I(L′/L), the matrix of g in the basis ej,k,i is equal to the matrix of FgF−1 in the
basis ej,k+1,i.

We fix a semi-simple Weil-Deligne representation r0
∼= ⊕sj=1r̃

⊕mj
j such that r̃j is of inertial

type ξ̃j for all j. So r0 is of inertial type ξ0 and N = 0 on r0. We fix an isomorphism ι0 of
I(L′/L)-representations:

ι0 : 〈e〉 = ξ0
∼−−→ r0
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where the notation 〈e〉 means the E-vector spaces generated by the basis e. The F -action on r0

then gives an endomorphism r0(F ) on ξ0 which sends ξ̃
⊕mj
j,k to ξ̃

⊕mj
j,k+1. Modifying the isomorphism

ι0 if necessary and by condition (2) in our choice of the basis e of ξ0, we can and do assume

ej,k+1,i = r0(F )ej,k,i for j = 1, . . . , s and k = 0, . . . , dj − 2. (4.28)

Let r be an arbitrary Weil-Deligne representation of inertial type ξ0 (with N possibly non-zero
on r), and fix again an I(L′/L)-equivariant isomorphism 〈e〉 = ξ0

∼−−→ r. The F -action on r gives

another endomorphism r(F ) on ξ0 sending ξ̃
⊕mj
j,k to ξ̃

⊕mj
j,k+1. The endomorphism r(F ) ◦ r0(F )−1 :

of ξ0 is I(L′/L)-equivariant, hence preserves each ξ̃
⊕mj
j,k for j = 1, . . . , s and k ∈ Z/djZ. Since

EndI(L′/L)(ξ̃j,k) ∼= E, the restriction of r(F )◦r0(F )−1 to ξ̃
⊕mj
j,k is given in the basis (ej,k,i)i=1,...,mj

by a matrix Aj,k which lies in the image GLmj (EIdfj ) of

GLmj (E) ↪−→ GLmjfj (E), (auv)1≤u,v≤mj 7→ (auvIdfj )1≤u,v≤mj (4.29)

where Idfj ∈ GLfj (E) is the identity matrix. Moreover, for j = 1, . . . , s and k = 0, . . . , dj − 2, we

see by (4.28) that Aj,k is actually the matrix of the morphism r(F ) : ξ̃
⊕mj
j,k → ξ̃

⊕mj
j,k+1 in the basis

ej,k and ej,k+1. Hence the matrix of the endomorphism r(F ) ◦ r0(F )−1 in the basis e is

A = diag
(
{Aj,k} j=1,...,s

k∈Z/djZ

)
∈ GLn(E). (4.30)

The converse also holds: given a matrix A′ = diag({A′j,k}) as in (4.30) with A′j,k ∈ GLmj (EIdfj ),
one can associate a Weil-Deligne representation of inertial type ξ0 with N = 0 by letting F act
on the basis e by A′ ◦ r0(F ).

Now let Bj,k be the preimage of Aj,k via (4.29) and put Bj := Bj,0Bj,1 · · ·Bj,dj−1 ∈ GLmj (E).

Using again (4.28), we see that the image Aj of Bj via (4.29) is the matrix of r(F dj ) ◦
r0(F−dj )

∣∣
ξ̃
⊕mj
j,dj−1

in the basis ej,dj−1 of ξ̃
⊕mj
j,dj−1. Since both r(F dj ) and r0(F−dj ) preserve ξ̃

⊕mj
j,dj−1

(actually they preserve ξ̃
⊕mj
j,k for all k = 0, . . . , dj − 1), the conjugacy class of Aj is independent

of the choice of the basis of ξ̃
⊕mj
j,dj−1. We call r generic if rss ∼= ⊕ri=1ri satisfies ri 6= ri′ and

ri 6= ri′ ⊗E unr(qL) for all i 6= i′. In particular, if r is generic, then N = 0 on r and r ∼= rss. Note
that all r of inertial type ξ0 are generic if Ωi 6= Ωi′ for all i 6= i′.

Lemma 4.3.4. With the above notation, r is generic if and only if, for any j = 1, . . . , s, the

eigenvalues αj,1, . . . , αj,mj of Bj satisfy αj,i 6= αj,i′, and αj,i 6= αj,i′q
dj
L for i 6= i′.

Proof. Assume r is generic, in particular r ∼= ⊕sj=1⊕
mj
i=1rj,i. Let βj,i ∈ E× be such that rj,i ∼= r̃j⊗E

unr(βj,i). We then deduce that there exists a basis e′j,dj−1 of ξ̃
⊕mj
j,dj−1 such that the corresponding

matrix of the operator r(F dj ) ◦ r0(F−dj )
∣∣
ξ̃
⊕mj
j,dj−1

is equal to

diag(β
dj
j,1, . . . , β

dj
j,1︸ ︷︷ ︸

fj

, . . . , β
dj
j,mj

. . . , β
dj
j,mj︸ ︷︷ ︸

fj

).

Thus {αj,1, . . . , αj,mj} = {βdjj,1, . . . , β
dj
j,mj
}, and the “only if” part then follows from definition of

genericity. Now assume αj,1, . . . , αj,mj satisfy the conditions in the lemma, in particular, are
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distinct. By comparing dimensions, we easily see that, for each αj,i, the subspace rj,i,dj−1 of

ξ̃
⊕mj
j,dj−1 on which r(F dj ) ◦ r0(F−dj ) acts via αj,i is isomorphic to ξ̃j,dj−1. Any subrepresentation

ξ̃j,dj−1 in ξ̃
⊕mj
j,dj−1 is preserved by r0(F−dj ). We deduce then rj,i,dj−1 is preserved by r(F dj ). Under

the r(F )-action, rj,i,dj−1 then generates an irreducible Weil-Deligne subrepresentation rj,i of r of

inertial type ξ̃j . By Lemma 4.3.2, rj,i ∼= r̃j ⊗E unr(βj,i) for any dj-th root βj,i of αj,i. By the
conditions on {αj,i}, we see that r ∼= ⊕sj=1 ⊕

mj
i=1 rj,i and that r is generic.

Fix h = (hi,τ )i=1,...,n
τ∈ΣL

∈ Zn[L:Qp] with hi,τ > hi+1,τ . Consider Xpcr
ρ (ξ0,h) := (Spf Rpcr

ρ (ξ0,h))rig.

By [26, Thm. 4.1], there is a natural morphism

Xpcr
ρ (ξ0,h) −→ (SpecZΩ0)rig ∼= (SpecZΩ)rig/WΩ

which, pointwise, sends ρ to the semi-simple Weil-Deligne representation associated to ρ. Let

X̃pcr
ρ (ξ0,h) := Xpcr

ρ (ξ0,h)×(SpecZΩ0
)rig (SpecZΩ)rig,

so a point of X̃pcr
ρ (ξ0,h) is of the form (ρ, (ri)) with r(ρ)ss ∼= ⊕ri=1ri. In particular, the r-tuple

(ri) induces an Ω-filtration on Drig(ρ). Let Upcr
ρ (ξ0,h) (resp. Ũpcr

ρ (ξ0,h)) be the set of points

ρ ∈ Xpcr
ρ (ξ0,h) (resp. (ρ, (ri)) ∈ X̃pcr

ρ (ξ0,h)) such that r(ρ) is generic.

Proposition 4.3.5. The set Upcr
ρ (ξ0,h) is Zariski-open and Zariski-dense in Xpcr

ρ (ξ0,h).

Proof. Let U be an arbitrary (non-empty) connected admissible affinoid open of Xpcr
ρ (ξ0,h). A

major part of the proof is to show Upcr
ρ (ξ0,h) ∩ U is Zariski-open in U . We will show that a

certain torsor Ũ over U admits a smooth morphism to
(∏

j=1,...,s
k∈Z/djZ

GLmj
)
× ResLQp(GLn /B) (cf.

(4.36)), where, roughly speaking, the morphism to the first factor sends ρ to the matrices {Bj,k}
associated to r(ρ) as above, and the morphism to the second factor sends ρ to the Hodge filtration
on DdR(ρ). The torsor that we will use comes from choices of basis on the corresponding objects.

Recall that by [63] we have the following data:

(1) a rank n locally free L′0⊗QpOU ∼=
∏
τ∈ΣL′0

OU -module DFU ∼=
∏
τ∈ΣL′0

DFU,τ equipped with

a semi-linear action of (Gal(L′/L), ϕ);

(2) a decreasing filtration Fil• =
∏
τ∈ΣL

Fil•τ on the rank n locally free L⊗Qp OU ∼=
∏
τ∈ΣL

OU -

module DU := (DFU ⊗L′0L
′)Gal(L′/L) ∼=

∏
τ∈ΣL

DU,τ by L ⊗Qp OU -submodules which are
direct summands of DU as OU -module such that (letting −h0,τ = −∞ and −hn+1,τ = +∞)

rkOU Filiτ DU,τ = n− j + 1, for −hj−1,τ < i ≤ −hj,τ .

Moreover, for any point x ∈ U , the specialization of (DFU ,DU ) at x is equal to (Dpst(ρx), DdR(ρx))
where ρx is the associated GalL-representation. Shrinking U , we can and do assume that DFU
and DU are free over OU . We fix an embedding τ0 : L0 ↪→ E and put τi := τ0 ◦Frob−i where Frob
is the (absolute arithmetic) Frobenius on the Witt vectors. Then we have a decomposition

L′0 ⊗Qp E
∼−−→

⊕
i∈Z/[L0:Qp]Z

( ⊕
τ∈ΣL′0
τ |L0

=τi

E

)
.
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and a corresponding decomposition DFU ∼= ⊕i∈Z/[L0:Qp]Z DFU,i, where DFU,i is free over L′0⊗L0,τi

OU and preserved by Gal(L′/L). Shrinking U and enlarging E if necessary (and using H i(H,M) =
0 for all i > 0, finite groups H and H-modules M over Q), we can and do assume that there is
a semi-linear Gal(L′/L)-representation V0, free of rank n over L′0 ⊗L0,τ0 E, such that we have a
Gal(L′/L)-equivariant isomorphism

V0 ⊗E OU
∼−−→ DFU,0 . (4.31)

For i ∈ Z/[L0 : Qp]Z, let Fri : L′0 ⊗L0,τ0 E → L′0 ⊗L0,τ0◦Frob−i E be the isomorphism of algebras

sending a⊗ b to Frobi(a)⊗ b. The morphism Fri is Gal(L′/L)-equivariant, where Gal(L′/L) acts
on both sides via its natural action on the factor L′0. Put

Vi := V0 ⊗L′0⊗L0,τ0
E,Fri (L′0 ⊗L0,τi E), (4.32)

which is a semi-linear Gal(L′/L)-representation over L′0 ⊗L0,τi E. The action of ϕi on DFU sends

DFU,0 to DFU,i. For i = 0, . . . , [L0 : Qp] − 1, the composition V0 ⊗E OU
∼−→ DFU,0

ϕi−→ DFU,i
induces an L′0 ⊗L0,τi OU -semilinear Gal(L′/L)-equivariant isomorphism

Vi ⊗E OU
∼−−→ DFU,i . (4.33)

For each τ ∈ ΣL′0
with τ |L0 = τ0, we have V0,τ

∼= ξ0 as I(L′/L)-representation over E. The
basis e of ξ0 (that we previously fixed) then gives a basis eτ = (eτ,1, . . . , eτ,n) of V0,τ satisfying
Condition 4.3.3 for the I(L′/L)-action. Then (eτ )τ |L0

=τ0 form a basis of V0 over E. Choosing the
basis (eτ )τ |L0

=τ0 is the same as choosing a basis of V0, formed by bases of V0,τ for each τ on which

the I(L′/L)-action satisfies Condition 4.3.3. For i = 1, . . . , n, let ẽi := (eτ,i)τ |L0
=τ0 ∈ V0. Then

ẽ = (ẽ1, . . . , ẽn) is a basis of V0 over L′0 ⊗L0,τ0 E, which also gives a basis of Vi over L′0 ⊗L0,τi E
by − ⊗ 1 (see (4.32)). For i ∈ Z/[L0 : Qp]Z, there exists thus Pi ∈ GLn(L′ ⊗L0,τi E) such that
(e1, . . . , en) := (ẽ1, . . . , ẽn)Pi is a basis of (Vi ⊗L′0 L

′)Gal(L′/L) over L ⊗L0,τi E. For τ ∈ ΣL and
i ∈ Z/[L0 : Qp]Z such that τ |L0 = τi, we let eτ := (e1,τ , . . . , en,τ ) be the τ -factor of e, which is a
basis of

(
(Vi ⊗L′0 L

′)Gal(L′/L)
)
τ

over E.

Let G be the affine subgroup AutGal(L′/L)(V0) of Aut(V0) ∼= Res
L′0
L0

GLn×SpecL0,τ0 SpecE where

“Aut” means L′0 ⊗L0,τ0 E-linear bijections. Note that G is smooth by Cartier’s theorem. Let Ũ
be the G -torsor over U of Gal(L′/L)-equivariant isomorphisms in (4.31). Define

DF
Ũ

=
⊕

i∈Z/[L0:Qp]Z

DF
Ũ ,i

:=
⊕

i∈Z/[L0:Qp]Z

DFU,i⊗OUOŨ

equipped with the action of (ϕ,Gal(L′/L)) by extension of scalars. By definition, we have a
Gal(L′/L)-equivariant isomorphism ofO

Ũ
-modules V0⊗EOŨ

∼−→ DF
Ũ ,0

, which induces Gal(L′/L)-

equivariant isomorphisms Vi ⊗E OŨ
∼−→ DF

Ũ ,i
for i ∈ Z/[L0 : Qp]Z similarly as for (4.33). These

isomorphisms then induce isomorphisms

(Vi ⊗L′0 L
′)Gal(L′/L) ⊗E OŨ

∼−−→ (DF
Ũ ,i
⊗L′0L

′)Gal(L/L) (4.34)

(use that the left hand side of (4.34) is a direct summand of (Vi⊗L′0L
′)⊗EOŨ ∼= DF

Ũ ,i
⊗L′0L to see

that (4.34) is an isomorphism). Let D
Ũ

:= DU ⊗OU OŨ ∼= (DF
Ũ
⊗L′0L

′)Gal(L′/L), and D
Ũ ,τ

be its

τ -factor for τ ∈ ΣL. Using the isomorphism (4.34), we obtain a basis eτ⊗1 of D
Ũ ,τ

over O
Ũ

for all
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τ ∈ ΣL. We denote by Fil•τ the filtration on D
Ũ ,τ

induced by the corresponding filtration on DU,τ
by extension of scalars. With respect to the basis eτ ⊗ 1, Fil•τ gives a flag F

Ũ ,τ
∈ (GLn /B)(O

Ũ
).

Taking all embeddings τ ∈ Στ , we thus obtain a morphism

Ũ −→ ResLQp(GLn /B). (4.35)

We let F ∈WL act on DF
Ũ ,0

via ϕ−[L0:Qp] ◦F , where F denotes the image of F in Gal(L′/L).
We have a decomposition

DF
Ũ ,0
∼=

⊕
τ∈ΣL′0
τ |L0

=τ0

DF
Ũ ,τ

and each DF
Ũ ,τ

is preserved by F and I(L′/L). For any τ ∈ ΣL′0
such that τ |L0 = τ0, DF

Ũ ,τ

equipped with F and the action of I(L′/L) gives a Weil-Deligne representation of WL over O
Ũ

(which factors through WL/IL′ and is independent of the choice of τ). Using (4.31), the action
of F on DF

Ũ ,τ
induces an operator denoted by r

Ũ
(F ) on V0,τ ⊗E OŨ . On the other hand, we

have the operator r0(F ) on V0,τ
∼= ξ0 given as in the discussion above (4.28), and we still denote

by r0(F ) its extension of scalars on V0,τ ⊗E OŨ . Similarly as in the discussion above (4.29) and
using

HomI(L′/L)

(
ξ̃j,k ⊗E OŨ , ξ̃j′,k′ ⊗E OŨ

)
=

{
O
Ũ

j = j′, k = k′

0 otherwise,

we see that the operator r
Ũ

(F ) ◦ r0(F )−1 corresponds to a matrix A
Ũ

= diag({A
Ũ ,j,k
} j=1,...,s
k∈Z/djZ

)

where A
Ũ ,j,k

is the matrix of the O
Ũ

-linear endomorphism

r
Ũ

(F ) ◦ r0(F )−1 : ξ̃
⊕mj
j,k ⊗E OŨ

∼−−→ ξ̃
⊕mj
j,k ⊗E OŨ

and is the image of a matrix B
Ũ ,j,k

∈ GLmj (OŨ ) via the morphism GLmj (OŨ ) ↪→ GLmjfj (OU ),

(auv) 7→ (auvIfj ). The matrices {B
Ũ ,j,k
} give rise to a morphism

Ũ −→
∏

j=1,...,s
k∈Z/djZ

GLmj .

Together with (4.35), we finally obtain a morphism

f : Ũ −→

( ∏
j=1,...,s
k∈Z/djZ

GLmj

)
× ResLQp(GLn /B). (4.36)

We prove that f is smooth. Since both source and target are smooth over E (using [63,
Thm. 3.3.8] for the source), we only need to show that the tangent map of f at any point of Ũ is
surjective. Let x ∈ Ũ and f(x) = ({Bx,j,k}, {Fx,τ}). Let u be an element in the tangent space of
the right hand side of (4.36) at f(x), and denote the corresponding element by:

({B̃x,j,k}, {F̃x,τ}) ∈

(( ∏
j=1,...,s
k∈Z/djZ

GLmj

)
× ResLQp(GLn /B)

)
(k(x)[ε]/ε2).
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Let Ã := diag({Ãx,j,k} j=1,...,s
k∈Z/djZ

) ∈ GLn(k(x)[ε]/ε2) where Ãx,j,k is the image of B̃x,j,k via

GLmj (k(x)[ε]/ε2) ↪→ GLmjfj (k(x)[ε]/ε2), (auv) 7→ (auvIfj ). We use Ã to construct a Deligne-

Fontaine module D̃Fx over L′0 ⊗Qp k(x)[ε]/ε2. Let D̃Fx := (⊕i∈Z/[L0:Qp]ZVi) ⊗E k(x)[ε]/ε2, we

have a decomposition D̃Fx ∼= ⊕τ∈ΣL′0
D̃Fx,τ . To get a operator ϕ on the whole D̃Fx, we only need

to construct ϕi : D̃Fτ → D̃Fτ◦Frob−i for one τ ∈ ΣL′0
and for all i = 1, . . . , [L′0 : Qp]. Recall

we have fixed a basis eτ of each D̃Fτ . For i = 1, . . . , [L′0 : L0], let Mi ∈ GLn(E) such that
F (eτ,1, . . . , eτ,n) = (eτ◦Frob−iL0

,1, . . . , eτ◦Frob−iL0
,n)Mi and put:

ϕ[L0:Qp]i : D̃Fτ −→ D̃Fτ◦Frob−iL0

, (eτ,1, . . . , eτ,n) 7−→
(
eτ◦Frob−iL0

,1, . . . , eτ◦Frob−iL0
,n

)
Mi(ÃM0)−i.

For i = 1, . . . , [L′0 : Qp], writing i = i0[L0 : Qp] + j with 0 ≤ j < [L0 : Qp], we define

ϕi : D̃Fτ −→ D̃Fτ◦Frob−i , (eτ,1, . . . , eτ,n) 7−→ (eτ◦Frob−i,1, . . . , eτ◦Frob−i,n)Mi0(ÃM0)−i0 .

Thus D̃Fx equipped with the (Gal(L′/L), ϕ)-action is a Deligne-Fontaine module over L′0 ⊗Qp
k(x)[ε]/ε2 and D̃Fx ∼= x∗DF

Ũ
≡ Dpst(ρx) (mod ε). Put:

D̃x := (D̃Fx ⊗L′0 L
′)Gal(L′/L) ∼=

⊕
τ∈ΣL

D̃x,τ .

For each τ , eτ form a basis of D̃x,τ over k(x)[ε]/ε2. Using the basis eτ , we associate to the flag

F̃x,τ a decreasing filtration Filiτ on D̃x,τ satisfying

rkk(x)[ε]/ε2(Filiτ D̃x,τ ) = n− j + 1 for −hj−1,τ < i ≤ −hj,τ .

We obtain a filtered (ϕ,Gal(L′/L))-module (D̃Fx, D̃x) which is a deformation of

(Dpst(ρx), DdR(ρx)) over k(x)[ε]/ε2. Thus (D̃Fx, D̃x) is weakly admissible, and by [32] is iso-
morphic to (Dpst(ρ̃x), DdR(ρ̃x)) for a certain deformation ρ̃x of ρx over k(x)[ε]/ε2. By choosing
an appropriate basis of ρ̃x over k(x)[ε]/ε2, we see that(

ρ̃x, V0 ⊗E k(x)[ε]/ε2 ∼−−→ DF(ρ̃x)0
∼= D̃Fx,0

)
gives an element in the tangent space of Ũ at x which is sent to u.

The conditions in Lemma 4.3.4 cut out a smooth Zariski-open and Zariski-dense subspace of∏
j=1,...,s
k∈Z/djZ

GLmj which, by taking fibre product with ResLQp(GLn /B), gives a smooth Zariski-open

and Zariski-dense subspace of
(∏

j=1,...,s
k∈Z/djZ

GLmj
)
×ResLQp(GLn /B). The proposition then follows

by the same argument as in the last paragraph of the proof of [18, Lemma 2.4].

Corollary 4.3.6. The set Ũpcr
ρ (ξ0,h) is Zariski-open and Zariski-dense in X̃pcr

ρ (ξ0,h).

Proof. Let U , Ũ be as in the proof of Proposition 4.3.5. For each point x = (Bj,k) of∏
j=1,...,s
k∈Z/djZ

GLmj we can associate a Weil-Deligne representation rx of inertial type ξ0 with N = 0

as in the discussion below (4.30). By the same argument as in [26, Prop. 4.3], there exists a
unique morphism f :

∏
j=1,...,s
k∈Z/djZ

GLmj → (SpecZΩ0)rig such that rf(x)
∼= rss

x and the composition
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Ũ → U → Xpcr
ρ (ξ0,h) → (SpecZΩ0)rig factors through

∏
j=1,...,s
k∈Z/djZ

GLmj . Hence (4.36) induces a

smooth morphism

Ũ ×(SpecZΩ0
)rig (SpecZΩ)rig −→

(( ∏
j=1,...,s
k∈Z/djZ

GLmj

)
×(SpecZΩ0

)rig (SpecZΩ)rig

)
×ResLQp(GLn /B).

It follows from Lemma 4.3.4 (see also the last paragraph in the proof of Proposition 4.3.5) that
the image of the generic points of Ũ ×(SpecZΩ0

)rig (SpecZΩ)rig is Zariski-dense and Zariski-open

in (
∏

j=1,...,s
k∈Z/djZ

GLmj )×(SpecZΩ0
)rig (SpecZΩ)rig. Since

Ũ ×(SpecZΩ0
)rig (SpecZΩ)rig −→ U ×(SpecZΩ0

)rig (SpecZΩ)rig

is smooth and surjective, we deduce that the generic points are Zariski-dense and Zariski-open in
U ×(SpecZΩ0

)rig (SpecZΩ)rig.

By the same argument as for [18, Lemma 2.2], we have

Proposition 4.3.7. The rigid space X̃pcr
ρ (ξ0,h) is reduced.

Let x = (ρx, (ri,x)) ∈ Ũpcr
ρ (ξ0,h). The Ω-filtration associated to (ri,x) induces an Ω-filtration

on DF(ρx), to which we can associate wx ∈ W P
max,L as in § 2.3 (where wx is denoted wF ). Recall

that wx measures the relative position of the Hodge filtration and the Ω-filtration on DdR(ρx).
For w ∈ W P

max,L, let V pcr
ρ (ξ0,h)w be the set of points x = (ρx, (ri,x)) in Ũpcr

ρ (ξ0,h) satisfying
wx = w.

Proposition 4.3.8. (1) The set V pcr
ρ (ξ0,h)w0 is Zariski-open and Zariski-dense in Ũpcr

ρ (ξ0,h)

(hence in X̃pcr
ρ (ξ0,h)).

(2) For w ∈ W P
max,L, V pcr

ρ (ξ0,h)w is locally Zariski-closed in Ũpcr
ρ (ξ0,h). Moreover, if w′ ∈

W P
max,L and w′ ≤ w, then V pcr

ρ (ξ0,h)w′ lies in the Zariski-closure V pcr
ρ (ξ0,h)w of V pcr

ρ (ξ0,h)w in

Ũpcr
ρ (ξ0,h).

Proof. Let U ⊂ Upcr
ρ (ξ0,h) be a non-empty affinoid open subset as in the proof of Proposition

4.3.5. We freely use the notation of loc. cit. For j = 1, . . . , s, let BU,j :=
∏
i∈Z/[L′0:L0]BU,j,i, and

Pj(X) ∈ OU [X] be the characteristic polynomial of BU,j . Let U be an étale covering of U such
that Pj(X) =

∏mj
i=1(X − αj,i) (with αj,i 6= αj,i′ for i 6= i′ since any point in U is generic), and

such that, for each j, i, there exists βj,i ∈ OU such that β
dj
j,i = αj,i. Using the same argument as

in the proof of Lemma 4.3.4, we have an isomorphism of Weil-Deligne representations over OU :

rU
∼= ⊕sj=1 ⊕

mj
i=1 r̃j ⊗E unr(βj,i).

Let Ũ := U ×(SpecZΩ0
)rig (SpecZΩ)rig and r

Ũ
:= rU ⊗OU

O
Ũ

. By the universal property of

Ũ → U , we have an (ordered) r-tuple (r
Ũ ,i

)i=1,...,r of Weil-Deligne subrepresentations of r
Ũ

over Ũ such that ⊕ri=1rŨ ,i
∼= ⊕sj=1 ⊕

mj
i=1 r̃j ⊗E unr(βj,i) and r

Ũ ,i
is of inertial type ξi.
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The Deligne-Fontaine module DF
Ũ

:= DFU ⊗OUOŨ
over Ũ is isomorphic to the Deligne-

Fontaine module associated to r
Ũ

. Let DF
Ũ ,i

be the Deligne-Fontaine module associated to r
Ũ ,i

,

we have thus DF
Ũ
∼= ⊕ri=1 DF

Ũ ,i
. We let Ũ r be the (Grig

m )r-torsor over Ũ of isomorphisms of
Deligne-Fontaine modules:

⊕ri=1 DF
Ũ ,i

∼−−→ DF
Ũ
.

By the universal property of Ũ r, we have a universal isomorphism

⊕ri=1 DF
Ũ r,i

∼−−→ DF
Ũ r ,

hence universal embeddings ⊕ji=1 DF
Ũ r,i

↪→ DF
Ũ r for j = 1, . . . , r, where ∗

Ũ r denotes the base

change of the corresponding object to O
Ũ r . Let W := (L ⊗Qp OŨ r)

n, and we equip W with a
filtration Fil•W consisting of free L⊗QpOŨ r -submodules which are direct summands of W such that

rkL⊗QpOŨ r
FiliW W = si for i = 1, . . . , r. Let Ũ r

P be the ResLQp P -torsor over Ũ r of isomorphisms

(L⊗Qp OŨ r)
n ∼−−→ (DF

Ũ r ⊗L′0L
′)Gal(L′/L)

which send FiliW W ∼= (L⊗QpOŨ r)
si onto (⊕ii′=1 DF

Ũ ,i′
⊗L′0L

′)Gal(L′/L). Via the universal isomor-

phism (L ⊗Qp OŨ r
P

)n
∼−−→ (DF

Ũ r
P
⊗L′0L

′)Gal(L′/L), the Hodge filtration on (DF
Ũ r
P
⊗L′0L

′)Gal(L′/L)

(which comes from the Hodge filtration on (DFU ⊗L′0L
′)Gal(L′/L) by base change) induces a mor-

phism
Ũ r
P −→ ResLQp(GLn /B). (4.37)

By similar arguments as for (4.36), one can show that this morphism is smooth.

For w = (wτ ) ∈ W P
max,L, let Ũ r

P,w be the set of points which are sent to V pcr
ρ (ξ0,h)w via the

(smooth surjective) morphism Ũ r
P,w → U . We see that x ∈ Ũ r

P,w if and only if the image of
x under (4.37) is contained in the (generalized) Schubert cell

∏
τ∈ΣL

(PwτB)/B. Equivalently

Ũ r
P,w is the inverse image of

∏
τ∈ΣL

(PwτB)/B in Ũ r
P . The proposition then follows from the

corresponding facts on Schubert cells by the same argument as in the last paragraph of the proof
of [18, Lemma 2.4].

Let w ∈ W P
max,L, then ww0,L ∈ W P

min,L hence ww0,L(h) is strictly P -dominant. Define

ι : X̃pcr
ρ (ξ0,h) −→ Xρ × (SpecZΩ)rig × Ẑ0,L, (ρ, (ri)) 7→ (ρ, (ri), 1). (4.38)

We consider ι−1(XΩ,ww0,L(h)(ρ)), which is a Zariski-closed subspace of X̃pcr
ρ (ξ0,h). By the discus-

sion in § 2.3 (in particular (2.4)) and using that, for any x = (ρ, (ri)) ∈ V pcr
ρ (ξ0,h)w, we have by

definition w = wx (which is denoted wF in § 2.3), one can check that

V pcr
ρ (ξ0,h)w ⊆ ι−1(UΩ,,ww0,L(h)(ρ)) ⊆ ι−1(XΩ,ww0,L(h)(ρ)),

which implies
V pcr
ρ (ξ0,h)w ⊂ ι−1(XΩ,ww0,L(h)(ρ)).

By Proposition 4.3.8 (2), we deduce that, for w′ ∈ W P
max,L and w′ ≤ w, we have ι(V pcr

ρ (ξ0,h)w′) ⊆
XΩ,,ww0,L(h)(ρ), and thus:
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Corollary 4.3.9. Let x = (ρx, (ri,x)) ∈ Ũpcr
ρ (ξ0,h). For all w ∈ W P

max,L such that w ≥ wx, we
have

ι(x) =
(
ρx, (r1,x, . . . , rr,x), 1

)
∈ XΩ,ww0,L(h)(ρ).

Remark 4.3.10. (1) The point ι(x) ∈ XΩ,ww0,L(h)(ρ) for w ∈ W P
max,L, w ≥ wx, is called a local

companion point of ι(x) ∈ XΩ,h(ρ) (see also Corollary 6.4.12 below).

(2) The case P = B (and ρx crystalline) was contained in [19, Thm. 4.2.3]. Indeed, in this
case, as discussed in Remark 4.2.4 (1), we have the isomorphism

ιΩ,ww0,L(h) : XΩ,ww0,L(h)(ρ)
∼−−→ X�

tri(ρ) (↪→ (Spf Rρ)
rig × T̂ (L))

where X�
tri(ρ) is the trianguline variety of [17, § 2.2]. And the isomorphism ιΩ,ww0,L(h) sends ι(x)

in Corollary 4.3.9 exactly to the point xw in [19, Thm. 4.2.3]. Note that the resulting points
{xw} ⊂ X�

tri(ρ) are distinct.

(3) Note that, if w 6= wx, then
(
(ri,x), δ = �r

i=1z
ww0(h)i

)
∈ (SpecZΩ)rig × ẐLP (L) is not a

parameter of the Ω-filtration induced by (ri,x) on Drig(ρx) (compare with Remark 4.2.4 (2) and
see Definition 4.1.6 (2), (3) for a parameter of an Ω-filtration).

5 The geometry of some schemes related to generalized Springer
resolutions

In this section, we show some results of geometric representation theory concerning algebraic
varieties which are a “parabolic” generalization of Grothendieck’s and Springer’s resolution of
singularities. These results will be crucially used in § 6 to describe the local rings of the Bernstein
paraboline varieties at certain points.

5.1 Preliminaries

We let G/E be a connected split reductive algebraic group. We recall/introduce certain schemes
XP (where P ⊆ G is a parabolic subgroup) which are related to parabolic versions of Grothendieck’
simultaneous resolution of singularities for G.

We fix a Borel subgroup B of G, and let T ⊂ B be a maximal torus and N ⊂ B the unipotent
radical of B. Let P ⊇ B be a parabolic subgroup of G, LP be the Levi subgroup of P containing
T and NP the unipotent radical of P . Let p be the Lie algebra of P over E, nP its nilpotent
radical, rP the full radical of p, lP the Lie algebra of LP over E, and zLP the centre of lP . We
have rP ∼= nP o zLP . Let g, b, n, t be the Lie algebra over E of G, B, N , T respectively.

Let W be the Weyl group of G and w0 ∈ W the element of maximal length. For w ∈ W , we
also use w to denote some lift4 of w in NG(T ) ⊂ G(E). As in § 2.1, denote by W P

min (resp. W P
max,

resp. P
minW , resp. P

maxW ) the set of minimal (resp. maximal, resp. minimal, resp. maximal) length
representatives of WLP \W (resp. WLP \W , resp. W /WLP , resp. W /WLP ). Note that w ∈ W P

min

if and only if ww0 ∈ W P
max. Also w ∈ W P

min (resp. w ∈ W P
max) if and only if w−1 ∈ P

minW

4When we apply this notation for certain group operators, we always mean first applying group operations then
taking a certain lift, e.g. we use w1w2 ∈ NG(T ) to denote a lift of w1w2 ∈ W rather than the multiplication of a
lift of w1 and a lift of w2.
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(resp. w−1 ∈ P
maxW ). For w ∈ W or WLP \W , denote by wmin ∈ W P

min (resp. wmax ∈ W P
max) the

corresponding representative of W . We use “·” to denote the dot action of W on the weights of t
(cf. [57, Def. 1.8]).

If f : X → Y is a morphism of schemes and Z a locally closed subscheme of Y , we denote
f−1(Z) := X ×Y Z, which is a locally closed subscheme of X. If X1, X2 are locally closed
subschemes of X, we denote X1 ∩X2 := X1 ×X X2.

Let g̃P be the closed E-subscheme of G/P × g defined by

{(gP, ψ) ∈ G/P × g | Ad(g−1)ψ ∈ rP }

where as usual Ad(h) means the adjoint action of h ∈ G (i.e. conjugation by h). We have an
isomorphism of E-schemes (using standard notation, see e.g. [61, § VI.8]):

G×P rP
∼−−→ g̃P , (g, ψ) 7→ (gP,Ad(g)ψ). (5.1)

We see that g̃P is a vector bundle over G/P , hence is smooth and irreducible. We also have
dim g̃P = dimG/P + dim rP = dim nP + dim rP . There are natural morphisms:

κP : g̃P −→ zLP (gP, ψ) 7−→ Ad(g−1)ψ
qP : g̃P −→ g (gP, ψ) 7−→ ψ
πP : g̃P −→ G/P (gP, ψ) 7−→ gP

where Ad(g−1)ψ is the image of Ad(g−1)ψ ∈ rP via the canonical surjection rP � zLP . Al-
ternatively we can see qP as the morphism G ×P rP → g, (g, ψ) 7−→ Ad(g)ψ. We denote
g̃ := g̃B ' G×B b and define qB : g̃→ g similarly to qP . We put:

XP := g̃×g g̃P ,

which is also the closed subscheme of G/B ×G/P × g defined by

XP ' {(g1B, g2P,ψ) ∈ G/B ×G/P × g | Ad(g−1
1 )ψ ∈ b,Ad(g−1

2 )ψ ∈ rP }.

It is easy to check that we have isomorphisms of E-schemes

XP
∼−−→ G×P q−1

B (rP ) (g1B, g2P,ψ) 7−→
(
g2, (g

−1
2 g1B,Ad(g−1

2 )ψ)
)

XP
∼−−→ G×B q−1

P (b) (g1B, g2P,ψ) 7−→
(
g1, (g

−1
1 g2P,Ad(g−1

1 )ψ)
)
.

(5.2)

5.2 Analysis of the global geometry

We prove useful statements on the geometry of the E-scheme XP .

Let π be the composition

π : XP ↪→ G/B ×G/P × g � G/B ×G/P. (5.3)

We equip G/B ×G/P with an action of G by diagonal left multiplication. For w ∈ W , write

Uw := G(w, 1)(B × P ) = G(1, w−1)(B × P ) ⊂ G/B ×G/P.

Note that Uw only depends on the the right coset WLPw (or equivalently, the left coset w−1WLP ).
In fact, we have an isomorphism

G×B (G/P )
∼−−→ G/B ×G/P, (g1, g2P ) 7−→ (g1B, g1g2P )
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which induces an isomorphism

G×B (Bw−1P/P )
∼−−→ Uw.

Likewise, we have an isomorphism

G×P (G/B)
∼−−→ G/B ×G/P, (g1, g2B) 7−→ (g1g2B, g1P )

which induces an isomorphism
G×P (PwB/B)

∼−−→ Uw.

By the standard Bruhat decomposition of G/P and G/B, we deduce

G/B ×G/P = tw∈W P
min
Uw = tw∈W P

max
Uw.

We also deduce that Uw is a locally closed subscheme of G/B×G/P which is smooth of dimension

dimG− dimB + dim(Bw−1P/P ) = dimG− dimB + lg(wmin)

= dimG− dimP + lg(wmax) = dimG− dimP + dim(PwB/B) (5.4)

where, for the first equality, we use lg((wmin)−1) = lg(wmin) and (wmin)−1 ∈ P
minW .

We let Vw := π−1(Uw).

Proposition 5.2.1. The surjection Vw � Uw induced by π is a (geometric) vector bundle of
relative dimension dim rP − lg(wmin).

Proof. Let y = (gB, gw−1P ) = (gB, g(wmin)−1P ) ∈ Uw ⊂ G/B ×G/P . One can check that

π−1(y) = y ×Ad(g)
(

Ad((wmin)−1)zLP ⊕
(
n ∩Ad((wmin)−1)nP

))
. (5.5)

Since (wmin)−1 ∈ P
minW , one has

dim
(
n ∩Ad((wmin)−1)nP

)
= dim

(
n ∩Ad((wmin)−1)n

)
− dim nLP

= dim n− lg((wmin)−1)− dim nLP = dim nP − lg(wmin).

The proposition then follows by the same argument as for [19, Prop. 2.2.1].

From (5.4) and Proposition 5.2.1 we obtain that Vw is equidimensional of dimension dimG−
dimB + dim rP . Let Xw be the closed subscheme of XP defined as the reduced Zariski-closure of
Vw in XP . By the same argument as in the first part of the proof of [19, Prop. 2.2.5], we have:

Corollary 5.2.2. The scheme XP is equidimensional of dimension dimG−dimB+dim rP . The
irreducible components of XP are {Xw}w∈W P

min
= {Xw}w∈W P

max
and Vw is open in Xw.

Remark 5.2.3. (1) We could equip the underlying closed subset Xw with another scheme struc-
ture, namely the scheme theoretic image of the open subscheme XP \ ∪WLP w

′ 6=WLP w
Xw′ of XP .

Let us denote it by X ′w. When P = B, by [19, Thm. 2.2.6], XP is reduced, so Xw = X ′w as closed
subschemes of XP . However, in general, it is not clear to the authors if XP is reduced, or if XP

is Cohen-Macaulay (for instance one can easily check that the last paragraph of the proof of [19,
Prop. 2.2.5] does not extend to P 6= B).
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(2) For w ∈ W let us define q−1
B (rP )0

w (resp. q−1
P (b)0

w) as the preimage of PwB/B (resp. of
BwP/P ) via the composition q−1

B (rP ) ↪→ G/B × g � G/B (resp. q−1
P (b) ↪→ G/P × g � G/P ).

By similar arguments as in Proposition 5.2.1, the map q−1
B (rP )0

w → PwB/B (resp. q−1
P (b)0

w →
BwP/P ) is a vector bundle of relative dimension dim rP − lg(wmin). We define q−1

B (rP )w (resp.
q−1
P (b)w) to be the reduced Zariski-closure of q−1

B (rP )0
w (resp. q−1

P (b)0
w) in q−1

B (rP ) (resp. in q−1
P (b)).

The scheme q−1
B (rP ) (resp. q−1

P (b)) is equidimensional of dimension dimP − dimB + dim rP
(resp. dim rP ) with irreducible components given by {q−1

B (rP )w}w∈W P
min

(resp. {q−1
P (b)w}w∈ P

minW ).

Moreover q−1
B (rP )0

w (resp. q−1
P (b)0

w) is open in q−1
B (rP )w (resp. q−1

P (b)w). From (5.2) we also have
isomorphisms of reduced E-schemes for w ∈ W P

min

Xw
∼= G×P q−1

B (rP )w ∼= G×B q−1
P (b)w−1 .

Lemma 5.2.4. For w,w′ ∈ W we have that Xw ∩ Vw′ 6= ∅ implies w′min ≤ wmin (⇔ w′max ≤
wmax ⇔ w′minw0 ≥ wminw0).

Proof. The lemma follows by the same argument as in the proof of [19, Lemma 2.2.4], noting that
in G×P (G/B) we have Uw ∩ Uw′ 6= ∅ ⇒ PwB/B ⊃ Pw′B/B ⇒ wmax ≥ w′max ⇒ wmin ≥ w′min

(where (−) means Zariski-closure).

Denote by κB : XP → t (resp. κP : XP → t) the morphism

(g1B, g2P,ψ) 7−→ Ad(g−1
1 )ψ

(
resp. (g1B, g2P,ψ) 7−→ Ad(g−1

2 )ψ
)

(5.6)

where Ad(g−1
1 )ψ is the image of Ad(g−1

1 )ψ ∈ b via b � t (and see § 5.1 for Ad(g−1
2 )ψ). Note that

κP factors through zLP ↪→ t. For ∗ = B,P denote by κ∗,w the restriction of κ∗ to Xw.

Lemma 5.2.5. For w ∈ W we have κP,w = Ad(w) ◦ κB,w, where Ad(w) : t → t denotes the
morphism induced by the adjoint action of W on t. In particular, the following diagram commutes

Xw
κB,w−−−−→ t

κP,w

y y
t −−−−→ t/W

where t/W := SpecRW
t (with t := SpecRt) and the two morphisms t→ t/W are both the canonical

surjection.

Proof. This is the argument for [19, Lemma 2.3.4], let us recall it. As t/W is affine, it is separated,
hence the diagonal embedding t/W → t/W ×E t/W is a closed immersion, and so is t×t/W t→ t×E t
by base change along t×E t→ t/W ×E t/W . Since the diagram clearly commutes with Vw instead
of Xw and Vw is Zariski-dense in Xw, the lemma follows.

In particular, Ad(w) ◦ κB,w only depends on the coset WLPw as the same holds for κP,w.

Consider the affine E-scheme TP := t×t/W zLP . We have a morphism of E-schemes

(κB, κP ) : XP −→ TP .
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Lemma 5.2.6. The irreducible components of TP are {Tw}w∈W P
min

= {Tw}w∈W P
max

where Tw is
the reduced E-scheme:

Tw := {(Ad(w−1)z, z), z ∈ zLP }

(so Tw only depends on the coset WLPw). Moreover Xw is the unique irreducible component of
XP such that (κB, κP )(Xw) = Tw.

Proof. Since t→ t/W is finite, we deduce dim TP = dim zLP = dim Tw for any w ∈ W . It is also
clear that Tw

∼= zLP is irreducible. The first part of the lemma easily follows. By Lemma 5.2.5,
(κB, κP )(Xw) ⊂ Tw. From (5.5), we see that the restriction (κB, κP )|Vw : Vw → Tw is surjective.
The second part of the lemma follows.

For a scheme Y and a point y ∈ Y , recall that we denote OY,y the local ring of Y at y, ÔY,y
the completion of OY,y along its maximal ideal, and Ŷy := Spf ÔY,y the associated formal scheme
(whose underlying topological space is one point).

Lemma 5.2.7. Let x be a closed point of XP , w,w′ ∈ W . Assume x ∈ Xw. Then the compo-
sition X̂w,x ↪→ X̂P,x → T̂P,(κB ,κP )(x) factors through T̂w′,(κB ,κP )(x) ↪→ T̂P,(κB ,κP )(x) if and only if
WLPw

′ = WLPw.

Proof. Let y := (κB, κP )(x), a closed point of TP . We have a commutative diagram of local rings

OTP ,y −−−−→ OXP ,x −−−−→ OXw,xy y y
ÔTP ,y −−−−→ ÔXP ,x −−−−→ ÔXw,x

(5.7)

where the vertical maps are injective by Krull’s intersection theorem. By assumption, the bottom
composition factors through ÔTw′ ,y

. Using the commutative diagram

OTP ,y −−−−→ OTw′ ,yy y
ÔTP ,y −−−−→ ÔTw′ ,y

and the injectivity of all the vertical maps in (5.7), we deduce that the upper composition in (5.7)
factors through OT w′,y. In particular the map XP → TP sends the generic point of Xw to the
generic point of Tw′ . By Lemma 5.2.6, we must have w′ = w.

Remark 5.2.8. Lemma 5.2.7 is the analogue of [19, Lemma 2.5.2] where the normality of Xw

there was used in the proof. However, this normality is in fact useless there, arguing as in the
above proof.

Recall that ψ ∈ rP is called regular if the subgroup CG(ψ) := {g ∈ G, Ad(g)ψ = ψ} satisfies
dimCG(ψ) ≤ dimCG(ψ′) for all ψ′ ∈ rP . We write rreg

P for the subset of regular elements in rP ,
which is preserved under the P -action, and zreg

LP
:= zLP ∩ rreg

P . When ψ ∈ zLP we have ψ ∈ zreg
LP

exactly when CG(ψ) = LP . We say that ψ ∈ rP is regular semi-simple if ψ ∈ P zreg
LP

(for the adjoint

action of P on rP ) and we write rreg− ss
P ⊂ rreg

P for the subset of regular semi-simple elements in

rP . It is well-known that both rreg− ss
P and rreg

P are Zariski-open (Zariski-dense) in rP and that for
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each ψ ∈ rreg
P we have dimCG(x) = dimLP . Moreover the product map gives an isomorphism of

(smooth irreducible) E-schemes:

P/LP × zreg
LP

∼−−→ rreg− ss
P . (5.8)

Let g̃reg− ss
P be the Zariski-open (Zariski-dense) subset of g̃P corresponding to G ×P rreg− ss

P via

the isomorphism (5.1), and Xreg− ss
P := g̃reg− ss

P ×g g̃, which is Zariski-open in XP
∼= g̃P ×g g̃. As

Vw ∩Xreg− ss
P 6= ∅ for any w ∈ W (use (5.5) for instance), Xreg− ss

P is Zariski-dense in XP .

Proposition 5.2.9. The scheme Xreg− ss
P is smooth over E. Moreover, the composition Xreg− ss

P ↪→
XP

κP−−→ zLP is smooth.

Proof. Since zLP is smooth over E, it is enough to prove the second statement. Let q−1
P (b)reg− ss :=

g̃reg− ss
P ∩q−1

P (b) = g̃reg− ss
P ×g̃P q

−1
P (b), which is Zariski-open in q−1

P (b) and Zariski-closed in g̃reg− ss
P .

An argument similar to (5.2) gives an isomorphism of E-schemes

Xreg− ss
P

∼−−→ G×B q−1
P (b)reg− ss. (5.9)

Seeing q−1
P (b)reg− ss inside G×P rreg− ss

P via (5.1), it is enough to prove that the composition

κreg− ss
P : q−1

P (b)reg− ss ↪→ G×P rreg− ss
P −→ zLP , (5.10)

is smooth, where the second map is (g, ψ) 7→ ψ (note that κreg− ss
P is B-equivariant with the

trivial action of B on the target). Indeed, under (5.9), the composition in the statement is the
composition

G×B q−1
P (b)reg− ss id×κreg− ss

P−→ G×B zLP ' G/B × zLP � zLP

(where the last surjection is the canonical projection), which is smooth as both maps are.

By (5.8), we have G ×P rreg− ss
P ' G/LP × zreg

LP
. Under this isomorphism, the last map in

(5.10) is (gLP , ψ) 7→ ψ (where ψ ∈ zreg
LP

), and q−1
P (b)reg− ss is the closed subscheme of G/LP × zreg

LP

defined by {(gLP , ψ) | Ad(g)ψ ∈ b}. Denote by Y the inverse image of q−1
P (b)reg− ss under

the smooth surjective map G × zreg
LP

� G/LP × zreg
LP

, then by base change Y → q−1
P (b)reg− ss is

also smooth surjective, and using [1, Lemma 02K5] it is enough to prove that the composition
Y ↪→ G × zreg

LP
� zreg

LP
is smooth. It is enough to prove this Zariski-locally on Y , and since

(Bw0Nw)w∈W is a Zariski-open covering of G, one can replace G× zreg
LP

by Bw0Nw× zreg
LP

(for an
arbitrary w ∈ W ) and Y by Y ∩(Bw0Nw×zreg

LP
). Since the multiplication induces an isomorphism

of schemes B×w0Nw
∼−−→ Bw0Nw and since Y is B-invariant, we have Y ' B×Z for the closed

subscheme Z := {(w0nw,ψ) | Ad(w0nw)ψ ∈ b} of w0Nw × zreg
LP

. As the projection B × Z � Z
is smooth, it is enough to prove that Z → zreg

LP
, (w0nw,ψ) 7→ ψ is smooth.

Since Ad(nw)ψ ∈ b and Ad(w0)b ∩ b = t, it follows that

Z = {(w0nw,ψ) | Ad(w0nw)ψ ∈ t} ' {(n, ψ) ∈ N × zreg
LP
| Ad(nw)ψ ∈ t}.

Since Ad(w)ψ ∈ t and the adjoint action of unipotent elements on t doesn’t change the diagonal
entries, we have

Z ' {(n, ψ) ∈ N × zreg
LP
| Ad(nw)ψ = Ad(w)ψ} ' {(n, ψ) ∈ N × zreg

LP
| Ad(w−1nw)ψ = ψ}
' w(N ∩ LP )w−1 × zreg

LP

where the last isomorphism follows from CG(ψ) = LP . As w(N ∩ LP )w−1 is an (affine) smooth
scheme, so is the projection w(N ∩ LP )w−1 × zreg

LP
� zreg

LP
, which finishes the proof.
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5.3 Analysis of the local geometry

In this paragraph we study the local geometry of Xw at certain points.

Theorem 5.3.1. Let w ∈ W and x = (g1B, g2P, 0) ∈ Xw, then the scheme Xw is unibranch at
x.

Proof. By Remark 5.2.3 (2), it is enough to prove the same statement with the irreducible com-
ponent Yw := q−1

P (b)w of the closed E-subscheme q−1
P (b) of G×P rP . We want to prove that the

normalization of the (reduced) local ring of Yw at a point (g, 0) (g ∈ G) is still a local ring. The
argument below is strongly inspired by the proof of [65, Lemma 3.4.8] and we give full details.

We see the E-scheme A1 as an algebraic multiplicative monoid. The scheme G×rP is endowed
with a left action of A1 by a(g, ψ) := (g, aψ) (where g ∈ G,ψ ∈ rP ). As the adjoint action of
P on rP is linear, this action of A1 descends to a left action on G ×P rP . It also preserves
(Bw, rP ∩ Ad(w−1)b) ⊂ G × rP , hence its image q−1

P (b)0
w in G ×P rP (see Remark 5.2.3 (2)),

hence its Zariski-closure Yw. Let Y Gm
w ⊆ Yw be the closed subscheme (with its reduced structure)

of fixed points by Gm, where Gm is seen as a Zariski-open subgroup of the monoid A1. Since
aψ = ψ ∀a ∈ Gm ⇔ ψ = 0, we have (G×P rP )Gm ' G×P 0 ' G/P × {0}, and we easily deduce
that Y Gm

w ' Cw × {0} ⊆ G/P × {0} where Cw is the Zariski closure of BwP/P in G/P . In
particular we see that the action of A1 on Y Gm

w is also trivial.

Consider the normalization map f : Ỹw � Yw, which is a finite surjective birational morphism
between two noetherian irreducible E-schemes (see for instance [1, § 035E] and [1, § 0BXQ]). Note
that f is an isomorphism above BwP/P × {0} ⊆ Y Gm

w as BwP ×P {0} is contained in the image
of (Bw, rP ∩ Ad(w−1)b) in Yw, which is the smooth open set q−1

P (b)0
w of Yw (see Remark 5.2.3

(2)). By [65, Rem. 3.4.3], it is enough to prove that the (geometric) fiber f−1(g, 0) is a connected
scheme for g ∈ G. This is a fortiori true if f−1(g, 0) is geometrically connected, hence we can
extend scalars from E to an algebraic closure of E, which we do from now on in this proof (still
using the notation E).

The composition A1 × Ỹw −→ A1 × Yw −→ Yw is surjective (as both maps are surjective,
where the last map is the action of A1 on Yw). By [1, Lemma 035J], since A1 × Ỹw is normal
this composition factors as A1 × Ỹw −→ Ỹw −→ Yw, which induces a canonical action of A1

on Ỹw such that the map f is A1-equivariant. By exactly the same argument, we also have an
action of the Borel B on Ỹw such that f is B-equivariant. Moreover these two actions of A1 and B
commute on Ỹw as they do on Yw. The action of A1 on Ỹw is again trivial on the closed subscheme
Ỹ Gm
w ⊆ Ỹw (with its reduced structure), but we need another argument than for Y Gm

w . Consider
the morphism of E-schemes:

m : A1 × Ỹw −→ Ỹw × Ỹw, (a, ỹ) 7−→ (ỹ, aỹ)

and see Ỹ Gm
w as a closed subscheme of Ỹw × Ỹw via the diagonal embedding. Then m−1(Ỹ Gm

w ) is
a closed subscheme of A1× Ỹw which obviously contains the locally closed subscheme Gm× Ỹ Gm

w .
Hence it also contains its Zariski-closure, which is A1 × Ỹ Gm

w . In particular the action of A1 on
Ỹw is trivial on Ỹ Gm

w .

We prove that we have an isomorphism Ỹ Gm
w

∼−−→ f−1(Y Gm
w )red of (reduced) closed subschemes

of Ỹw. Since f is Gm-equivariant we have a closed embedding Ỹ Gm
w ↪→ f−1(Y Gm

w )red, hence
it is enough to prove that Gm acts trivially on f−1(Y Gm

w )red inside Ỹw. Since we are over an
algebraically closed field E, the action of Gm on f−1(Y Gm

w )red is trivial if and only if the action of
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E× is trivial on the set of E-points f−1(Y Gm
w )(E) (see for instance Remark 4 in [43, p. 38]). Since

any such E-point is in f−1(g, 0)(E) for some (g, 0) ∈ Y Gm
w , it is enough to prove that E× acts

trivially on f−1(g, 0)(E). Since f is a finite Gm-equivariant morphism, f−1(g, 0)(E) is a finite set
stable under the action of E×. Hence there is an integer n � 0 such that xn acts trivially on
f−1(g, 0)(E) for any x ∈ E× (for instance n = |f−1(g, 0)(E)|!). But as E is assumed algebraically
closed, any element in E× is of the form xn, hence E× acts trivially on f−1(g, 0)(E).

We now consider the morphism 0 : Ỹw −→ Ỹ Gm
w , x 7−→ 0.x where 0 ∈ A1. Since A1 acts

trivially on Ỹ Gm
w ⊂ Ỹw, the morphism 0 is surjective. As Ỹw is irreducible and the image of an

irreducible set is irreducible, it follows that the closed subset Ỹ Gm
w of Ỹw is irreducible. Since

Ỹ Gm
w

∼−→ f−1(Y Gm
w )red, we deduce that f induces a finite birational surjective morphism of noethe-

rian irreducible E-schemes f−1(Y Gm
w )red → Y Gm

w (it is birational since it is an isomorphism above
the open subset BwP/P ×{0} of Y Gm

w ' Cw×{0}). But Cw, and hence Y Gm
w , are normal schemes

by [70]. One then uses Zariski’s connectedness theorem (see e.g. [72, § III.9.V]) applied to the
morphism f−1(Y Gm

w )red → Y Gm
w , which implies that all the fibers f−1(g, 0) are connected schemes

and finishes the proof.

Remark 5.3.2. The proof of Theorem 5.3.1 only works for the points (g, 0) of Yw. In particular,
when P 6= B, we do not know the unibranch property of Yw at points (g, ψ) ∈ Yw where ψ ∈ rP \{0}
is not regular semi-simple (the regular semi-simple case being a consequence of Proposition 5.2.9).
Recall that, when P = B, this is known since Yw is normal at every point ([19, Thm. 2.3.6]).

If x ∈ Xw is a closed point, recall that the tangent space TxXw of Xw at x can be identified
with the k(x)[ε]/(ε2)-points of Xw mapping to x via k(x)[ε]/(ε2) � k(x), ε 7→ 0. Recall also that
dimk(x) TxXw ≥ dimXw = dim(G/B) + dim rP .

Proposition 5.3.3. Assume x = (g1B, g2P, 0) ∈ Xw ∩ Vw′ (which implies w′max ≤ wmax by
Lemma 5.2.4), then

dimk(x) TxXw ≤ dimTπ(x)Uw + dim z
w(w′)−1

LP
+ lg((w′)maxw0)

where z
w(w′)−1

LP
:= {z ∈ zLP | Ad(w(w′)−1)z = z}.

Proof. The proposition follows by similar arguments as in the proof of [19, Prop. 2.5.3], to which
we refer the reader for more details (e.g. on the notation). The closed embedding XP ↪→ G/B ×
G/P × g induces a closed embedding Xw ↪→ Uw × g. Let x̂ = (ĝ1B, ĝ2P,ψε) ∈ TxXw, where we
see (ĝ1B, ĝ2P ) ∈ Tπ(x)Uw. As x̂ ∈ XP (k(x)[ε]/(ε2)), we have Ad(g−1

1 )ψ ∈ b and Ad(g−1
2 )ψ ∈ rP .

As x ∈ Vw′ , there exists g ∈ G such that (g1B, g2P ) = (gw′B, gP ). Replacing g1 by gw′, and g2

by g, we have thus
Ad(g−1)ψ ∈ rP ∩Ad(w′)b. (5.11)

By Lemma 5.2.5, we have κP (x̂) = Ad(w)κB(x̂) and hence

Ad(g−1)ψ = Ad(w)Ad((w′)−1g−1)ψ ∈ zLP . (5.12)

Writing Ad(g−1)ψ = λ+ η with λ ∈ zLP and η ∈ nP , we deduce from (5.11) and (5.12):

η ∈ nP ∩Ad(w′)n and λ ∈ z
w(w′)−1

LP
. (5.13)

We have dim(nP ∩ Ad(w′)n) = dim(n ∩ Ad(w′max)n) = lg(w′maxw0) (where the first equality
follows from nLP ∩Ad(w′max)n = 0). Together with (5.13), the proposition follows.
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Corollary 5.3.4. With the notation of Proposition 5.3.3, assume that Uw is smooth at the point
π(x) and that

dim z
w(w′)−1

LP
+ lg(wmax)− lg(w′max) = dim zLP . (5.14)

Then Xw is smooth at x.

Proof. Recall dimUw = dimG− dimB + lg(wmin). Under the assumptions in the statement, we
have by Proposition 5.3.3 (and using lg(wmax)− lg(wmin) = dim nLP ):

dimk(x) TxXw

≤ dimG− dimB + lg(wmin) + dim zLP −
(

lg(wmax)− lg((w′)max)
)

+ lg(w0)− lg((w′)max)

= dimG− dimB − dim nLP + dim zLP + lg(w0) = dimG− dimB + dim nP + dim zLP
= dimXw.

The corollary follows.

Remark 5.3.5. (1) By [10, Thm. 6.0.4] and [10, Cor. 6.2.11], if lg(w′max) ≥ lg(wmax)− 2, then
π(x) is a smooth point of Uw. Indeed, by loc. cit., under this assumption, PwB/B = BwmaxB/B
is smooth at any point of Bw′maxB/B. Then using the P -action, we deduce that PwB/B is
smooth at any point of Pw′B/B, hence Uw is smooth at any point of U ′w. If moreover lg(w′max) ≥
lg(wmax)− 1, it is clear that (5.14) holds, so Xw is smooth at x. When lg(w′max) = lg(wmax)− 2
however, (5.14) does not necessarily hold when P 6= B: for example, when P is a maximal

parabolic subgroup, then dim z
w(w′)−1

LP
= 1 = dim zLP − 1 < lg(wmax) − lg(w′max). See Remark

A.3.5 for related discussions.

(2) The proof of Proposition 5.3.3 actually shows that its statement and the one of Corollary
5.3.4 hold with Xw replaced by X ′w in Remark 5.2.3 (1). In particular, the closed immersion
Xw ↪→ X ′w is an isomorphism on local rings at points satisfying the assumptions in Corollary
5.3.4.

5.4 Characteristic cycles

We study the fibres κ−1
P,w({0}) ↪→ Xw, and show that they are closely related to the characteristic

cycles of certain G-equivariant regular holonomic D-modules over G/B ×G/P .

Let ZP := κ−1
B ({0})red = κ−1

P ({0})red ↪→ XP (see (5.6), one may view ZP as a generalized

Steinberg variety). Let N ⊂ g denote the nilpotent cone and put ÑP := {(gP, ψ) ∈ G/P ×
N | Ad(g−1)ψ ∈ nP }. We have ÑP ∼= G ×P nP , (gP, ψ) 7→ (g,Ad(g−1)ψ). We write Ñ := ÑB
(defined as ÑP with B instead of P ). The morphism qB (resp. qP ) in § 5.1 restricts to the so-called
Springer resolution (resp. generalized Springer resolution): qB : G ×B n → N , (g, ψ) 7→ Ad(g)ψ
(resp. qP : G×P nP → N , (g, ψ) 7→ Ad(g)ψ). We have

ZP ∼= G×P q−1
B (nP )red ∼= G×B q−1

P (n)red.

The morphism π (see (5.3)) restricts to a natural morphism πZ : ZP → G/B × G/P . Similarly
to § 5.2, for w ∈ W we put V ′w := π−1

Z (Uw) = Vw ∩ ZP , and let Zw be the Zariski-closure
of V ′w in ZP with the reduced scheme structure. We put q−1

B (nP )0
w := q−1

B (rP )0
w ∩ q−1

B (nP ) and
q−1
P (n)0

w := q−1
P (b)0

w∩q−1
P (n) (see Remark 5.2.3 (2) for q−1

B (rP )0
w and q−1

P (b)0
w). We define q−1

B (nP )w
(resp. q−1

P (n)w) as the Zariski-closure of q−1
B (nP )0

w (resp. of q−1
P (n)0

w) in q−1
B (nP ) (resp. in q−1

P (n)).
By similar arguments as in § 5.2, we have
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Proposition 5.4.1. (1) The scheme ZP (resp. q−1
P (n), resp. q−1

B (nP )) is equidimensional of
dimension dim n+ dim nP (resp. dim nP , resp. dim n) with set of irreducible components given by
{Zw}w∈W /WLP

(
resp. {q−1

P (n)w}w∈W /WLP
, resp. {q−1

B (nP )w}w∈WLP \W
)
.

(2) We have Zw ∼= G×P q−1
B (nP )red

w
∼= G×B q−1

P (n)red
w−1.

Remark 5.4.2. One can show that q−1
B (n) is also equidimensional of dimension dim n, hence the

subscheme q−1
B (nP )red of q−1

B (n) is isomorphic to a union of irreducible components of q−1
B (n).

The irreducible components of q−1
B (n) are {q−1

B (n)w}w∈W , where q−1
B (n)w is the Zariski closure of

the preimage q−1
B (n)0

w of BwB/B via q−1
B (n) → G/B. Using similar argument as in the proof of

[19, Prop. 2.2.1] (see in particular [19, (2.6)]), one can show that q−1
B (n)0

w ⊆ q−1
B (nP ) if and only

if w ∈ W P
max. If so we have q−1

B (n)0
w = q−1

B (nP )0
w. Hence we deduce q−1

B (nP )w = q−1
B (n)wmax for

w ∈ W .

By exactly the same argument as in the proof of Theorem 5.3.1 replacing everywhere rP by
nP , we have the following theorem which is interesting in its own right (and which is new even
for P = B, see [19, Rem. 2.4.2]):

Theorem 5.4.3. Let w ∈ W and x = (g1B, g2P, 0) ∈ Zw, then the scheme Zw is unibranch at x.

For a finite type E-scheme Z, denote by Z0(Z) the free abelian group generated by the
irreducible components {Zi} of Z. Given a scheme Y whose underlying topological space is a
union of irreducible components of Z, put

[Y ] :=
∑
i

m(Zi, Y )[Zi] (5.15)

where m(Zi, Y ) is the length of the OY,ηi-module OY,ηi at the generic point ηi.

For w ∈ W , let Xw := κ−1
P,w({0}) = Xw ×κP,w,zLP {0}, where “×κP,w,zLP ” means taking the

fibre product over zLP via the morphism κP,w : Xw → zLP . Note that we do not take the reduced
associated scheme. By the same argument as in page 320 of [19], Xw is equidimensional of
dimension dimZ. So each irreducible component of Xw is Zw′ for some w′ ∈ W . We have the
following easy fact.

Lemma 5.4.4. We have m(Zw, Xw) = 1, and m(Zw′ , Xw) ≥ 1 implying w′max ≤ wmax.

Proof. By the proof of Proposition 5.2.1, we have Vw ×κP,w,zLP {0}
∼= Vw ∩ ZP = V ′w. The first

part follows. The second part follows easily from Corollary 5.2.4.

We construct some other cycles which are closely related to (the characteristic cycles of)
parabolic Verma modules (see Proposition 5.4.8 below). Let zsdLP ⊂ zLP be the set of strictly
dominant integral weight λ = (λ1, . . . , λr) ∈ zLP , i.e. λi ∈ Z and λi > λi′ for i > i′. In particular
zsdLP ⊂ zreg

LP
(see the end of § 5.2 for zreg

LP
). This assumption on λ will be used in the proof of

Proposition 5.4.7 in Appendix A.2. Let zλ := Eλ ↪→ zLP (a one-dimensional vector subspace of
zLP ) and rP,λ := zλ + nP ↪→ rP . Define:

g̃P,λ := G×P rP,λ ↪→ G×P rP ,

XP,λ := g̃P,λ ×g g̃ ↪→ XP .
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Let πλ be the restriction of π to XP,λ. For w ∈ W put Vw,λ := π−1
λ (Uw), which is a vector bundle

of relative dimension dim rP,λ − lg(wmin) over Uw. We let Xw,λ be the reduced Zariski closure of
Vw,λ in XP,λ. We have that XP,λ is equidimensional of dimension dimG− dimP + dim rP,λ with
irreducible components given by {Xw,λ}. Let Xw,λ := Xw,λ ×κP,w,zλ {0}.

Lemma 5.4.5. (1) We have m(Zw, Xw,λ) = 1, and m(Zw′ , Xw,λ) ≥ 1 implies w′max ≤ wmax.

(2) We have Xw,λ
∼= (Xw ×κP,w,zLP zλ)red. Consequently, for w′max ≤ wmax, m(Zw′ , Xw) ≥

m(Zw′ , Xw,λ). Moreover m(Zw′ , Xw) > 0 if and only if m(Zw′ , Xw,λ) > 0.

Proof. (1) follows by the same argument as for Lemma 5.4.4. We have a natural closed immersion
Xw,λ ↪→ (Xw ×κP,w,zLP zλ)red. By the same argument as on Page 320 of [19], each irreducible
component of Xw×κP,w,zLP zλ has dimension dimXw− (dim zLP −dim zλ) = dimXw,λ and is thus
some Xw′,λ for w′ ∈ W . However, using Lemma 5.2.6, it is easy to see that, if WLPw

′ 6= WLPw,
then Vw′,λ can not be contained in (Xw ×κP,w,zLP zλ)red. The first part of (2) follows. Together

with the isomorphism Xw
∼= (Xw ×κP,w,zLP zλ)×κP,w,zλ {0}, the other parts also follows.

Remark 5.4.6. If P is maximal, then zλ + z = zLP . We have in this case Xw
∼= z ×Xw,λ, and

hence Xw
∼= Xw,λ. If P = B, then Xw is Cohen-Macaulay by [19, Prop. 2.3.3]. As Xw×κP,w,zLP zλ

is cut out by (dimXw−dimXw×κP,w,zLP zλ)-equations in Xw, we can deduce that Xw×κP,w,zLP zλ
is also Cohen-Macaulay. Using Proposition 5.2.9 and similar arguments in the proof of [19, Thm.
2.2.6], we can show that Xw ×κP,w,zLP zλ is reduced, hence equal to Xw,λ. By the proof of Lemma

5.4.5, we have in this case Xw,λ
∼= Xw.

Let Op be the parabolic BGG category O associated to p (cf. [57, § 9.3]) and Op(0) the full
subcategory of Op consisting of objects with trivial infinitesimal character. Let Modrh(DG/B, P )
be the category of regular holonomic P -equivariant D-modules over G/B, which is the same as the
category of coherent P -equivariant D-modules over G/B by [54, Thm. 11.6.1]. By the Beilinson-
Bernstein localization, we have an equivalence of categories with inverse given by taking global
sections (see for example [54, Thm. 11.5.3]):

LocBB : Op(0)
∼−−→ Modrh(DG/B, P ).

Let Modrh(DG/P , B) (resp. Modrh(DG/B×G/P , G)) be the category of regular holonomic B-equiva-
riant (resp.G-equivariant for the diagonalG-action)D-modules overG/P (resp. overG/B×G/P ).
Put

iB : G/B ↪−→ G/B ×G/P, gB 7→ (gB, P ),

iP : G/P ↪−→ G/B ×G/P, gP 7→ (B, gP ).

As in [54, Prop. 13.1.1] (see also [82, Lemma 1.4]), we have Rji∗BM = 0 (resp. Rji∗PM = 0) for
M ∈ Modrh(DG/B, P ) (resp. for M ∈ Modrh(DG/P , B)) and j > 0. Moreover the functor i∗B
(resp. i∗P ) induces an equivalence of categories Modrh(DG/B×G/P , G)

∼−→ Modrh(DG/B, P ) (resp.

Modrh(DG/B×G/P , G)
∼−→ Modrh(DG/P , B)).

For a smooth algebraic variety Y , let T ∗Y be the cotangent bundle. For a regular holonomic
D-module M over Y , denote by Ch(M) ⊂ T ∗Y the associated characteristic variety (cf. [54,
§ 2.2]). We have T ∗G/B ∼= G×B (g/b)∨ ∼= G×B n, and T ∗G/P ∼= G×P (g/p)∨ ∼= G×P nP (see
for example [31, Lemma 1.4.9] where we identify g with g∨ using the Killing form, cf. [58, § 5]).
By the same argument as in the proof of [19, Prop. 2.4.4], we have:
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Proposition 5.4.7. For M ∈ Modrh(DG/B×G/P , G)

Ch(M) ∼= G×B Ch(i∗PM) ∼= G×P Ch(i∗BM) ⊆ T ∗(G/B ×G/P )

is equidimensional of dimension dimZP = dimG/B + dimG/P . In particular, the underlying
topological space of Ch(M) is a union of irreducible components of ZP .

For M ∈ Modrh(DG/B×G/P , G), [Ch(M)] ∈ Z0(ZP ) is thus well-defined. For w ∈ W , let

MP (wmaxw0 · 0) := U(g)⊗U(p) (wmaxw0 · 0) ∈ Op(0)

be the parabolic Verma module, and L(wmaxw0 ·0) be the (unique) simple quotient of MP (wmaxw0 ·
0) in Op(0). Denote by MP (wmaxw0 · 0) (resp. L(wmaxw0 · 0)) the D-module over G/B associated
to MP (wmaxw0 · 0) (resp. L(wmaxw0 · 0)) via i∗B ◦LocBB. The following proposition will be proved
in Appendix A.2.

Proposition 5.4.8. Let λ ∈ zsdLP , then we have [Xw,λ] = [Ch(MP (wmaxw0 · 0))] for all w ∈ W .

Conjecture 5.4.9. For w ∈ W , we have [Xw] = [Ch(MP (wmaxw0 · 0))].

Remark 5.4.10. Conjecture 5.4.9 holds for P = B by [45, (6.2.3)] or [9, Prop. 2.14.2] (see
Remark 5.4.6). It also holds in the case P is maximal by Proposition 5.4.8 and Remark 5.4.6.

Theorem 5.4.11. (1) The classes {Zw}, {[Ch(MP (wmaxw0 ·0))]}, {[Ch(L(wmaxw0 ·0)]}, {[Xw]}
for w ∈ WLP \W are a basis of the finite free Z-module Z0(ZP ).

(2) For λ ∈ zsdLP and w ∈ W , we have

[Xw,λ] =
∑

w′∈WLP \W

bw,w′ [Ch(L(w′maxw0 · 0))] (5.16)

where bw,w′ ∈ Z≥0 is the multiplicity of L(w′maxw0 ·0) in MP (wmaxw0 ·0) (hence bw,w′ only depends
on the cosets WLPw and WLPw

′, bw,w = 1 and bw,w′ = 0 unless w′max ≤ wmax).

(3) Let w,w′ ∈ W , there are integers aw,w′ ∈ Z≥0 only depending on the cosets WLPw, WLPw
′

such that
[Ch(L(wmaxw0 · 0))] =

∑
w′∈WLP \W

aw,w′ [Zw′ ] ∈ Z0(ZP )

where aw,w = 1 and aw,w′ = 0 unless w′max ≤ wmax. Moreover, if w′max < wmax and Bw′maxB/B
is contained in the smooth locus of the Zariski-closure of BwmaxB/B, then aw,w′ = 0.

Proof. (1) follows from the same argument as in the proof of [19, Thm. 2.4.7] (with [19, Prop.
2.4.6] replaced by Proposition 5.4.8 and using Lemma 5.4.5 (2)). (2) is a direct consequence of
Proposition 5.4.8. By Proposition 5.4.7, (3) will follow from a parallel statement for
[Ch(i∗BL(wmaxw0 · 0))]. Let aw,w′ ∈ Z≥0 such that (see Remark 5.4.2 for the second equality):

[Ch(i∗BL(wmaxw0 · 0))] =
∑

w′∈WLP \W

aw,w′ [q
−1
B (nP )w′ ] =

∑
w′∈WLP \W

aw,w′ [q
−1
B (n)w′max ].

(3) follows then from [19, Thm. 2.4.7 (iii)].
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Remark 5.4.12. By [27, Conj. 3.27] and [27, Thm. 3.28] (see also [34], [39]), the coefficients
bw,w′ in Theorem 5.4.11 may be described using certain relative Kazhdan-Lusztig polynomials.
However, we couldn’t find a precise statement in the literature and we don’t need such description
in the paper. We remark that, by [27, Thm. 3.28], bw,w′ is also equal to the multiplicity of
L(w′maxw0 · λ) in MP (wmaxw0 · λ) for any integral dominant weight λ. Finally, using [57, Thm.
9.4 (b)] and [57, Ex. 8.3 (a)], we easily deduce bw,w′ = 1 when w′max < wmax and lg(w′max) =
lg(wmax)− 1.

Let XP := XP ×κP ,zLP {0}. If M is a coherent OXP
-module, we define its class [M ] ∈ Z0(ZP )

as in (5.15) with m(Zw, Y ) replaced by the length m(Zw,M) of the OXP ,ηZw
-module MηZw .

Let x be a closed point in XP (or equivalently in ZP ), the complete local rings ÔZP ,x, ÔZw,x
are equidimenisonal, and the set of irreducible components of Spec ÔZP ,x is the (disjoint) union

for all w ∈ WLP \W of the sets of irreducible components of Spec ÔZw,x. Note that in general

we don’t know whether Spec ÔZw,x is irreducible (see the discussion above [19, Lemma 2.5.5]).

However if the nP -coordinate of x is zero, then Spec ÔZw,x is irreducible by Theorem 5.4.3. Put

M̂x := M ⊗OX ÔXP ,x
, and define [M̂x] ∈ Z0(Spec ÔZP ,x) similarly to [M ] above. By the same

argument as in the proof of [19, Lemma 2.5.5], we have

[M̂x] =
∑

w∈WLP \W

m(Zw,M)[Spec ÔZw,x] ∈ Z0(Spec ÔZP ,x), (5.17)

where [Spec ÔZw,x] ∈ Z0(Spec ÔZP ,x) is defined similarly as in (5.15). For w ∈ WLP \W , put (see
Theorem 5.4.11 (3) for aw,w′ ∈ Z≥0):

[L̂(wmaxw0 · 0)x] :=
∑

w′∈WLP \W

aw,w′ [Spec ÔZw′ ,x] ∈ Z0(Spec ÔZP ,x).

Lemma 5.4.13. Let w ∈ W .

(1) Let λ ∈ zsdLP , we have

[ÔXw,λ,x
] =

∑
w′∈WLP \W

bw,w′ [L̂(w′maxw0 · 0)x] ∈ Z0(Spec ÔZP ,x). (5.18)

(2) For w′ ∈ W there are integers cw,w′ , c
′
w,w′ ∈ Z≥0, depending only on the cosets WLPw and

WLPw
′, satisfying the following conditions:

� cw,w = c′w,w = 1;

� c′w,w′ ≥ cw,w′;

� cw,w′ > 0⇐⇒ c′w,w′ > 0;

� cw,w′ = c′w,w′ = 0 except when w′max ≤ wmax;

� we have the equalities in Z0(Spec ÔZP ,x):

[ÔXw,λ,x
] =

∑
w′∈WLP \W

cw,w′ [Spec ÔZw′ ,x] and [ÔXw,x
] =

∑
w′∈WLP \W

c′w,w′ [Spec ÔZw′ ,x].

92



(3) If x ∈ Xw is a smooth point of Xw, then ÔXw,x
∼= ÔXw,λ,x

, in particular (5.18) holds with

ÔXw,λ,x
replaced by ÔXw,x

.

Proof. (1) follows from (5.16) using (5.17). (2) follows from Lemma 5.4.5 by putting cw,w′ :=
m(Zw′ , Xw,λ) and c′w,w′ := m(Zw′ , Xw). For (3), it suffices to show OXw,λ,x

∼= OXw,x
if Xw

is smooth at x. Using the description of Xw,λ and Xw in the proof of Lemma 5.4.5, we only
need to show that X ′w,λ := Xw ×κP,w,zLP zλ is reduced at the point x. It is easy to see that
Xw,λ is cut out by (dim zLP − dim zλ)-equations in Xw. As Xw is smooth at x and dimXw,λ =
dimXw − (dim zLP − dim zλ), there exists an open neighbourhood U ⊂ X ′w,λ of x such that U
is a local complete intersection, hence Cohen-Macaulay. It is thus sufficient to show that U
is generically reduced (cf. [47, Prop. 5.8.5]). By Proposition 5.2.9, Xreg− ss

P is smooth. It is

also Zariski-open and Zariski-dense in XP . We deduce Xreg−ss
P = tw′∈W /WLP

(Xreg− ss
P ∩ Xw′)

where {Xreg− ss
P ∩ Xw′} are the irreducible components of Xreg− ss

P . In particular, we have that

Xreg− ss
P ∩ Xw is Zariski-open and Zariski-dense in Xw. Moreover κP : Xreg− ss

P ∩ Xw → zLP is

smooth by Proposition 5.2.9. We deduce that Xreg− ss
w,λ := (Xreg− ss

P ∩Xw)×κP ,zLP zλ is smooth and

is Zariski-open in X ′w,λ. One easily checks Xreg− ss
P ∩Vw,λ 6= ∅ (e.g. using (5.5)), so Xreg− ss

P ∩Vw,λ is

non-empty Zariski-open, hence Zariski-dense, in Vw,λ, which implies that Xreg− ss
w,λ is Zariski-dense

in Xw,λ. As Xreg− ss
w,λ is smooth, we see that U is generically smooth hence generically reduced.

The lemma follows.

6 Local models for the Bernstein paraboline varieties

Generalizing [19, § 3], we show that the geometry of the Bernstein paraboline varieties of § 4
is closely related to the schemes considered in § 5. We use the notation of § 4 and § 5 applied
to G = GLn. When applied to G = (ResLQp GLn) ×SpecQp SpecE '

∏
ΣL

GLn, we modify the
notation of § 5 by adding a subscript “L” to each scheme considered in § 5 (to stress the field “L”
and to distinguish from the case G = GLn), for instance gL is g ⊗Qp L, XP,L

∼=
∏
τ∈ΣL

XP and
we have g̃P,L, etc.

6.1 Almost de Rham BdR-representations

We define and study certain groupoids of deformations of an almost de Rham BdR-representation
of GalL.

Let B+
pdR be the algebra B+

dR[log(t)] defined in [44, § 4.3] and BpdR = B+
pdR⊗B+

dR
BdR. Recall

B+
pdR (resp. BpdR) is equipped with a natural action of GalL extending the usual GalL-action on

B+
dR (resp. BdR) such that g(log(t)) = log(t) + log(χcyc(g)). Moreover there is a unique BdR-

derivation νBpdR
of BpdR such that νpdR(log(t)) = −1. It is clear that νBpdR

preserves B+
pdR and

commutes with GalL.

We fix an almost de Rham representation W of GalL over BdR⊗QpE, i.e. W is a free BdR⊗QpE-
module equipped with a semi-linear GalL-action such that dimL(BpdR⊗BdR

W )GalL = dimBdR
W

(cf. [44, Thm. 4.1 (2)]). Let P ⊆ GLn be a parabolic subgroup as in § 2.1. Let F• = (Fi)0≤i≤r be
a P -filtration on W , i.e. 0 = F0 ⊆ F1 ⊆ · · · ⊆ Fr are BdR ⊗Qp E-subrepresentations of W such
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that Fi/Fi−1 is free of rank ni over BdR ⊗Qp E for 1 ≤ i ≤ r. We assume that Fi/Fi−1 is de
Rham for 1 ≤ i ≤ r, so Fi/Fi−1

∼= (BdR ⊗Qp E)⊕ni as GalL-representation.

For A in Art(E), we call BdR⊗Qp A-representation of GalL a free BdR⊗Qp A-module of finite
rank endowed with a semi-linear action of GalL (so GalL acts trivially on A). We define XW,F•
as the following groupoid over Art(E):

(1) The objects of XW,F• are the quadruples (A,WA,FA,•, ιA) where

� A ∈ Art(E) and WA is a BdR ⊗Qp A-representation of GalL;

� FA,• = (FA,i)0≤i≤r is a P -filtration on WA by BdR ⊗Qp A-subrepresentations of GalL
such that FA,0 = 0 and FA,i/FA,i−1, 1 ≤ i ≤ r, is free of rank ni over BdR ⊗Qp A and
isomorphic to (Fi/Fi−1) ⊗BdR⊗QpE εA,i for some rank one BdR ⊗Qp A-representation
εA,i;

� ιA : WA ⊗A E
∼−→ W is an isomorphism of BdR ⊗Qp E-representations which induces

isomorphisms ιA : FA,i ⊗A E
∼−→ Fi for i ∈ {0, . . . , r}.

(2) A morphism (A,WA,FA,•, ιA)→ (A′,WA′ ,FA′,•, ιA′) is a morphism A→ A′ in Art(E) and

an isomorphism WA ⊗A A′
∼−→WA′ of BdR ⊗Qp A′-representations which is compatible with

ιA and ιA′ and induces isomorphisms FA,i ⊗A A′
∼−→ FA′,i for i ∈ {0, . . . , r}.

Note that the rank one εA,i in (1) and the FA,i are automatically almost de Rham since extensions
of almost de Rham representations are always almost de Rham by [44, § 3.7].

We fix an isomorphism of L⊗Qp E-modules:

α : (L⊗Qp E)n
∼−−→ DpdR(W ) := (BpdR ⊗BdR

W )GalL ,

and we let XW , X�
W be the groupoids over Art(E) defined as in [19, § 3.1] where “(−)�” is with

respect to α. We have a natural morphism of groupoids XW,F• → XW sending (A,WA,FA,•, ιA)
to (A,WA, ιA). We put X�

W,F• := XW,F• ×XW X�
W . The objects of X�

W,F• are the 5-tuples
(A,WA,FA,•, ιA, αA) where (A,WA,FA,•, ιA) is an object in XW,F• and αA is an isomorphism
αA : (L⊗QpA)n

∼−→ DpdR(WA) such that αA ≡ α (mod mA). A morphism (A,WA,FA,•, ιA, αA)→
(A′,WA′ ,FA′,•, ιA′ , αA′) is a morphism (A,WA,FA,•, ιA)→ (A′,WA′ ,FA′,•, ιA′) inXW,F• such that
the following diagram commutes

(L⊗Qp A)n ⊗A A′
αA⊗1−−−−→ DpdR(WA)⊗A A′∥∥∥ o

y
(L⊗Qp A′)n

αA′−−−−→ DpdR(WA′).

Let (A,WA,FA,•, ιA, αA) be an object in X�
W,F• . Recall that the BdR-derivation νBpdR

on BpdR

induces an L ⊗Qp A-linear nilpotent operator νWA
on DpdR(WA). We denote the matrix α−1

A ◦
νWA

◦ αA by NWA
∈Mn(L⊗Qp A) = gL(A). We let DA,• := (DA,i)i with DA,i := DpdR(FA,i).

Lemma 6.1.1. With the above notation (α−1
A (DA,•), NWA

) ∈ g̃P,L(A).

Proof. The P -filtration DA,• is stable by νWA
. It is then sufficient to show that the induced action

of νWA
on DA,i/DA,i−1 is a scalar (in L⊗QpA). Since the FA,i are almost de Rham and the Fi/Fi−1
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are de Rham, we have an isomorphism of E-vector spaces DA,i/DA,i−1
∼= DdR(Fi/Fi−1)⊗L⊗QpE

DpdR(εA,i) which is compatible with νWA
. Hence νWA

is given on DA,i/DA,i−1 by νFi/Fi−1
⊗

id + id⊗νεA,i = id⊗νεA,i , which is the multiplication by the scalar νεA,i ∈ L⊗Qp A.

We denote by ̂̃gP,L the completion of g̃P,L at the point (α−1(D•), NW ) ∈ g̃P,L(E), that we
also see in the obvious way as a functor from Art(E) to sets. If X is a groupoid over Art(E), we
denote by |X| the functor on Art(E) such that |X|(A) is the set of isomorphism classes of the
category X(A) (see [62, Appendix] and [19, § 3.1] for more details). The following proposition
easily follows from [19, Lemma 3.1.4].

Proposition 6.1.2. The groupoid X�
W,F• over Art(E) is pro-representable. The functor

(A,WA,FA,•, ιA, αA) 7−→ (α−1
A (DA,•), NWA

)

induces an isomorphism of functors between |X�
W,F• | and ̂̃gP,L. In particular |X�

W,F• | is pro-
represented by a formally smooth noetherian complete local ring of residue field E and dimension
[L : Qp](dim nP + dim rP ).

Remark 6.1.3. As discussed in [19, § 3.1], the morphism X�
W → |X�

W | is actually an equivalence.
We then easily deduce X�

W,F•
∼−→ |X�

W,F• |.

Since νFi/Fi−1
= 0, the morphism g̃P,L

κP−−→ zLP ,L (cf. § 5.1) induces a morphism ̂̃gP,L κP−−→ ẑLP ,L
where ẑLP denotes the completion of zLP at 0. Consider the following composition of groupoids
over Art(E)

κW,F• : X�
W,F• −→ |X

�
W,F• |

∼−−→ ̂̃gP,L κP−−→ ẑLP ,L. (6.1)

One checks that (6.1) actually factors through

κW,F• : XW,F• −→ ẑLP ,L.

The morphism (6.1) has the following functorial interpretation. Let xA := (WA,FA,•, ιA) ∈
XW,F• , then the endomorphism νWA

on DpdR(WA) induces an endomorphism νA,i on every
DpdR(FA,i)/DpdR(FA,i−1) ∼= DpdR(FA,i/FA,i−1). As in the proof of Lemma 6.1.1, νA,i is a scalar
in L⊗Qp A which is 0 modulo mA. It follows that

κW,F•(xA) = (νA,1, . . . , νA,r) ∈ ẑLP ,L(A). (6.2)

6.2 (ϕ,Γ)-modules of type Ω over RE,L[1
t
]

We study certain groupoids of deformations of a (ϕ,Γ)-module over RE,L[1
t ] equipped with an

Ω-filtration.

Let Ω =
∏r
i=1 Ωi be a cuspidal component of LP (L). Let A ∈ Art(E) and M be a (ϕ,Γ)-

module of rank n over RA,L[1/t]. For i = 1, . . . , r, let xi be a closed point of SpecZΩi and
let ∆xi be the associated p-adic differential equation. We call M of type Ω if there exists a
filtration M• = (Mi)0≤i≤r by (ϕ,Γ)-submodules of M over RA,L[1/t] such that M0 = 0 and
Mi/Mi−1

∼= ∆xi⊗RE,LRA,L(δi)[
1
t ] for some continuous character δi : L× → A×. Such a filtration

M• is called an Ω-filtration of M, and (x, δ) = ((xi),�r
i=1δi) ∈ (SpecZΩ)rig × ẐLP (L) is called a

parameter of M• (compare with Definition 4.1.6).
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Lemma 6.2.1. Let M be a (ϕ,Γ)-module of type Ω over RE,L[1/t] and M• an Ω-filtration of M
of parameter (x, δ). Then all parameters of M• are of the form (x′, δ′) such that, for i = 1, . . . , r,
∆x′i
∼= ∆xi ⊗RE,L RE,L(ψi) and δ′i = δiψ

−1
i ηiz

k for some unramified character ψi of L×, ηi ∈ µΩi

and k ∈ Z|ΣL|.

Proof. We have ∆xi ⊗RE,L RE,L(δi)[1/t] ∼= ∆x′i
⊗RE,L RE,L(δ′i)[1/t] if and only if for sufficiently

large N :
Hom(ϕ,Γ)

(
∆xi , t

−N∆x′i
⊗RE,L RE,L(δ′iδ

−1
i )
)
6= 0

The lemma then follows by the same argument as in the proof of Lemma 4.1.9.

We now fix a (ϕ,Γ)-moduleM over RE,L[1
t ] of type Ω and an Ω-filtrationM•. We define the

groupoid XM,M• over Art(E) as follows:

(1) The objects of XM,M• are the quadruples (A,MA,MA,•, jA) where A ∈ Art(E), MA

is a (ϕ,Γ)-module over RA,L[1
t ] of type Ω, MA,• is an Ω-filtration of MA, and jA is an

isomorphism MA ⊗A E
∼−→M which induces isomorphisms MA,i ⊗A E

∼−→Mi.

(2) A morphism (A,MA,MA,•, jA) → (A′,MA′ ,MA′,•, jA′) is a morphism A → A′ in Art(E)

and an isomorphism MA ⊗A A′
∼−→ MA′ which is compatible with the morphisms jA, jA′

and induces isomorphisms MA,i ⊗A A′
∼−→MA′,i for i = 1, . . . , r.

Lemma 6.2.2. Let (x, δ) be a parameter of M• and (A,MA,MA,•, jA) ∈ XM,M•. There exists
a unique character δA = �r

i=1δA,i : ZLP (L) → A× such that δA,i ≡ δi (mod mA) and (x, δA) is a
parameter of MA,•.

Proof. Let δA = �r
i=1δA,i : ZLP (L) → A× be a continuous character such that MA,i/MA,i−1

∼=
∆xi ⊗RE,L RA,L(δA,i)[

1
t ]. Denote by δA,i : δA,i → A× → E× the reduction of δA,i modulo mA. We

have ∆xi ⊗RE,L RE,L(δA,i)[
1
t ]
∼= ∆xi ⊗RE,L RE,L(δi)[

1
t ]. It follows that

Hom(ϕ,Γ)

(
∆xi , t

−m∆xi⊗RE,LRE,L(δ−1
i δA,i)

)∼=H0
(ϕ,Γ)

(
t−m∆xi⊗RE,L∆∨xi⊗RE,LRE,L(δ−1

i δA,i)
)∼=E

for m � 0. By the same argument as in the proof of Lemma 4.1.9, we see that there exists an
algebraic character χi of L× and ψi ∈ ηΩi such that δA,i = δiψiχi. Since ∆xi [

1
t ]
∼= ∆xi ⊗RE,L

RE,L(ψ−1
i χ−1

i )[1
t ], replacing δA,i by δA,iψ

−1
i χ−1

i , the existence in the lemma follows.

Assume δA, δ′A are two characters satisfying the properties in the lemma. We have an injection

A ↪→ H0
(ϕ,Γ)

(
∆xi ⊗RE,L ∆∨xi ⊗RE,L RA,L(δ−1

A,iδ
′
A,i)
[1

t

])
,

where by definition H0
(ϕ,Γ)(N ) := Hom(ϕ,Γ)(RA[1/t],N ) for a (ϕ,Γ)-module N over RA,L[1/t]

(see [19, § 3.3] for the cohomology of (ϕ,Γ)-modules over RE,L[1/t]). We write ∆xi ⊗RE,L ∆∨xi
∼=

RE,L ⊕ (∆xi ⊗RE,L ∆∨xi)
0, and we have H0

(ϕ,Γ)((∆xi ⊗RE,L ∆∨xi)
0[1
t ]) = 0 (using [19, (3.11)]). By

an easy dévissage on A, we deduce that

H0
(ϕ,Γ)

(
∆xi ⊗RE,L ∆∨xi ⊗RE,L RA,L(δ−1

A,iδ
′
A,i)
[1

t

])
∼= H0

(ϕ,Γ)

(
RA,L(δ−1

A,iδ
′
A,i)
[1

t

])
.

By [19, Lemma 3.3.4] and δA,i ≡ δ′A,i (mod mA), we must have δA,i = δ′A,i.
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Let δ be a continuous character of ZLP (L), that we also view as a point of ẐLP (L). We denote

by ẐLP (L)δ the completion of ẐLP (L) at δ. It is easy to see that the functor

A ∈ Art(E) 7−→ {δA = �r
i=1δA,i : ZLP (L)→ A×, δA,i ≡ δi (mod mA)}

is pro-represented by ẐLP (L)δ. By Lemma 6.2.2, we have a morphism of groupoids over Art(E):

ωδ : XM,M• −→ ẐLP (L)δ, (A,MA,MA,•, jA) 7−→ δA.

Recall we have a functor WdR from the category of (ϕ,Γ)-module over RE,L[1
t ] to the category

of BdR ⊗Qp E-representations of GalL (cf. [19, Lemma 3.3.5 (ii)]). Moreover, by loc. cit., for
A ∈ Art(E), WdR sends a (ϕ,Γ)-module of rank n over RA,L[1

t ] to a BdR ⊗Qp A-representation
of GalL of rank n. Let W := WdR(M) and Fi := WdR(Mi). Assume that for one parameter
(equivalently all parameters) (x, δ) ofM•, we have that δi is locally algebraic for all i. Then it is
easy to see thatWdR(Mi/Mi−1) ∼= WdR(Mi)/WdR(Mi−1) is de Rham

(
hence∼= (BdR⊗QpE)⊕ni

)
.

For (A,MA,MA,•, jA) ∈ XM,M• , let WA := WdR(MA) and F•,i := WdR(MA,i). If (x, δA) is a
parameter of MA,•, then we have

FA,i/FA,i−1
∼= WdR(MA,i/MA,i−1) ∼= WdR

(
∆xi

[1

t

])
⊗BdR⊗QpE WdR

(
RA,L(δA,i)

[1

t

])
, (6.3)

where, for the last isomorphism, we use [5, Prop. 2.2.6 (2)] and the fact that WdR(D[1
t ]) =

W+
dR(D)[1

t ] for a (ϕ,Γ)-module D over RE,L. Let ιA be the composition

ιA : WdR(MA)⊗A E
∼−−→WdR(MA ⊗A E)

∼−−→WdR(M)

where the last isomorphism is induced by jA. By (6.3), we see that (WA,FA,•, ιA) ∈ XW,F• ,
so WdR defines a morphism XM,M• → XW,F• . Let XM be the groupoid over Art(E) defined as
XM,M• but forgetting everywhere the Ω-filtrations. It is easy to see that WdR defines a morphism
of groupoids XM → XW , and that the following diagram of groupoids commutes

XM,M•
WdR−−−−→ XW,F•y y

XM
WdR−−−−→ XW .

We fix an isomorphism α : (L⊗Qp E)n
∼−→ DpdR(W ), so we have the groupoids X�

W , X�
W,F• over

Art(E) (cf. § 6.1). We put

X�
M := XM ×XW X�

W ,
X�
M,M• := XM,M• ×XW,F• X

�
W,F•

∼= XM,M• ×XW X�
W

(6.4)

and note that X�
M → XM, X�

M,M• → XM,M• are formally smooth of relative dimension [L :

Qp]n2 by base change. We fix a parameter (x, δ) of M•. For A ∈ Art(E), the natural map

δA = �r
i=1δA,i 7−→ (wt(δA,i)− wt(δi)) ∈ (L⊗Qp A)r ∼= ẑLP ,L(A)

induces a morphism of formal schemes wt−wt(δ) : ẐLP (L)δ → ẑLP ,L.
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Proposition 6.2.3. The following diagram of groupoids over Art(E) is commutative:

XM,M•
WdR−−−−→ XW,F•

ωδ

y κW,F•

y
ẐLP (L)δ

wt−wt(δ)−−−−−−→ ẑLP ,L.

Proof. The proposition follows from (6.2) and [19, Lemma 3.3.6 (ii)] (which trivially generalizes
to the case M = RA,L(δ)[1

t ]
⊕m).

We call a parameter (x, δ) of M• generic if the following condition is satisfied:

for i 6= j, if ∆xi
∼= ∆xj ⊗RE,L RE,L(ψ) for some smooth character ψ of L×, then

δiδ
−1
j ψ 6= zk and δiδ

−1
j ψ 6= unr(q−1

L )zk for any k ∈ Z|ΣL|. (6.5)

By Lemma 6.2.1, if M• admits a generic parameter, then any parameter of M• is generic,
and in this case we call M• (or even M if M• is understated) generic.

Remark 6.2.4. (1) Let D be a (ϕ,Γ)-module of rank n over RE,L such that D[1
t ]
∼= M. The

Ω-filtration M• on M induces then an Ω-filtration F on D. It is straightforward to check that if
M• is generic then F is generic in the sense of (4.13).

(2) Let ρ as in § 2.3 and use the notation of loc. cit. The Ω-filtration F onM(ρ) ∼= Drig(ρ)[1
t ]

is generic if and only if ρ is generic.

For 1 ≤ i, j ≤ r, i 6= j, denote by N 0
i,j := ∆xi⊗RE,L ∆∨xj⊗RE,LRE,L(δiδ

−1
j ) and Ni,j := N 0

i,j [
1
t ].

Lemma 6.2.5. Assume (x, δ) is a generic parameter of M• and let 1 ≤ i, j ≤ r, i 6= j.

(1) We have H0
(ϕ,Γ)(Ni,j) = H2

(ϕ,Γ)(Ni,j) = 0 and

dimE H
1
(ϕ,Γ)(Ni,j) = [L : Qp]ninj .

(2) Suppose that δ is locally algebraic, then the natural morphism

H1
(ϕ,Γ)(Ni,j) −→ H1

(
GalL,WdR(Ni,j)

)
(6.6)

is an isomorphism.

(3) Suppose that δ is locally algebraic and let A ∈ Art(E), δA,i, δA,j : L× → A× be continu-
ous characters such that δA,i ≡ δi, δA,j ≡ δj (mod mA), and Ni,j,A := ∆xi ⊗RE,L ∆∨xj ⊗RE,L
RE,L(δA,iδ

−1
A,j)[

1
t ]. Then the natural morphism

H1
(ϕ,Γ)(Ni,j,A) −→ H1

(
GalL,WdR(Ni,j,A)

)
is surjective.

Proof. (1) We claim that for s = {0, 1, 2},

Hs
(ϕ,Γ)(Ni,j) ∼= Hs

(ϕ,Γ)(t
−kN 0

i,j) for k sufficiently large. (6.7)
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Indeed, identifying the cohomology of (ϕ,Γ)-modules and the Galois cohomology of B-pairs (see
for example [73, § 3]), we deduce from the morphism t−kN 0

i,j ↪→ t−k−1N 0
i,j a long exact sequence

0→ H0
(ϕ,Γ)(t

−kN 0
i,j)→ H0

(ϕ,Γ)(t
−k−1N 0

i,j)→ H0
(ϕ,Γ)(t

−k−1N 0
i,j/t

−kN 0
i,j)

→ H1
(ϕ,Γ)(t

−kN 0
i,j)→ H1

(ϕ,Γ)(t
−k−1N 0

i,j)→ H1
(ϕ,Γ)(t

−k−1N 0
i,j/t

−kN 0
i,j)

→ H2
(ϕ,Γ)(t

−kN 0
i,j)→ H2

(ϕ,Γ)(t
−k−1N 0

i,j)→ H2
(ϕ,Γ)(t

−k−1N 0
i,j/t

−kN 0
i,j). (6.8)

By [66, Thm. 4.7], we have H2
(ϕ,Γ)(t

−k−1N 0
i,j/t

−kN 0
i,j) = 0 and

dimE H
0
(ϕ,Γ)(t

−k−1N 0
i,j/t

−kN 0
i,j) = dimE H

1
(ϕ,Γ)(t

−k−1N 0
i,j/t

−kN 0
i,j).

By [15, Lemma 5.1.1], we have

H0
(ϕ,Γ)(t

−k−1N 0
i,j/t

−kN 0
i,j)
∼= H0

(
GalL, t

−k−1W+
dR(N 0

i,j)/t
−kW+

dR(N 0
i,j)
)
.

As ∆xi ⊗RE,L ∆∨xj is de Rham of constant Hodge-Tate weight 0, it follows that W+
dR(N 0

i,j)
∼=

W+
dR

(
RE,L(δiδ

−1
j )
)⊕ninj , hence

H0
(

GalL, t
−k−1W+

dR(N 0
i,j)/t

−kW+
dR(N 0

i,j)
)

∼= H0
(

GalL, t
−k−1W+

dR

(
RE,L(δiδ

−1
j )
)
/t−kW+

dR

(
RE,L(δiδ

−1
j )
))⊕ninj .

By [73, Lemma 2.16], the latter is zero when k is sufficiently large. We conclude that
Hs

(ϕ,Γ)(t
−k−1N 0

i,j/t
−kN 0

i,j) = 0 for s = {0, 1, 2} and k sufficiently large. By (6.8) and [19, (3.11)],

(6.7) follows. Then (1) follows easily from the proof of Lemma 4.1.12 (see also Remark 6.2.4) and
[66, Thm. 1.2 (1)].

(2) Since both sides of (6.6) have dimension [L : Qp]ninj over E, it suffices to show that
the map is injective. By (6.7), it is enough to show that H1

g (t−kN 0
i,j) := Ker[H1(t−kN 0

i,j) →
H1(GalL,WdR(Ni,j))] is zero when k is sufficiently large. Put

H1
e

(
tk(N 0

i,j)
∨ ⊗RE,L RE,L(χcyc)

)
:= Ker

[
H1

(ϕ,Γ)

(
tk(N 0

i,j)
∨ ⊗RE,L RE,L(χcyc)

) f−−→ H1
(

GalL,We(Ni,j ⊗RE,L RE,L(χcyc))
)]

where We(D) denotes the Be-module associated to a (ϕ,Γ)-module D, see [5, Prop. 2.2.6 (1)]. By
[73, Prop. 2.11], we only need to show f is zero for k sufficiently large. Let s be an integer small
enough so that ts(N 0

i,j)
∨ ⊗RE,L RE,L(χcyc) has only negative Hodge-Tate weights. For k ≥ s, the

morphism f factors through (see the discussion below [19, (3.22)])

H1
(ϕ,Γ)(t

k(N 0
i,j)
∨ ⊗RE,L RE,L(χcyc)) −→ H1

(ϕ,Γ)(t
s(N 0

i,j)
∨ ⊗RE,L RE,L(χcyc)). (6.9)

By (an easy generalization of) Lemma 4.1.12, and [66, Thm. 1.2 (1)], dimE H
1
(ϕ,Γ)(t

k(N 0
i,j)
∨⊗RE,L

RE,L(χcyc)) = [L : Qp]ninj . Using the cohomology of B-pairs (cf. [73, § 3]), we see that the map
in (6.9) lies in the following long exact sequence, where W+ := W+

dR((N 0
i,j)
∨ ⊗RE,L RE,L(χcyc)):

0 −→ H0
(ϕ,Γ)

(
tk(N 0

i,j)
∨ ⊗RE,L RE,L(χcyc)

)
−→ H0

(ϕ,Γ)

(
ts(N 0

i,j)
∨ ⊗RE,L RE,L(χcyc)

)
−→ H0(GalL, t

sW+/tkW+) −→ H1
(ϕ,Γ)

(
tk(N 0

i,j)
∨ ⊗RE,L RE,L(χcyc)

)
−→ H1

(ϕ,Γ)

(
ts(N 0

i,j)
∨ ⊗RE,L RE,L(χcyc)

)
.
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By the same argument as in the proof of Lemma 4.1.12, it follows that the terms H0
(ϕ,Γ)(•) are

both zero. When k � s, it is easy to see that dimE H
0(GalL, t

sW+/tkW+) = [L : Qp]ninj , hence
(6.9) and the map f are both zero. This concludes the proof of (2).

By dévissage, (3) follows from (2) together with the fact the functor W 7→ H1(GalL,W ), on
almost de Rham representations of GalL over BdR ⊗Qp E, is right exact (see for example the
discussion below [19, (3.19)]).

Theorem 6.2.6. Assume (x, δ) is a generic parameter of M• such that δ is locally algebraic.
The induced morphism of groupoids over Art(E)

XM,M• −→ ẐLP (L)δ ×ẑLP ,L
XW,F•

is formally smooth.

Proof. The theorem follows by the same argument as in the proof of [19, Thm. 3.4.4] with Lemma
3.4.2 and Lemma 3.4.3 of loc. cit. replaced by Lemma 6.2.5.

Corollary 6.2.7. With the assumption of Theorem 6.2.6, the morphisms XM,M• → XW,F• and
X�
M,M• → X�

W,F• are formally smooth.

Proof. By [19, Lemma 3.5.5], the morphism wt−wt(δ) : ẐLP (L)δ → ẑLP ,L is formally smooth of
relative dimension r. Together with Theorem 6.2.6, the first part of the corollary follows. The
second part follows from the first part by base change.

The following proposition is analogous to [19, Prop. 3.4.6] (for a closed immersion of groupoids
over Art(E), see the discussion before [19, Prop. 3.4.6]).

Proposition 6.2.8. Assume thatM• is generic, then the morphism XM,M• → XM of groupoids
over Art(E) is relatively representable and is a closed immersion.

Proof. SinceM• is generic, using Lemma 6.2.5 (1) and an argument analogous to [3, Prop. 2.3.6],
an Ω-filtration MA,• on a deformation MA of M is unique if it exists. We deduce that |XM,M• |
is a subfunctor of |XM| and that we have an equivalence of groupoids over Art(E):

XM,M•
∼= XM ×|XM| |XM,M• |.

Hence we only need to show that |XM,M• | ↪→ |XM| is relatively representable. By [69, § 23], it
is enough to check the following three conditions:

(1) If A → A′ is a morphism in Art(E) and (MA,MA,•, jA) ∈ |XM,M• |(A), then (MA ⊗A
A′,MA,• ⊗A A′, jA ⊗A A′) ∈ |XM,M• |(A′).

(2) If A → A′ is an injective morphism in Art(E), (MA, jA) ∈ |XM|(A), and if (MA ⊗A
A′, jA ⊗A A′) ∈ |XM,M• |(A′) ↪→ |XM|(A′), then (MA, jA) ∈ |XM,M• |(A).

(3) If A,A′ ∈ Art(E), (MA, jA) ∈ |XM,M• |(A) and (MA′ , jA′) ∈ |XM,M• |(A′), then (MA ×M
MA′ , jA×EA′ := jA ◦ pr1 = jA′ ◦ pr2) ∈ |XM,M• |(A×E A′).
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(1) is clear. For (3), we just note that MA×EA′ := MA ×M MA′ admits the Ω-filtration
MA×EA′,i := MA,i ×Mi MA′,i. We prove (2). Let MA,1 := MA′,1 ∩ MA: this is a (ϕ,Γ)-
module over RE,L[1

t ] (as it is a submodule of MA) which is equipped with an action of A. By
an easy variation of the proof of Proposition 4.1.3, one can show that there exists a continuous
character δA,1 : L× → A× such that δA,1 ≡ δ1 (mod mA) andMA,1

∼= ∆x1 ⊗RE,L RA,L(δA,1)[1/t].
As MA/MA,1 ↪→ MA′/MA′,1 and MA′/MA′,1 is free over RE,L[1/t], so is MA/MA,1. By [3,
Lemma 2.2.3 (i)], MA/MA,1 is free over A. It follows by [3, Lemma 2.2.3 (ii)] that MA/MA,1

(↪→ MA′/MA′,1) is free over RA,L[1
t ]. Using MA/MA,1 ↪→ MA′/MA′,1, by an induction argu-

ment, we can construct the desired filtrationMA,i onMA, and hence (MA, jA) ∈ |XM,M• |(A) ↪→
|XM|(A). This concludes the proof.

By [19, Lemma 3.5.3 (i)] and the same argument as in the proof of loc. cit., we have (where
the third relative representability follows from the second one by base change):

Lemma 6.2.9. Assume that M• is generic, the morphisms XM → XW , XM,M• → XW,F• and
X�
M,M• → X�

W,F• are relatively representable.

Proposition 6.2.10. Assume thatM• is a generic, then the groupoid X�
M,M• over Art(E) is pro-

representable. The functor |X�
M,M• | is pro-represented by a formally smooth noetherian complete

local ring of residue field E and dimension [L : Qp](n2 + dimE rP ).

Proof. The first statement follows from Lemma 6.2.9 and Proposition 6.1.2. By Proposition 6.1.2
and Corollary 6.2.7, |X�

M,M• | is pro-represented by a formally smooth noetherian complete local

ring of residue field E. We only need to calculate |X�
M,M• |(E[ε]/ε2).

Assume that (x, δ) is a parameter of M•. For each i = 1, . . . , r, we fix an isomorphism
βi : ∆xi ⊗RE,L RE,L(δi)[

1
t ]
∼−→Mi/Mi−1. As in the proof of [19, Prop. 3.5.7], we introduce a new

groupoid Xver
M,M• over Art(E):

(1) The objects of Xver
M,M• are the 5-tuples (A,MA,MA,•, jA, βA), where (A,MA,MA,•, jA)

is an object of XM,M• and β
A

= (βA,i) is a collection of isomorphisms βA,i : ∆xi ⊗RE,L
RA,L(δA,i)[

1
t ]
∼−→MA,i/MA,i−1 (where δA,i is as in Lemma 6.2.2) which are compatible with

jA and β = (βi).

(2) A morphism in Xver
M,M• is a morphism in XM,M• which is compatible with the liftings of β.

We have |Xver
M,M• | ∼= Xver

M,M• . For each i ∈ {1, . . . , r}, we also use M• to denote the induced
filtration on Mi, and we define Xver

Mi,M•
∼= |Xver

Mi,M• | similarly to Xver
M,M•

∼= |Xver
M,M• |. We first

use an induction argument on i (inspired by the proof of [30, Thm. 3.3]) to show that the functor
|Xver
Mi,M• | is pro-represented by a formally smooth noetherian complete local ring of residue field

E. It is easy to see that |Xver
M1,M• | is pro-represented by Ô

L̂×,δ1
∼= E[[x1, . . . , x[L:Qp]+1]]. Assume

that |Xver
Mi−1,M• | is pro-represented by a formally smooth noetherian complete local ring Ri−1 of

residue field E and dimension

i− 1 + [L : Qp]
(
i− 1 +

∑
1≤j<j′≤i−1

njn
′
j

)
.

Let Si denote the completion of Ri−1 ⊗E ÔL̂×,δi with respect to the maximal ideal generated by

the maximal ideal of Ri−1 and the one of Ô
L̂×,δi

. So Si is a noetherian complete local ring which
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is formally smooth over E of dimension i+ [L : Qp](i− 1 +
∑

1≤j<j′≤i−1 njn
′
j). For any morphism

Si → A with A ∈ Art(E), let MA,i−1 be the (ϕ,Γ)-module over RA,L[1
t ] given by the pull-back

along Ri−1 → Si → A of the universal (ϕ,Γ)-module over RRi−1,L[1
t ], and let δA,i be the character

L× → Ô×
L̂×,δi

→ S×i → A×. Let

Ni := lim←−
A∈Art(E)
Si�A

Ext1
(ϕ,Γ)

(
∆xi ⊗RE,L RA,L(δA,i)

[1

t

]
,MA,i−1

)
.

SinceM• is generic, we deduce by Lemma 6.2.5 (1) (and a dévissage) that Ni is a free Si-module
of rank [L : Qp](ni

∑i−1
j=1 nj). By definition, [Mi] ∈ Ext1

(ϕ,Γ)(∆xi ⊗RE,L RE,L(δi)[1/t],Mi−1),
which corresponds then to a maximal ideal mi with residue field E of the polynomial Si-algebra
SymmSi N

∨
i . We let Ri be the completion of SymmSi N

∨
i at mi. Thus

Ri ∼= E
[[
x1, . . . , xi+[L:Qp](i+

∑
1≤j<j′≤i njn

′
j)

]]
and one can directly check that |Xver

Mi,M• | is pro-represented by Ri. In particular |Xver
M,M• | is pro-

represented by a formally smooth noetherian complete local ring of dimension r+ [L : Qp] dim rP .

Now we define X�,ver
M,M• as X�

M,M•×XM,M• X
ver
M,M• . Since Xver

M,M•
∼= |Xver

M,M• | is pro-represen-

table, it is easy to see that X�,ver
M,M• is pro-representable (by adding formal variables corresponding

to the framing α). The morphism X�,ver
M,M• → Xver

M,M• is formally smooth of relative dimension

n2[L : Qp]. As X�,ver
M,M• can be constructed from X�

M,M• by adding frames (with respect to β)
and End(ϕ,Γ)(∆xi ⊗RE,L RA,L(δA,i)[1/t]) ∼= A (which follows from the proof of Lemma 6.2.2), the

morphism X�,ver
M,M• → X�

M,M• is formally smooth of relative dimension r. We then compute:

dimE |X�
M,M• |(E[ε]/ε2) = n2[L : Qp] + (r + [L : Qp]rP )− r = [L : Qp](n2 + dim rP )

which concludes the proof.

6.3 (ϕ,Γ)-modules of type Ω over RE,L

We study certain groupoids of deformations of a (ϕ,Γ)-module over RE,L equipped with an Ω-
filtration. We keep the notation of § 6.2.

Let D be a (ϕ,Γ)-module of rank n over RE,L and M := D[1
t ]. Let W+ := W+

dR(D) be the
associated B+

dR ⊗Qp E-representation of GalL and W := WdR(M) ∼= W+[1
t ]. Assume that W is

almost de Rham. We define the groupoids XD, XW+ over Art(E) of deformations of (respectively)
D, W+ as in [19, § 3.5]. Recall that we have natural morphisms XD → XW+ (induced by the
functor W+

dR(−)) and XD → XM, XW+ → XW (inverting t), and that the following diagram
commutes:

XD −−−−→ XMy y
XW+ −−−−→ XW .

By [19, Prop. 3.5.1], the induced morphism XD → XM ×XW XW+ is an equivalence. Fix an
isomorphism α : (L⊗Qp E)n

∼−→ DpdR(W ) so we have the groupoid X�
W over Art(E) (§ 6.1 or [19,

§ 3.1]). We put
X�
W+ := XW+ ×XW X�

W , X
�
D := XD ×XW X�

W .
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We assume that D has distinct Sen weights (h1,τ > h1,τ > · · · > hn,τ )τ∈ΣL . Then W+ is
regular in the sense of [19, Def. 3.2.4]. Let (A,W+

A , ιA, αA) ∈ X�
W+ and WA := W+

A [1/t], then
the B+

dR ⊗Qp A-lattice W+
A of WA induces a complete flag FilW+

A ,•
= FilW+

A ,•
(DpdR(WA)) :=

(FilW+
A ,i

(DpdR(WA)))i=1,...,n of DpdR(WA) by the formula

FilW+
A ,i

(DpdR(WA)) :=
⊕
τ∈ΣL

Fil
−hn+1−i,τ

W+
A

(DpdR,τ (WA)) :=
⊕
τ∈ΣL

(t−hn+1−i,τW+
A )GalL

τ ,

where

DpdR,τ (WA) := DpdR(WA)⊗L⊗QpE (L⊗L,τ E)

(t−hn+1−i,τW+
A )τ := t−hn+1−i,τ

(
W+
A ⊗L⊗QpE (L⊗L,τ E)

)
.

Since the flag FilW+
A ,•

is stable under the endomorphism νWA
of DpdR(WA) (see § 6.1), it follows

that we have: (
α−1
A (FilW+

A ,•
), NWA

= α−1
A ◦ νWA

◦ αA
)
∈ g̃L(A).

Denote by ̂̃gL the completion of g̃L at (α−1(FilW+,•), NW ). By [19, Thm. 3.2.5], X�
W+ is pro-

representable and we have an isomorphism of functors

|X�
W+ | ∼−−→ ̂̃gL, (W+

A , ιA, αA) 7−→
(
α−1
A (FilW+

A ,•
), NWA

)
.

Consider the composition

κW+ : X�
W+ −→ |X�

W+ | ∼−−→ ̂̃gL κB−−→ t̂L

where t̂L denotes the completion of tL at 0 (and κB is defined in (5.6)). The morphism κW+

factors through a map still denoted by κW+ : XW+ −→ t̂L.

We call D of type Ω if D admits an Ω-filtration D• (see Definition 4.1.6 (1)). The Di for
i = 1, . . . , r are saturated (ϕ,Γ)-submodules of D and M• := (Mi)0≤i≤r := (Di[

1
t ])0≤i≤r is an

Ω filtration of M as in § 6.2. We assume that M• is generic (which implies that D• is generic,
see Remark 6.2.4 (1)). Assume D is of type Ω and let D• be an Ω-filtration of D. We put
F• := WdR(M•) = W+

dR(D•)[
1
t ] and define the following groupoids over RE,L

XW+,F• := XW+ ×XW XW,F• , X�
W+,F• := XW+,F• ×XW X�

W = XW+ ×XW X�
W,F• ,

XD,M• := XD ×XM XM,M• , X�
D,M• := XD,M• ×XD X

�
D = XD,M• ×XW X�

W ,

where we have used X�
D = XD ×XW X�

W .

Proposition 6.3.1. The morphisms of groupoids XD,M• → XW+,F• and X�
D,M• → X�

W+,F are
formally smooth and relatively representable.

Proof. Since XD
∼= XM×XWXW+ , we have XD,M•

∼= (XW+×XWXM)×XMXM,M•
∼= XW+×XW

XM,M• . The first part then follows by base change from Lemma 6.2.9 and Corollary 6.2.7. The
second part follows from the first again by base change.

We define:

D• := (Di)1≤i≤r := (DpdR(Fi))1≤i≤r =
(
DpdR(WdR(Mi))

)
1≤i≤r.

Using XP,L
∼= g̃P,L ×gL g̃L, we have:

y :=
(
α−1(D•), α−1(FilW+,•), NW

)
∈ XP,L(E). (6.10)
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Proposition 6.3.2. (1) The groupoid X�
W+,F• over Art(E) is pro-representable. The

functor |X�
W+,F• | is pro-represented by the formal scheme X̂P,L,y.

(2) The groupoid X�
D,M• over Art(E) is pro-representable. The functor |X�

D,M• | is pro-
represented by a formal scheme which is formally smooth of relative dimension [L : Qp] dim p

over X̂P,L,y.

Proof. (1) follows by the same argument as in the proof of [19, Cor. 3.5.8] (with [19, Cor. 3.1.9]
replaced by Proposition 6.1.2). Using XD,M•

∼= XW+ ×XW XM,M• and XW+,F• = XW+ ×XW
XW,F• , we deduce XD,M•

∼= XW+,F• ×XW,F• XM,M• and thus:

X�
D,M•

∼= X�
W+,F• ×XW,F• XM,M•

∼= X�
W+,F• ×X�

W,F•
X�
M,M• . (6.11)

The first part of (2) follows from (1) and Proposition 6.3.1. From (6.11) and the fact that, for each
groupoid Y in the fibre product on the right hand side of (6.11), we have Y ∼= |Y | (see Remark
6.1.3 for X�

W,F• , the others being similar), we deduce |X�
D,M• | ∼= |X

�
W+,F• | ×|X�

W,F• |
|X�
M,M• |. By

Corollary 6.2.7, Proposition 6.1.2 and Proposition 6.2.10, the functor |X�
M,M• | is formally smooth

over |X�
W,F• | of relative dimension

[L : Qp](n2 + dim rP )− [L : Qp](dim nP + dim rP ) = [L : Qp] dim p.

The second part of (2) then follows by base change from the above fiber product.

For w = (wτ )τ∈ΣL ∈ WL
∼= W |ΣL|, let Xw :=

∏
τ∈ΣL

Xwτ ↪→ XP,L, where Xwτ ↪→ XP is
defined as in § 5.2. This is an irreducible component of XP,L which only depends on the coset

WLP ,Lw. We put (using Proposition 6.3.2 (1) and with X̂w,y empty if y /∈ Xw):

X�,w
W+,F• := X�

W+,F• ×|X�
W+,F•

| X̂w,y. (6.12)

Corollary 6.3.3. The groupoid X�,w
W+,F• over Art(E) is pro-representable. The functor |X�,w

W+,F• |
is pro-represented by the formal scheme X̂w,y.

Proof. This follows from (6.12) and the equivalence of groupoids X�
W+,F•

∼−→ |X�
W+,F• |.

We define the groupoid Xw
W+,F• over Art(E) as the subgroupoid of XW+,F• which is the image

of X�,w
W+,F• by the forgetful morphism X�

W+,F• → XW+,F• . Thus, for A ∈ Art(E), the objects of

Xw
W+,F•(A) are the quadruples (W+

A ,FA,•, ιA, jA) in XW+,F•(A) such that(
α−1
A (FilW+

A ,•
), α−1

A (DA,•), α−1
A ◦ νWA

◦ αA
)
∈ Xw(A)

for one (equivalently any) isomorphism αA : (L⊗Qp A)
∼−→ DpdR(WA). As in [19, (3.26)] there is

an equivalence of groupoids X�,w
W+,F•

∼−→ Xw
W+,F• ×XW+,F•

X�
W+,F• . We define then

X�,w
D,M• := X�

D,M• ×X�
W+,F•

X�,w
W+,F• and Xw

D,M• := XD,M• ×XW+,F•
Xw
W+,F• . (6.13)

Proposition 6.3.4. The morphisms of groupoids Xw
W+,F• → XW+,F•, X

�,w
W+,F• → X�

W+,F•,

Xw
D,M• → XD,M• and X�,w

D,M• → X�
D,M• are relatively representable and are closed immersions.
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Proof. The proposition follows by the same argument as in the proof of [19, Prop. 3.5.10] with
[19, (3.25)] replaced by (6.12).

Define
S(y) := {w ∈ WL | y ∈ Xw(E)} = {w ∈ WL | X̂w,y 6= ∅}

= {w ∈ WL | Xw
W+,F• 6= 0} = {w ∈ WL | Xw

D,M• 6= 0}. (6.14)

Each groupoid Y in the isomorphism X�,w
D,M•

∼= X�
D,M• ×X�

W+,F•
X�,w
W+,F• is equivalent to the

associated functor |Y | (as all the automorphisms of an object in the groupoid are trivial). Hence
|X�,w

D,M• | ∼= |X
�
D,M• | ×|X�

W+,F•
| |X

�,w
W+,F• |. From Proposition 6.3.2 and Corollary 6.3.3, we deduce:

Corollary 6.3.5. If w ∈ S(y), the functor |X�,w
D,M• | is pro-representable by a noetherian complete

local E-algebra which is formally smooth of relative dimension [L : Qp] dim p over X̂w,y.

The map (κB, κP ) : XP,L → tL ×tL/WL zLP ,L = TP,L induces a morphism X̂P,L,y → T̂P,L,(0,0).
Denote by Θ the composition

X�
D,M• −→ X�

W+,F•
∼−−→ |X�

W+,F• |
∼−−→ X̂P,L,y −→ T̂P,L,(0,0),

which factors through a morphism still denoted by Θ : XD,M• → T̂P,L,(0,0). By Lemma 5.2.7, we
have

Corollary 6.3.6. Let w ∈ S(y) and w′ ∈ WL, then the morphisms X�,w
D,M• ↪→ X�

D,M• → T̂P,L,(0,0)

and Xw
D,M• ↪→ XD,M• → T̂P,L,(0,0) of groupoids over Art(E) induced by Θ factor through the

embedding T̂w′,(0,0) ↪→ T̂P,L,(0,0) if and only if WLP ,Lw
′=WLP ,Lw.

6.4 Galois representations and Bernstein paraboline varieties

We show that the completed local rings of the Bernstein paraboline varieties at generic points of
distinct integral weights can be described (up to formally smooth morphisms) by completed local
rings on the variety XP,L.

Let ρ : GalL → GLn(E) be a continuous group morphism and let V be the associated repre-
sentation of GalL. Let Xρ be the groupoid over Art(E) of deformations of the group morphism
ρ, and XV be the groupoid over Art(E) of deformations of the representation V (so Xρ can be
viewed as the groupoid of framed deformations of V ). The natural morphism Xρ → XV is rel-
atively representable and formally smooth of relative dimension n2. Let D := Drig(V ), we have
then an equivalence XV

∼−→ XD. The morphism Xρ → |Xρ| is an equivalence. In fact, this holds
for any groupoid with “ρ” in subscript in this section.

Assume that D is almost de Rham with distinct Sen weights and that D admits a generic
Ω-filtration. Let M• be a generic Ω-filtration on M = D[1

t ] (recall Ω is fixed in § 6.2) and put
XV,M• := XV ×XDXD,M• , Xρ,M• := Xρ×XV XV,M•

∼= Xρ×XMXM,M• . Note that Xρ,M• → Xρ

is a closed immersion by Proposition 6.2.8 and base change. For w ∈ WL, we put

Xw
V,M• := XV ×XD X

w
D,M• and Xw

ρ,M• := Xρ ×XV X
w
V,M•

(where we use W+ := W+
dR(D) ∼= B+

dR⊗Qp V in the definition of Xw
D,M• , see (6.13)). Let y ∈ XP,L

be as in (6.10) and S(y) as in (6.14).
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Theorem 6.4.1. (1) The functor |Xρ,M• | (resp. |Xw
ρ,M• | for w ∈ S(y)) is pro-representable by

an equidimensional noetherian complete local ring Rρ,M• (resp. Rwρ,M•) of residue field E and

dimension n2 + [L : Qp](n(n−1)
2 + r). If ρ is moreover de Rham5, then Rwρ,M•

∼= Rρ,M•/pw for a
minimal prime ideal pw of Rρ,M•. Finally, in this case, the map w 7→ pw is a bijection between
S(y) and the set of minimal prime ideals of Rρ,M•.

(2) The morphism |Xw′
ρ,M• | → |X

w′
V,M• | ↪→ |XV,M• | ∼= |XD,M• |

Θ−→ T̂P,L,(0,0) of groupoids over

Art(E) factors through T̂w,(0,0) ↪→ T̂P,L,(0,0) if and only if WLP ,Lw
′ = WLP ,Lw.

Proof. (1) We have Xρ,M•
∼= Xρ ×XM XM,M• . By Proposition 6.2.8 and the fact that Xρ is

pro-representable, we deduce that Xρ,M• is pro-representable. We have Xρ,M•
∼−→ |Xρ,M• | and

we let Rρ,M• be the noetherian complete local ring which pro-represents |Xρ,M• |. Define

X�
ρ,M• := Xρ,M• ×XM,M• X

�
M,M•

∼= Xρ ×XM X�
M,M•

which is formally smooth of relative dimension [L : Qp]n2 over Xρ,M• by base change (see (6.4)).
Since Xρ → XV

∼= XD is relatively representable and formally smooth of relative dimension n2,
so is the morphism X�

ρ,M• → XD ×XM X�
M,M•

∼= X�
D,M• . Together with Proposition 6.3.2 and

Corollary 5.2.2, we deduce that Rρ,M• is equidimensional and

dimRρ,M• = n2 + ([L : Qp] dim p) +
(

[L : Qp]
(n(n− 1)

2
+ dim rP

))
− n2[L : Qp]

= n2 + [L : Qp]
(n(n− 1)

2
+ r
)
. (6.15)

Let X�,w
ρ,M• := Xw

ρ,M• ×XM,M• X
�
M,M•

∼= X�,w
D,M• ×XD Xρ. As Xρ is relatively representable

over XD, we deduce by Corollary 6.3.5 (and the fact X�,w
D,M•

∼−→ |X�,w
D,M• |) that X�,w

ρ,M• is pro-

representable. It is also easy to see X�,w
ρ,M•

∼−→ |X�,w
ρ,M• |. As Xρ is formally smooth of relative

dimension n2 over XD, using Corollary 6.3.5 again we have formally smooth morphisms (the first
of relative dimension [L : Qp]n2, the second of relative dimension n2 + [L : Qp] dim p)

|Xw
ρ,M• | ←− |X

�,w
ρ,M• | −→ X̂w,y. (6.16)

As Xw
ρ,M•

∼= Xw
D,M•×XD,M•Xρ,M• , by (6.15), Proposition 6.3.4 and (6.16) (and the fact Xw

ρ,M•
∼−→

|Xw
ρ,M• |), it follows that |Xw

ρ,M• | is pro-representable by a (reduced) local complete noetherian

ring of residue field E and dimension n2 +[L : Qp](n(n−1)
2 +r). When ρ is de Rham, the parameter

NW in y is zero, hence ÔXw,y is a domain by Theorem 5.3.1. The second part of (1) follows. Using
Corollary 5.2.2, the last part of (1) also follows. Part (2) follows easily from Corollary 6.3.6.

Corollary 6.4.2. For w ∈ S(y), we have

dimE |Xw
ρ,M• |(E[ε]/ε2) = [L : Qp] dim p + n2 − n2[L : Qp] + dimE X̂w,y(E[ε]/ε2).

Proof. The groupoid X�,w
ρ,M• is formally smooth of relative dimension n2 over X�,w

V,M•
∼= X�,w

D,M• ,

and is formally smooth of relative dimension [L : Qp]n2 over Xw
ρ,M• . We have Y

∼−→ |Y | for

5Or equivalently potentially crystalline as D admits a generic Ω-filtration.
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Y ∈ {X�,w
ρ,M• , X

w
ρ,M• , X

�,w
D,M•}, and thus

dimE |Xw
ρ,M• |(E[ε]/ε2) = dimE |X�,w

D,M• |(E[ε]/ε2) + n2 − [L : Qp]n2

= [L : Qp] dim p + n2 − n2[L : Qp] + dimE X̂w,y(E[ε]/ε2)

where the second equality follows from Corollary 6.3.5.

Let wy ∈ W P
max,L such that π(y) = (α−1(D•), α−1(FilW+,•)) lies in the GL-orbit of (wy, 1) in

GL/BL ×GL/PL. By Lemma 5.2.4 and the equalities in (6.14), we have

Proposition 6.4.3. Let w ∈ WL, if Xw
ρ,M• 6= ∅, then wmax ≥ wy.

Now fix a group morphism ρ : GalL → GLn(kE) and a strictly P -dominant weight h ∈ Zn|ΣL|
of GL as in § 4.2. Let x = (ρ, x, χ) be a point in XΩ,h(ρ) ↪→ Xρ × (SpecZΩ)rig × Ẑ0,L. Assume
that ρ is almost de Rham (hence χ is locally algebraic by Proposition 4.2.10) and has distinct Sen
weights.

Corollary 6.4.4. We have that M := Drig(ρ)[1
t ] has an Ω-filtration M• of parameter (x, χ$L).

Moreover, if the parameter (x, χ$L) is generic, then M• is the unique Ω-filtration of parameter
(x, χ$L) on M.

Proof. The existence follows from Corollary 4.2.6. By Lemma 6.2.5 (1) and the same argument
as in the proof of Corollary 4.1.13, the uniqueness follows.

Recall that Xρ
∼= |Xρ| is equivalent to (̂Xρ)ρ (cf. [62, § 2.3]). We have a natural morphism of

formal schemes
X̂Ω,h(ρ)x −→ (̂Xρ)ρ

∼= Xρ.

Proposition 6.4.5. (1) The canonical morphism X̂Ω,h(ρ)x −→ Xρ factors through a morphism

X̂Ω,h(ρ)x −→ Xρ,M• .

(2) The morphisms X̂Ω,h(ρ)x → Xρ and X̂Ω,h(ρ)x → Xρ,M• are closed immersions of groupoids
over Art(E).

Proof. (1) follows from the same argument as in the proof of [19, Prop. 3.7.2] with [60, Cor. 6.3.10]
replaced by Corollary A.1.2 and Corollary A.1.3 (2). (2) follows from the same argument as in
the proof of [19, Prop. 3.7.3].

Consider the composition

Θx : X̂Ω,h(ρ)x ↪→ Xρ,M• → XV,M•
∼= XD,M•

Θ−→ T̂P,L,(0,0).

Let h′ = (h′1,τ > h′2,τ > · · · > h′n,τ )i=1,...,n
τ∈ΣL

be the Sen weights of ρ. Then by Proposition 4.2.10,

there exists wx = (wx,τ )τ∈ΣL ∈ W P
min,L such that, for j = 1, . . . , n, h′

w−1
x,τ (j),τ

= wt(χi)τ + hj,τ

where i is the integer such that si−1 < j ≤ si.

Proposition 6.4.6. The morphism Θx factors through T̂wxw0,L,(0,0).
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Proof. The proposition follows by the same argument as for [19, Lemma 3.7.4] using Proposition
4.2.10.

Corollary 6.4.7. Assume moreover that ρ is de Rham. The closed immersion X̂Ω,h(ρ)x ↪→ Xρ,M•
factors through an isomorphism

X̂Ω,h(ρ)x
∼−−→ X

wxw0,L

ρ,M• . (6.17)

In particular, XΩ,h(ρ) is unibranch, hence irreducible, at x.

Proof. By Theorem 4.2.5 (1) and Theorem 6.4.1 (1), dim X̂Ω,h(ρ)x = dimXρ,M• . We also know

that XΩ,h(ρ) is reduced and equidimensional by Proposition 4.2.5 (1). Hence X̂Ω,h(ρ)x is iso-
morphic to a union of irreducible components SpecRwρ,M• of SpecRρ,M• (see Theorem 6.4.1 (1)).
However, it follows from Proposition 6.4.6 and Theorem 6.4.1 (2) that SpecRwρ,M• can not be con-

tained in X̂Ω,h(ρ)x if WLP ,Lw 6= WLP ,L(wxw0,L). We then obtain the isomorphism in (6.17).

Let y ∈ XP,L(k(x)) be the point in (6.10) associated to (ρ,M•). By Corollary 6.4.7 and
Proposition 6.4.3, we have

Corollary 6.4.8. Assume moreover that ρ is de Rham, then wxw0,L ≥ wy.

By corollary 5.3.4, we deduce:

Corollary 6.4.9. Assume that ρ is de Rham, that π(y) ∈ GL/PL × GL/BL lies in the smooth
locus of the closure of GL(1, wxw0,L)PL ×BL, and that

dim z
wxw0,Lw

−1
y

LP ,L
+ lg(wxw0,L)− lg(wy) = dim zLP ,L.

Then XΩ,h(ρ) is smooth at the point x = (ρ, x, χ).

By the discussion in Remark 5.3.5 (1), we obtain the following special case that will be
frequently used:

Corollary 6.4.10. Assume that ρ is de Rham, that lg(wy) ≥ lg(wxw0,L)− 2 and that

dim zLP ,L − dim z
wxw0,Lw

−1
y

LP ,L
= 2 if lg(wy) = lg(wxw0,L)− 2.

Then XΩ,h(ρ) is smooth at the point x = (ρ, x, χ).

Remark 6.4.11. When P 6= B, it could happen that dim zLP ,L − dim z
wxw0,Lw

−1
y

LP ,L
= 1 while

lg(wy) = lg(wxw0,L) − 2 (see Remark A.3.5 below, and compare with [19, Rem. 4.1.6]). In this
case, we don’t know if XΩ,h(ρ) is smooth at the point x.

As a quick application, we obtain the following full description of local companion points
which completes Corollary 4.3.9. Changing notation, let z := (ρ, (r1, . . . , rr)) ∈ Ũpcr

ρ (ξ0,h) be as
in § 4.3 (where it was denoted x (see above Proposition 4.3.8)): ρ is now a generic potentially
crystalline representation with distinct Hodge-Tate weights h, ξ0 = ⊕ri=1ξi with ξi the inertial
type of Ωi, and (r1, . . . , rr) ∈ (SpecZΩ)rig is an (ordered) r-tuple of absolutely irreducible Weil-
Deligne representations such that r(ρ) ∼= ⊕ri=1ri. Recall we have attached to the point z an
element wz ∈ W P

max,L (see before Proposition 4.3.8 where wz was denoted wx). In fact, if we let

y be the point in (6.10) associated to z (for D = Drig(ρ) and M• the Ω-filtration on M = D[1
t ]

associated to the filtration {⊕ji=1ri}rj=1 on r(ρ) as in § 2.3), then by definition wz = wy.
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Corollary 6.4.12. Let w ∈ W P
max,L, with the above notation the point(

ρ, (r1, . . . , rr), 1
)
∈ Xρ × (SpecZΩ)rig × Ẑ0,L

lies in XΩ,ww0,L(h)(ρ) if and only if w ≥ wz.

Proof. The “if” part is Corollary 4.3.9. The “only if” part follows from Corollary 6.4.8.

Remark 6.4.13. The case for P = B (and ρ crystalline) was proved in [19, Thm. 4.2.3], see
Remark 4.3.10 for related discussions.

6.5 Galois cycles

We construct certain cycles on the deformation space Xρ
∼= (̂Xρ)ρ of a characteristic zero repre-

sentation ρ of GalL.

Let ρ be as in § 6.4 and ρ ∈ Xρ(E). Recall that the local complete noetherian E-algebra ÔXρ,ρ

is equidimensional of dimension n2 + [L : Qp]n2 and pro-represents the functor |Xρ| of (framed)

deformations of ρ over Art(E). Denote by Z(Spec ÔXρ,ρ) (resp. Zd(Spec ÔXρ,ρ) for d ∈ Z≥0) the
free abelian group generated by the irreducible closed subschemes (resp. the irreducible closed
subschemes of codimension d) in Spec ÔXρ,ρ . If A is a noetherian complete local ring which is a

quotient of ÔXρ,ρ , we set

[SpecA] :=
∑
p

m(p, A)[SpecA/p] ∈ Z(Spec ÔXρ,ρ)

where the sum is over the minimal prime ideals p of A, m(p, A) ∈ Z≥0 is the finite length of Ap as

a module over itself and [SpecA/p] is the irreducible component SpecA/p seen in Z(Spec ÔXρ,ρ).

Assume that ρ has integral distinct τ -Sen weights for each τ ∈ ΣL, and that Drig(ρ)[1/t] admits

an Ω-filtrationM• of generic parameter (x, δ) ∈ SpecZΩ× ẐLP (L) (so δ is locally algebraic). We
refer to § 5.4 (and the very beginning of § 6) for the schemes XP,L and Xw. Let y ∈ XP,L(E) ⊆
XP,L(E) be the point associated to (ρ,M•) in (6.10) (depending on a choice of framing α). Let
w ∈ WL such that y ∈ Xw(E) ⊂ Xw(E) (which implies wminw0,L ≥ wy by Proposition 6.4.3).
Similarly as in [19, § 4.3], by Proposition 6.2.3 and Theorem 6.4.1 (and its proof), we have a
commutative diagram of groupoids over Art(E):

Xw
ρ,M•

��

X�,w
ρ,M•

oo //

��

X̂w,y

��

Xρ,M•

��

ωδ

''

X�
ρ,M•

oo // X̂P,L,y

κP

��

Xρ ẐLP (L)δ
wt−wt(δ)

// ẑLP ,L

where we still denote by ωδ the composition Xρ,M• → XM,M•
ωδ−→ ẐLP (L)δ. Taking everywhere

(except for Xρ) the fibres over 0 ∈ ẑLP ,L, we obtain the commutative diagram of affine schemes
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over E:

SpecR
w
ρ,M•

��

SpecR
�,w
ρ,M•

oo

��

// Spec ÔXw,y

��

SpecRρ,M•

��

SpecR
�
ρ,M•

oo // Spec ÔXP,L,y

Spec ÔXρ,ρ.

For w = (wτ ) ∈ WL, we denote Zw :=
∏
τ∈ΣL

Zwτ ↪→ ZP,L (see § 5.4 for Zwτ ). The irreducible

components of Spec ÔXP,L,y
are the union of the irreducible components of Spec ÔZw,y for w such

that y ∈ Zw(E) (the last condition does not depend on the choice of the framing α). By pull-back
and smooth descent, we obtain a bijection between the irreducible components of Spec ÔXP,L,y

and the irreducible components of SpecRρ,M• . In particular, SpecRρ,M• is equidimensional of

dimension n2 + [L : Qp]n(n−1)
2 (equivalently of codimension [L : Qp]n(n+1)

2 in Spec ÔXρ,ρ). For
w ∈ WL, denote by

Zw ∈ Z [L:Qp]
n(n+1)

2 (Spec ÔXρ,ρ) (6.18)

the cycle corresponding via the embedding SpecRρ,M• ↪→ Spec ÔXρ,ρ to the cycle [Spec ÔZw,y]
under this bijection. By Theorem 5.4.3, we have:

Lemma 6.5.1. Assume that ρ is de Rham. Then the cycle Zw is irreducible for w ∈ WL.

Remark 6.5.2. It is easy to see that Zw0,L = GL/BL ×GL/PL ×{0}. Indeed, we have a natural
embedding GL/BL × GL/PL × {0} ↪→ Zw0,L, which has to be an isomorphism since both are
irreducible schemes of the same dimension. Thus if Zw0 6= 0, the nilpotent operator NW associated
to ρ is zero, hence ρ is de Rham. As ρ admits a generic Ω-filtrationM•, ρ is potentially crystalline.
Let h be the Hodge-Tate weights of ρ and ξ0 the inertial type of ρ (thus ξ0 has the form ⊕ri=1ξi).

By the same argument as in [19, Rem. 4.3.1] (using [63]), it follows that Zw0 = [ÔXpcr
ρ (ξ0,h),ρ].

For w = (wτ ) and w′ = (w′τ ) ∈ WL, put aw,w′ :=
∏
τ∈ΣL

awτ ,w′τ and bw,w′ :=
∏
τ∈ΣL

bwτ ,w′τ
where awτ ,w′τ , bwτ ,w′τ are given as in Theorem 5.4.11 (applied to G = GLn). Put

Cw :=
∑

w′∈WLP ,L\WL

aw,w′Zw′ ∈ Z [L:Qp]
n(n+1)

2 (Spec ÔXρ,ρ). (6.19)

Note that Zw and Cw are independent of the choice of the representative w in its associated class
in WLP ,L\WL.

Lemma 6.5.3. Assume that ρ is de Rham, and let w ∈ WL. The followings are equivalent: (1)
Cw 6= 0, (2) Zw 6= 0, (3) wmax ≥ wy.

Proof. (2) ⇒ (1) is clear.

(1) ⇒ (3): If Cw 6= 0, then Zw′ 6= 0 (⇒ y ∈ Xw′) for some w′ with w′max ≤ wmax. By
Proposition 6.4.3, w′max ≥ wy hence wmax ≥ wy.

(3) ⇒ (2): As ρ is de Rham (i.e. the entry NW in y is zero), if wmax ≥ wy, then y is contained
in the Zariski-closure of

(
GL(wmax, 1)BL × PL

)
× {0} in GL/BL × GL/PL × {0} ↪→ ZP,L, thus

y ∈ Zw ⇒ Zw 6= 0.
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Now let x = (ρ, x, χ) ∈ XΩ,h(ρ)(E) such that ρ is de Rham and (x, χ) is generic. Let M• be
the unique Ω-filtration on Drig(ρ)[1/t] of parameter (x, χ$L) (cf. Corollary 6.4.4) and y be the
point (6.10) of XP,L associated to (ρ,M•). Recall that we have defined elements wy ∈ W P

max,L

and wx ∈ W P
min,L (see above Proposition 6.4.3 for wy and above Proposition 6.4.6 for wx). Let

XΩ,h(ρ)wt(χ) denote the fibre of XΩ,h(ρ) at wt(χ) (via the morphism XΩ,h(ρ)→ Ẑ0,L
wt−→ zLP ,L).

The following conjecture is a consequence of Conjecture 5.4.9 and Lemma 6.5.3:

Conjecture 6.5.4. We have

[Spec ÔXΩ,h(ρ)wt(χ),x] =
∑

w∈WLP ,L\WL
wy≤wmax≤wxw0,L

bwxw0,L,wCw ∈ Z
[L:Qp]

n(n+1)
2 (Spec ÔXρ,ρ).

Remark 6.5.5. It follows from Lemma 5.4.13 that Conjecture 6.5.4 holds if x is moreover a
smooth point of XΩ,h(ρ)wt(χ).

7 Applications

Under the Taylor-Wiles hypothesis, we show several (global) results on p-adic automorphic repre-
sentations including a classicality result, and the existence of all expected companion constituents
for certain parabolic subgroup P .

7.1 Automorphy cycles

We use locally analytic representation theory to construct certain cycles on patched Bernstein
eigenvarieties.

7.1.1 Representation theoretic preliminaries

We give some preliminaries on locally analytic representations which we will use in § 7.1.2. We
use the notation of § 3.1.

Denote by Op
alg ⊂ O

p the full subcategory of objects with integral weights (see [74]). Let V be

an admissible locally analytic representation of Gp. Let M ∈ Op
alg, the p-action on M canonically

extends to a P (Qp)-action ([74, Lemma 3.2]). We equip HomU(g)(M,V ) with the left action of
P (Qp) given by (pf)(v) := pf(p−1v) for p ∈ P (Qp), v ∈ V . Note that this action does preserve
HomU(g)(M,V ) because we have for p ∈ P (Qp), X ∈ U(g) and v ∈ V :

(pf)(Xv) = pf(p−1Xv) = pf
(

Ad(p−1)(X)p−1v
)

= pAd(p−1)(X)f(p−1v) = Xpf(p−1v)

= X(pf)(v).

We also see that the derived p-action is trivial, so the P (Qp)-action on HomU(g)

(
M,V

)
is smooth.

We equip HomU(g)

(
M,Π

)N0
P with a natural Hecke action of LP (Qp)+ defined as in (3.11).

For any M ∈ Ob (in particular M ∈ Op
alg), we endow HomU(g)(M,V ) with a canonical topology

of space of compact type as follows. Choose finitely many weights λi of the Lie algebra of TI

such that ⊕iMBI
(λi) �M where MBI

(λi) := U(g)⊗U(bI )λ
i. Then HomU(g)(M,V ) is naturally
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a closed subspace of ⊕iV [bI = λi] that we endow with the induced topology. Using that a
continuous bijection of vector spaces of compact type is a topological isomorphism, one easily
checks that this doesn’t depend on the choice of the λi (for two choices λi and µj , consider
(⊕iMBI

(λi)) ⊕ (⊕jMBI
(µj)) � M) and that for a morphism M → N in Ob, the induced

morphism HomU(g)(N,V )→ HomU(g)(M,V ) is continuous. We denote by HomU(g)(M,V )
N0
P

fs the

finite slope part of HomU(g)(M,V )N
0
P defined as in [40, § 3.2]. The following lemma follows by

the same argument as in the proof of [19, Lemma 5.2.1] (see [40, Prop. 3.2.4 (ii)] for the second
isomorphism).

Lemma 7.1.1. Assume that V is very strongly admissible ([41, Def. 0.12]), let π be a finite length
smooth representation of LP (Qp) over E and M ∈ Op

alg. There are natural bijections

HomGp

(
FGp
P−(Qp)

(
HomE(M,E)n

∞
P− , π(δ−1

P )
)
, V
)

∼−−→ HomLP (Qp)+

(
π,HomU(g)(M,V )N

0
P
)

∼= HomLP (Qp)

(
π,HomU(g)(M,V )

N0
P

fs

)
where HomE(M,E)n

∞
P− ⊂ HomE(M,E) is the object in Op−

alg defined in [14, § 3] and δP is the
modulus character of P (Qp).

Fix d an integral weight of zLP and σ a cuspidal type of LP (Qp) as in § 3.1.1. Consider

V (M, d, σ) :=
((

HomU(g)(M,V )
N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)L0
P

∼= HomL0
P

(
σ,
(

HomU(g)(M,V )
N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E)

)
where LP (Qp) acts on

(
HomU(g)(M,V )

N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E) via the diagonal

action with LP (Qp) acting on CQp−la(Z0
LP
, E) via (3.2). As V (M, d, σ) is a closed subspace of(

HomU(g)(M,V )
N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E) ⊗E σ∨ (where σ∨ is equipped with the

finest locally convex topology), it is also a space of compact type. We equip V (M, d, σ) with
an action of Z0 × ∆0 × ZΩ similarly as for Bσ,λ(V ) in (3.3): Z0

∼= Z0
LP

acts via the regular

action on CQp−la(Z0
LP
, E), ∆0

∼= ZLP (Qp) acts via the diagonal action on HomU(g)(M,V )
N0
P

fs ⊗E
(δd ◦ detLP )⊗̂ECQp−la(Z0

LP
, E), and the ZΩ-action comes from the isomorphism (recalling that

ZΩ
∼= EndLP (Qp)(c-ind

LP (Qp)

L0
P

σ)):

V (M, d, σ) ∼= HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ,
(

HomU(g)(M,V )
N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E)

)
.

Similarly as in the discussion above Lemma 3.1.2, the ∆0-action is equal to the action induced
from ZΩ via ZLP (Qp)→ ZΩ. By considering the action of lP on V (M, d, σ), we have also

V (M, d, σ) ∼=
((

HomU(g)(M,V )
N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂E
(
C∞(Z0

LP
, E)⊗E δ0

d

)
⊗E σ∨

)L0
P

∼=
(

HomU(g)(M,V )
N0
P

fs ⊗E (δd ◦ detLP )⊗E
(
C∞(Z0

LP
, E)⊗E δ0

d

)
⊗E σ∨

)L0
P

where C∞(Z0
LP
, E) denotes the space of smooth E-valued functions on Z0

LP
, where C∞(Z0

LP
, E)⊗E

δ0
d embeds into CQp−la(Z0

LP
, E) by f ⊗ 1 7→ [z 7→ f(z)δ0

d(z)], and where the second isomorphism

follows from [64, Prop. 1.2] and the fact that C∞(Z0
LP
, E) is topologically isomorphic to a direct

limit of finite dimensional E-vector spaces (each equipped with the finest locally convex topology).
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Lemma 7.1.2. Let λ be an integral P -dominant weight of TI , we have an isomorphism of vector
spaces of compact type (cf. Notation 3.1.5 and the discussion after Lemma 3.1.7)

ι : V (MP (λ), d, σ)
∼−−→ BΩ,λ(V )[z0 = 0]

such that for (α, β) ∈ ZΩ ×Z0 and v ∈ V (MP (λ), d, σ):

ι
(
(α, β) · v

)
= δ0

d(β)
((
ι(δunr

d,$)−1(α), β
)
· ι(v)

)
.

Proof. We have isomorphisms

HomU(g)(MP (λ), V ) ∼= HomlP (L(λ)P , V
nP ) ∼= (V nP ⊗E L(λ)∨P )lP

which are moreover topological isomorphisms if HomlP (L(λ)P , V
nP ) ∼= (V nP ⊗E L(λ)∨P )lP is

equipped with the induced topology as closed subspace of V ⊗E L(λ)∨P . We deduce then an
LP (Qp)+-equivariant isomorphism (where LP (Qp)+ acts on the right hand side by (zf)(v) =
zf(z−1v)):

HomU(g)(MP (λ), V )N
0
P ∼= HomlP (L(λ)P , V

N0
P ). (7.1)

This isomorphism induces LP (Qp)-equivariant isomorphisms by the universal property of the finite
slope part functor [40, Prop. 3.2.4 (2)] (for the first) and Lemma 3.1.12 (for the second):

HomU(g)(MP (λ), V )
N0
P

fs
∼= HomlP (L(λ)P , V

N0
P

fs ) ∼= JP (V )λ[zLP = 0]. (7.2)

From (7.2) we deduce topological isomorphisms

V (MP (λ), d, σ)

∼=
((
JP (V )λ[zLP = 0]⊗E ((δunr

d,$δ
0
d,$) ◦ detLP )

)
⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)L0
P

∼=
((
JP (V )λ ⊗E (δunr

d,$ ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E)[zLP = 0]⊗E σ∨

)L0
P

∼= HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ,
(
JP (V )λ ⊗E (δunr

d,$ ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E)[zLP = 0]

)
∼= HomLP (Qp)

(
((δunr

d,$)−1 ◦ detLP )⊗E c-ind
LP (Qp)

L0
P

σ, JP (V )λ⊗̂ECQp−la(Z0
LP
, E)[zLP = 0]

)
∼= HomLP (Qp)

(
c-ind

LP (Qp)

L0
P

σ, JP (V )λ⊗̂ECQp−la(Z0
LP
, E)[zLP = 0]

)
∼= BΩ,λ(V )[z0 = 0]

where the second isomorphism uses CQp−la(Z0
LP
, E) ⊗E δ0

d,$
∼= CQp−la(Z0

LP
, E) and the fifth uses

(3.8). The last part of the statement on the ZΩ × Z0-action follows by the same argument as in
the proof of Lemma 3.1.6.

Lemma 7.1.3. For M ∈ Op
alg, we have

V (M, d, σ) ∼=
⊕
δ,χ

V (M, d, σ)[mχ][m∞δ ] =
⊕

m∈SpmZΩ,χ

V (M, d, σ)[mχ][m∞]

where δ (resp. χ) runs through the smooth characters of ∆0
∼= ZLP (Qp) (resp. through the locally

algebraic characters of Z0
∼= Z0

LP
of weight d), and mδ ⊂ E[∆0] (resp. mχ ⊂ E[Z0]) is the

maximal ideal associated to the character δ (resp. χ). Moreover, each term in the direct sums is
finite dimensional over E.
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Proof. As M ∈ Op
alg, there exist finitely many P -dominant integral weights λi such that

⊕iMP (λi) �M . Using successively the following facts:

(1) HomU(g)(−, V ) is left exact;

(2) taking N0
P -invariant vectors is exact on smooth representations of P (Qp);

(3) taking (−)fs preserves injectivity (cf. [40, Prop. 3.2.6 (ii)]);

(4) (−)L
0
P is left exact,

we deduce an injection:
V (M, d, σ) ↪−→ ⊕iV (MP (λi), d, σ).

It is sufficient to prove the statement for each V (MP (λi), d, σ). Indeed, if this holds, then any
vector v ∈ V (M, d, σ) generates, under the action of ZΩ×Z0, a finite dimensional E-vector space,
and from this we easily deduce the decompositions in the lemma for V (M, d, σ). Moreover for
each m ∈ SpecZΩ and each χ, the vector space V (M, d, σ)[mχ][m∞] is finite dimensional as it is a
subspace of⊕iV (MP (λi), d, σ)[mχ][m∞]. However, the statement in the lemma for V (MP (λi), d, σ)
follows from Lemma 7.1.2 and Lemma 3.1.4.

Lemma 7.1.4. Let m ⊂ ZΩ be a maximal ideal and χ a locally algebraic character of Z0 of
weight d. Let V be a continuous representation of Gp on a Banach space over E such that V ∨

is a finitely generated projective OE [[Kp]][1/p]-module where Kp := G(Zp). Denote by V an ⊆ V
the subspace of locally analytic vectors ([42, Def. 3.5.3]), which is an admissible locally analytic
representation of Gp on a E-vector space of compact type ([42, Prop. 6.2.4]). Then the functor
V an(−, d, σ)[mχ][m∞] is exact on Op

alg.

Proof. Let πm be the smooth LP (Qp)-representation associated to m and ω its central charac-
ter. Let mω ⊂ E[∆0] be the maximal ideal associated to ω. Then V an(M, d, σ)[mχ][m∞] =
V an(M, d, σ)[m∞][mχ] is a direct summand of V an(M, d, σ)[m∞ω ][mχ], and it is enough to prove the
statement with [m∞] replaced by [m∞ω ]. Let

δ :=
((

(χ(δ0
d)−1)$(δunr

d,$)−1
)
◦ detLP

)
ω =

((
χδ−1

d

)
◦ detLP

)
ω

which is a smooth character of ZLP (Qp). Let mδ ⊂ E[ZLP (Qp)] (resp. mδ,+ ⊂ E[ZLP (Qp)+]) be
the maximal ideal associated to δ. For M ∈ Op

alg, we have (by unwinding the ∆0-action, and

noting that LP (Qp) acts on χ via χ−1
$ ◦ detLP , cf. (3.2))

V an(M, d, σ)[mχ][m∞ω ] ∼=
(

HomU(g)(M,V an)
N0
P

fs [m∞δ ]⊗E (δd ◦ detLP )⊗E χ⊗E σ∨
)L0

P

∼=
(

HomU(g)(M,V an)N
0
P [m∞δ,+]⊗E (δd ◦ detLP )⊗E χ⊗E σ∨

)L0
P (7.3)

where the second isomorphism follows from [40, Prop. 3.2.11] and [40, Lemma 3.2.8]. In particular,
the right hand side of (7.3) is finite dimensional by Lemma 7.1.3. By [19, Lemma 5.2.5], the functor
HomU(g)(−, V an) is exact, hence so is the functor HomU(g)(−, V an)N

0
P as π 7→ πN

0
P is exact on

smooth representations π of P (Qp). We deduce that, for an exact sequence 0 → M1 → M2 →
M3 → 0 in Op

alg, the following sequence is exact:

0→
(

HomU(g)(M3, V
an)N

0
P ⊗E (δd ◦ detLP )⊗E χ⊗E σ∨

)L0
P

→
(

HomU(g)(M2, V
an)N

0
P ⊗E (δd ◦ detLP )⊗E χ⊗E σ∨

)L0
P

→
(

HomU(g)(M1, V
an)N

0
P ⊗E (δd ◦ detLP )⊗E χ⊗E σ∨

)L0
P → 0. (7.4)
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By (7.3) it is enough to show that the sequence (7.4) stays exact after applying [m∞δ,+].

We now explain how to prove this by a generalization of the arguments in the last paragraph
of the proof of [20, Prop. 4.1]. We let H be as in loc. cit. and replace N0

P by H ∩NP (Qp) (which
won’t cause any problem). Using [40, Prop. 3.3.2], we choose finitely many zi ∈ ZLP (Qp)+ such
that ziN

0
P z
−1
i ⊂ (N0

P )p for N0
P = NP (Qp) ∩H, and such that Z0

LP
and the zi generate ZLP (Qp)

as group. For M = MP (λ) ∈ Op
alg, we have by (7.1) a topological isomorphism

(
HomU(g)(M,V an)N

0
P ⊗E (δd ◦ detLP )⊗E χ⊗E σ∨

)L0
P

∼=
(
(V an)N

0
P ⊗E L(λ)∨P ⊗E (δd ◦ detLP )⊗E χ⊗E σ∨

)L0
P . (7.5)

By an easy generalization of [18, Lemma 5.3] (see also the proof of Proposition 3.1.15), we can
write the right hand side (hence the left hand side) of (7.5) as an increasing union over j of
BH-subspaces Vj such that each zi preserves Vj and acts on (the underlying Banach space) Vj via

a compact operator. The same holds for a general M ∈ Op
alg as (HomU(g)(M,V an)N

0
P ⊗E (δd ◦

detLP )⊗E χ⊗E σ∨)L
0
P is a closed subspace of a finite direct sum

⊕
i(HomU(g)(MP (λi), V

an)N
0
P ⊗E

(δd ◦ detLP ) ⊗E χ ⊗E σ∨)L
0
P for some integral P -dominant weights λi. We can now apply the

argument in the last paragraph of the proof of [20, Prop. 4.1] with the BH-subspaces Πh of loc.
cit. replaced by the BH-subspaces Vj (for general M) discussed above to conclude.

7.1.2 Cycles on patched Bernstein eigenvarieties

We construct certain cycles in the completed local rings (at some specific points) of patched
Bernstein eigenvarieties.

We assume that we are in the setting of § 3.3 and we use without comment the notation
and constructions of loc. cit. We fix λ an integral P -dominant weight, Ω a cuspidal Bernstein
component of LP (Qp) and ρ a Up-modular continuous representation of GalF over kE (where
Up is a “prime-to-p level”). We have the associated patched Bernstein eigenvariety E∞Ω,λ(ρ), see
(3.29).

Let d be an integral weight of zLP and put µ := λ + d ◦ detLP . Let E∞Ω,λ(ρ)d be the fibre

of E∞Ω,λ(ρ) at d via E∞Ω,λ(ρ) → Ẑ0 → z∨0
∼= z∨LP . Note that using [28, Lemma 6.2.5] and [28,

Lemma. 6.2.10], we can deduce from Corollary 3.3.3 (1), (2) and Proposition 3.3.2 that E∞Ω,λ(ρ)d
is equidimensional of dimension

g + |S|n2 +
∑
v∈Sp

(
[Fṽ : Qp]

n(n− 1)

2

)
.

Let Mµ,λ := M∞Ω,λ ⊗OE∞
Ω,λ

(ρ)
OE∞Ω,λ(ρ)d . Using (3.28) the vector space of compact type

Γ
(
E∞Ω,λ(ρ)d,Mµ,λ

)∨
is topologically isomorphic to the following vector spaces of compact type

(which are of compact type by an obvious generalization to the patched case of the discussion
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above Lemma 7.1.1):

(
JP (ΠR∞−an

∞ )λ⊗̂ECQp−la(Z0
LP
, E)⊗E σ∨

)L0
P [z0 = d]

∼=
(
JP (ΠR∞−an

∞ )λ⊗̂ECQp−la(Z0
LP
, E)[zLP = d]⊗E σ∨

)L0
P

∼=
(
JP (ΠR∞−an

∞ )λ[zLP = d ◦ detLP ]⊗̂ECQp−la(Z0
LP
, E)[zLP = d]⊗E σ∨

)L0
P

∼=
(

HomU(g)(MP (µ),ΠR∞−an
∞ )

N0
P

fs ⊗E (δd ◦detLP )⊗̂ECQp−la(Z0
LP
, E)[zLP = d]⊗E σ∨

)L0
P

∼=
(

HomU(g)(MP (µ),ΠR∞−an
∞ )

N0
P

fs ⊗E (δd ◦ detLP )⊗̂ECQp−la(Z0
LP
, E)⊗E σ∨

)L0
P

where the second and fourth isomorphism follow by considering the action of lP (see also (3.6)),
the third isomorphism follows from (7.2) and the natural isomorphism

JP (ΠR∞−an
∞ )µ[zLP = 0] ∼= JP (ΠR∞−an

∞ )λ[zLP = d ◦ detLP ]⊗E (δ−1
d ◦ detLP ). (7.6)

The natural surjection MP (µ) � L(µ) induces an injection

((
HomU(g)(L(µ),ΠR∞−an

∞ )
N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)L0
P

↪−→
((

HomU(g)(MP (µ),ΠR∞−an
∞ )

N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)L0
P
. (7.7)

As in the discussion above Lemma 7.1.1, we equip the right hand side of (7.7) with the topology
induced by the one on ΠR∞−an

∞ ⊗E (δd ◦ detLP )⊗̂ECQp−la(Z0
LP
, E) ⊗E σ∨, and the left hand side

of (7.7) with the topology induced by the one on the right hand side, which identifies it with a
closed subspace (in particular, all spaces are of compact type). It is also clear that the morphism
in (7.7) is equivariant under the action of R∞×Z0×ZΩ. In particular the left hand side of (7.7)
is preserved by OE∞Ω,λ(ρ)d . Let Lµ,λ be the quotient of the OE∞Ω,λ(ρ)d-module Mµ,λ such that

Γ
(
E∞Ω,λ(ρ)d,Lµ,λ

)∨
∼=
((

HomU(g)(L(µ),ΠR∞−an
∞ )

N0
P

fs ⊗E (δd ◦ detLP )
)
⊗̂ECQp−la(Z0

LP
, E)⊗E σ∨

)L0
P
. (7.8)

The OE∞Ω,λ(ρ)d-module Lµ,λ is finitely generated, and its schematic support defines a (possibly

empty) Zariski-closed rigid subspace Z0
µ,λ of E∞Ω,λ(ρ)d. We denote by Zµ,λ ⊆ Z0,red

µ,λ the union of its
irreducible components of dimension dim E∞Ω,λ(ρ)d, which is still Zariski-closed in E∞Ω,λ(ρ)d.

Next we move to a similar discussion for the completion of the patched Bernstein eigenvarieties
at some specific points. Let x := (xp, xp, x, χx) ∈ (Spf Rp∞)rig×(Spf R�

ρp
)rig×(SpecZΩ)rig×Ẑ0. We

write y := (xp, xp) ∈ (Spf R∞)rig ∼= (Spf Rp∞)rig × (Spf R�
ρp

)rig. Let my, mx, mχx be the associated

maximal ideals of R∞[1/p], ZΩ, E[Z0] respectively. Let dx := wt(χx) and λx := λ + dx ◦ detLP .

By definition, we have an isomorphism of finitely generated ÔE∞Ω,λ(ρ),x-modules (for such sheaves

of modules, we identify them with their global sections with no ambiguity):

M∞Ω,λ ⊗OE∞
Ω,λ

(ρ)
ÔE∞Ω,λ(ρ),x

∼=
((
JP (ΠR∞−an

∞ )λ[m∞y ]⊗̂ECQp−la(Z0
LP
, E)[m∞χx ]⊗E σ∨

)L0
P [m∞x ]

)∨
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and an isomorphism of finitely generated ÔE∞Ω,λ(ρ)dx ,x
-modules:

M∞Ω,λ ⊗OE∞
Ω,λ

(ρ)
ÔE∞Ω,λ(ρ)dx ,x

∼=
((
JP (ΠR∞−an

∞ )λ[m∞y ]⊗̂ECQp−la(Z0
LP
, E)[zLP = dx][m∞χx ]⊗E σ∨

)L0
P [m∞x ]

)∨
∼=
((
JP (ΠR∞−an

∞ )λ[m∞y ]⊗E χx ⊗E σ∨
)L0

P [m∞x ]
)∨

(7.9)

which are both non-zero if and only if x ∈ E∞Ω,λ(ρ). Assume in the sequel dx ∈ Z[F+:Q]. By
modifying the Bernstein centre Ω and using Proposition 3.2.3 (which obviously generalizes to the
patched case), we can and do assume that the character χx is algebraic. We have(

JP (ΠR∞−an
∞ )λ[m∞y ]⊗E χx ⊗E σ∨

)L0
P

[m∞x ]

∼=
(
JP (ΠR∞−an

∞ )λ[m∞y ][zLP = dx ◦ detLP ]⊗E χx ⊗E σ∨
)L0

P
[m∞x ]

∼=
(

HomU(g)

(
MP (λx),ΠR∞−an

∞
)N0

P

fs
[m∞y ]⊗E (δdx ◦ detLP )⊗E χx ⊗E σ∨

)L0
P
[m∞x ] (7.10)

where the second isomorphism follows from (7.2) and (7.6) (be careful with the action of ∆0).

Lemma 7.1.5. With the above notation, the functor

M 7−→
(

HomU(g)

(
M,ΠR∞−an

∞
)N0

P

fs
[m∞y ]⊗E (δdx ◦ detLP )⊗E χx ⊗E σ∨

)L0
P

[m∞x ]

on the category Op
alg is exact.

Proof. For each t ∈ Z≥1, let It be the kernel of the composition S∞[1/p] → R∞[1/p] �
R∞[1/p]/mt

y. Then Π∞[It]∨ is a finite projective OE [[Kp]][1/p]-module (see § 3.3) and we have

Π∞[It]an = ΠR∞−an
∞ [It] (which easily follows from [17, (3.2)]). By Lemma 7.1.4 and Lemma 7.1.3

applied to V := Π∞[It], the functor M 7→ (HomU(g)(M,V )
N0
P

fs ⊗E (δdx◦detLP )⊗Eχx⊗Eσ∨)L
0
P [m∞x ]

is exact. We then argue as at the end of the proof of [18, Thm. 5.5].

Define

Mλx,λ,y :=M∞Ω,λ ⊗OE∞
Ω,λ

(ρ)
ÔE∞Ω,λ(ρ)dx ,x

∼=Mλx,λ ⊗OE∞
Ω,λ

(ρ)dx
ÔE∞Ω,λ(ρ)dx ,x

(7.11)

which by (7.9) is isomorphic to the strong dual of the space in (7.10). Let L(µ) be an irreducible
constituent of MP (λx) and define Nµ,λ,y as the dual of the following space of compact type:(

HomU(g)

(
L(µ),ΠR∞−an

∞
)N0

P

fs
[m∞y ]⊗E (δdx ◦ detLP )⊗E χx ⊗E σ∨

)L0
P

[m∞x ]. (7.12)

By Lemma 7.1.5, Nµ,λ,y is a subquotient of the ÔE∞Ω,λ(ρ)dx ,x
-module Mλx,λ,y. One can show

moreover that Nµ,λ,y is preserved by the action of R∞×Z0×ZΩ, hence is also a finitely generated

ÔE∞Ω,λ(ρ)dx ,x
-module.

Lemma 7.1.6. We have Nµ,λ,y 6= 0 if and only if

HomGp

(
FGp
P−(Qp)

(
L−(−µ), πx ⊗E

(
(δ−1

dx χx,$) ◦ detLP
)
⊗E δ−1

P

)
,ΠR∞−an
∞ [my]

)
6= 0.
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Proof. By definition Nµ,λ,y 6= 0 if and only if(
HomU(g)

(
L(µ),ΠR∞−an

∞
)N0

P

fs
[my]⊗E (δdx ◦ detLP )⊗E χx ⊗E σ∨

)L0
P

[mx] 6= 0.

Using Lemma 3.1.2 (applied to M = ZΩ/mx) and Lemma 7.1.1, the above vector space is isomor-
phic to (be careful with the LP (Qp)-action on the factor χx):

HomLP (Qp)

(
πx,HomU(g)

(
L(µ),ΠR∞−an

∞ [my]
)N0

P

fs
⊗E (δdx ◦ detLP )⊗E (χx,$)−1 ◦ detLP

)
∼= HomLP (Qp)

(
πx ⊗E

(
(δdx(χx,$)−1) ◦ detLP

)
,HomU(g)

(
L(µ),ΠR∞−an

∞ [my]
)N0

P

fs

)
∼= HomGp

(
FGp
P−(Qp)

(
L−(−µ), πx ⊗E

(
(δ−1

dx χx,$) ◦ detLP
)
⊗E δ−1

P

)
,ΠR∞−an
∞ [my]

)
.

The lemma follows.

It follows from Theorem 3.3.9 and Proposition 6.4.5 (2) that the natural morphism ÔX∞,y →
ÔE∞Ω,λ(ρ)dx ,x

is surjective. Consequently Nµ,λ,y is a finitely generated ÔX∞,y-module. Let λ′ be

another integral P -dominant weight and d an integral weight of zLP such that L(µ) is an irreducible
constituent of MP (λ′ + d ◦ detLP ). Let x′ ∈ SpecZΩ such that πx′ ∼= πx ⊗E (δunr

d−dx,$ ◦ detLP )

and χ′ := δ0
d (recall χx = δ0

dx). Let x′ := (y, x′, χ′) ∈ (Spf R∞)rig × (SpecZΩ)rig × Ẑ0, hence

λx
′

= λ′ + (wt(χ′) ◦ detLP ) = λ′ + d ◦ detLP . Using similar arguments as in the proof of Lemma
3.1.6 (especially in the last paragraph), we have a topological isomorphism which commutes with
R∞:

(
HomU(g)

(
L(µ),ΠR∞−an

∞
)N0

P

fs
[m∞y ]⊗E (δdx ◦ detLP )⊗E χx ⊗E σ∨

)L0
P

[m∞x ]

∼−−→
(

HomU(g)

(
L(µ),ΠR∞−an

∞
)N0

P

fs
[m∞y ]⊗E (δd ◦ detLP )⊗E χ′ ⊗E σ∨

)L0
P

[m∞x′ ].

Note however that the ZΩ × Z0-actions on both sides differ by a twist.6 We then obtain (using
Lemma 7.1.5 for the second part):

Lemma 7.1.7. We have an isomorphism of ÔX∞,y-modules Nµ,λ,y ∼= Nµ,λ′,y. Consequently, if
Nµ,λ,y 6= 0, then Mλx′ ,λ′,y 6= 0, hence x′ = (y, x′, χ′) ∈ E∞Ω,λ′(ρ).

Keep the notation of Lemma 7.1.7 and suppose moreover λx
′

= λx, then by similar argu-
ments (with L(µ) replaced by MP (λx)), we obtain an isomorphism of ÔX∞,y-modules Mλx,λ,y

∼=
Mλx,λ′,y. We will use the notation Nµ,y := Nµ,λ,y, Mλx,y := Mλx,λ,y in the sequel when we are
only concerned with the R∞-action. As E∞Ω,λ(ρ)dx is equidimensional of dimension g + |S|n2 +∑

v∈Sp([Fṽ : Qp]n(n−1)
2 ), so is ÔE∞Ω,λ(ρ)dx ,x

(see for example the discussion on page 309 of [19]). For

a finitely generated ÔE∞Ω,λ(ρ)dx ,x
-module N we set (where Zi(−) is defined in the same way as in

§ 6.5):

[N ] :=
∑
Z

m(Z,N )[Z] ∈ Z0(Spec ÔE∞Ω,λ(ρ)dx ,x
) ⊂ Z [F+:Q]

n(n+1)
2 (Spec ÔX∞,y)

6As we will not use this result, we leave the curious readers work out the precise twist.

118



where Z = SpecOηZ runs through the irreducible components of Spec ÔE∞Ω,λ(ρ)dx ,x
(ηZ is the asso-

ciated generic point and OηZ the localization at ηZ), and m(Z,N ) is the length of the OηZ-module
NηZ . We have by Lemma 7.1.5:

[Mλx,y] =
∑
µ

bλx,µ[Nµ,y] (7.13)

where bλx,µ denotes the multiplicity of L(µ) as an irreducible constituent in MP (λx). The following
lemma is straightforward (comparing (7.8) with (7.12)):

Lemma 7.1.8. We have [Nµ,y] 6= 0 (resp. Nµ,y 6= 0) if and only if x ∈ Zµ,λ (resp. x ∈ Z0
µ,λ).

Assume that ρx,ṽ is generic potentially crystalline with distinct Hodge-Tate weights hṽ for all
v|p, and that xp lies in the smooth locus of Xp∞ := (Spf Rp∞)rig. By Corollary 6.4.7, Xp∞×XΩ,h(ρp)
is irreducible at the point x (see Theorem 3.3.9 for the notation). We deduce:

Corollary 7.1.9. The embedding in Theorem 3.3.9 induces a local isomorphism at the point x,
and E∞Ω,λ(ρ) is irreducible at x.

Let h = (hṽ) and µ = (µṽ) = (µṽ,i,τ ) i=1,...,n
v∈Sp,τ∈Σṽ

with µṽ,i,τ = hṽ,i,τ + i − 1. By Proposition

3.3.4, there exists wx = (wx,ṽ) ∈ W P
min
∼=
∏
v∈Sp W Pṽ

min,Fṽ
such that λx = wx · µ. For each v ∈ Sp

and wṽ ∈ WFṽ , let Cṽ,wṽ ∈ Z
[Fṽ :Qp]

n(n+1)
2 (Spec ÔXρṽ,ρṽ

) be the cycle defined in (6.19) (applied to
L = Fṽ, ρ = ρṽ and so on). For each w = (wṽ) ∈ WF , we put

Cw,F := [Spec ÔXp∞,xp ]×
∏
v∈Sp

Cṽ,wṽ ∈ Z [F+:Q]
n(n+1)

2 (Spec ÔX∞,y). (7.14)

Similarly, let Zw,F := [ÔXp∞,xp ] ×
∏
v∈Sp Zṽ,wṽ ∈ Z [F+:Q]

n(n+1)
2 (Spec ÔX∞,y), where Zṽ,wṽ is the

cycle defined in (6.18) (applied to L = Fṽ, ρ = ρṽ). Note that both Cw,F and Zw,F are independent
of the choice of the representative w in its associated class in WLP \WF . By Lemma 6.5.1, we have:

Lemma 7.1.10. For w ∈ WF , the cycle Zw,F is irreducible.

For w,w′ ∈ WF , let

aw,w′ :=
∏
v∈Sp

awṽ ,w′ṽ , cw,w
′ :=

∏
v∈Sp

cwṽ ,w′ṽ , c
′
w,w′ :=

∏
v∈Sp

c′wṽ ,w′ṽ

where awṽ ,w′ṽ ∈ Z≥0 are those aw,w′ defined above (6.19) (applied to L = Fṽ and so on),

cwṽ ,w′ṽ , c
′
wṽ ,w

′
ṽ
∈ Z≥0 are the integers cw,w′ , c

′
w,w′ respectively in Lemma 5.4.13 (2) (adapted to the

setting G = ResFṽQp GLn and so on). By (6.19) and Theorem 5.4.11 (3), we have

Cw,F =
∑

w′∈WLP \WF

aw,w′Zw′,F =
∑

w′∈WLP \WF
w′max≤wmax

aw,w′Zw′,F ∈ Z [F+:Qp]
n(n+1)

2 (Spec ÔX∞,y). (7.15)

We let wy,ṽ ∈ W Pṽ
max,Fṽ

be the element associated to ρṽ (and Ω) as in § 2.3 (denoted by wF there)
and

wy := (wy,ṽ) ∈ W P
max =

∏
v∈Sp

W Pṽ
max,Fṽ

(7.16)

which is exactly the product for v ∈ Sp of the wy in § 6.5 for L = Fṽ. By Lemma 6.5.3 we have:
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Corollary 7.1.11. For w = (wṽ) ∈ WF , we have Cw,F 6= 0⇐⇒ Zw,F 6= 0⇐⇒ wmax ≥ wy.

Corollary 7.1.11 allows to further refine (7.15) as:

Cw,F =
∑

w′∈WLP \WF
wy≤w′max≤wmax

aw,w′Zw′,F ∈ Z [F+:Qp]
n(n+1)

2 (Spec ÔX∞,y). (7.17)

Corollary 7.1.12. (1) We have

[Spec ÔE∞Ω,λ(ρ)dx ,x
] =

∑
w∈WLP \WF

wy≤wmax≤wxw0,F

c′wxw0,F ,w
Zw,F ∈ Z [F+:Q]

n(n+1)
2 (Spec ÔX∞,y).

(2) Assume x is a smooth point of E∞Ω,λ(ρ), then we have:

[Spec ÔE∞Ω,λ(ρ)dx ,x
] =

∑
w∈WLP \WF

wy≤wmax≤wxw0,F

bwxw0,F ,wCw,F ∈ Z
[F+:Q]

n(n+1)
2 (Spec ÔX∞,y)

where bw,w′ :=
∏
v∈Sp bwṽ ,w′ṽ for w = (wṽ),w

′ = (w′ṽ) ∈ WF , which is equal to the multiplicity of

L(w′maxw0,F · 0) in MP (wmaxw0,F · 0).

Proof. (1) (resp. (2)) is a consequence of Corollary 7.1.9, Lemma 5.4.13 (2) (resp. Lemma 5.4.13
(1), (3)) and Corollary 7.1.11.

7.2 Companion constituents

In this section, we prove our main (global) results on p-adic automorphic representations.

For v ∈ Sp, we let ρṽ be an n-dimensional generic potentially crystalline representation of GalFṽ
over E with distinct Hodge-Tate weights hṽ = (hṽ,i,τ )i=1,...,n

τ∈Σṽ

. Let λ := (λṽ) := (λṽ,i,τ ) i=1,...,n
v∈Sp,τ∈Σṽ

with λṽ,i,τ = hṽ,i,τ + i − 1 (so λ is integral P -dominant). Let x := (y, x, 1) = (xp, xp, x, 1) ∈
(Spf R∞)rig×(SpecZΩ)rig×Ẑ0 (so y := (xp, xp) ∈ Spf R∞)rig). Let w = (wṽ) ∈ W P

min, and assume
x lies in E∞Ω,w·λ(ρ). Assume moreover that xp lies in the smooth locus of Xp∞. We let wy ∈ W P

max

be as in (7.16).

Lemma 7.2.1. Let w′ ∈ W P
min, if [Nw′·λ,y] 6= 0 then w′w0,F ≥ wy.

Proof. If [Nw′·λ,y] 6= 0, we deduce by Lemma 7.1.7 (applied to λ′ = w′ · h, d = dx = 0) that
(y, x, 1) ∈ E∞Ω,w′·λ(ρ). Then using Theorem 3.3.9 and Corollary 6.4.12, we get w′w0,F ≥ wy.

The following lemma is a consequence of (7.13), Remark 5.4.12 and Lemma 7.2.1 (compare
with Corollary 7.1.12 (2)):

Lemma 7.2.2. We have an equality of cycles in Z [F+:Q]
n(n+1)

2 (ÔX∞,y):

[Mw·λ, y] =
∑

w′∈W P
min

wy≤w′w0,F≤ww0,F

bww0,F ,w′w0,F
[Nw′·λ,y]. (7.18)
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Proposition 7.2.3. We have [Nw·λ,y] 6= 0.

Proof. By Theorem 3.3.9 and Corollary 6.4.12, we have ww0,F ≥ wy.

If ww0,F = wy, then by Corollary 7.1.9 and Corollary 6.4.10, we know that E∞Ω,w·λ(ρ) is smooth
at the point x. By Corollary 3.3.3 (3), it follows that M∞Ω,w·λ is (non-zero) locally free at the
point x, hence [Mw·λ,y] 6= 0. We easily deduce from (7.18) [Mw·λ,y] = [Nw·λ,y] hence [Nw·λ,y] 6= 0.

Now assume ww0,F > wy. We let Xpcr
ρp

(ξ0,h) :=
∏
v∈Sp X

pcr
ρṽ

(ξ0,ṽ,hṽ) where ξ0 = (ξ0,ṽ) is the

inertial type of ρp = (ρṽ). For w′ = (w′ṽ) ∈ W P
max, we let

V pcr
ρp

(ξ0,h)w′ :=
∏
v∈Sp

V pcr
ρṽ

(ξ0,ṽ,hṽ)w′
ṽ
⊂ Xpcr

ρp
(ξ0,h)

where each term in the product is defined as in Proposition 4.3.8. As ww0,F > wmax
y , by Proposi-

tion 4.3.8, we see that ρp = (ρṽ) lies in the Zariski-closure V pcr
ρp

(ξ0,h)ww0,F of V pcr
ρp

(ξ0,h)ww0,F in

Xpcr
ρp

(ξ0,h). Let Cww0,F be the connected component of V pcr
ρp

(ξ0,h)ww0,F at the point ρp, and let

Up be the smooth locus of the irreducible component of Xp∞ at the point xp. The embedding in
(4.38) induces a closed embedding

ι : V pcr
ρp

(ξ0,h)ww0,F × U
p ↪−→ XΩ,w·λ(ρp)× Up.

We have ι(ρp, x
p) = x ∈ E∞Ω,w·λ(ρ). Moreover, by Corollary 6.4.7, it follows that XΩ,w·λ(ρp)× Up

is irreducible at any point in the image of ι. We then deduce that ι induces a closed embedding

ι : Cww0,F × U
p ↪−→ E∞Ω,w·λ(ρ). (7.19)

Let Vww0,F := Cww0,F ∩ V
pcr
ρp

(ξ0,h)ww0,F , which is Zariski dense in Cww0,F , (x′p, x
′p) be any point

in Vww0,F × Up, and put y′ := (x′p, x
′p) ∈ X∞. Since ww0,F = wy′ (where, similarly as for wy, wy′

is associated to x′p and Ω, noting that the framing in x′p does not cause problems), by the same
argument as for the case ww0,F = wy above (but now applied with ι(y′) instead of x), we have
[Nw·λ,y′ ] 6= 0. By Lemma 7.1.8, this implies ι(y′) ∈ Zw·λ,w·λ. As ι(y) lies in the Zariski closure
in E∞Ω,w·λ(ρ) of the set of all points ι(y′) as above, and Zw·λ,w·λ is by definition Zariski-closed in
E∞Ω,w·λ(ρ), we deduce ι(y) ∈ Zw·λ,w·λ, hence (by Lemma 7.1.8 again) [Nw·λ,y] 6= 0.

Corollary 7.2.4. We have [Nw′·λ,y] 6= 0 for all w′ ∈ W P
min such that w′w0,F ≥ ww0,F (equivalently

w′ ≤ w).

Proof. Assume first lg(w′) = lg(w) + 1. As [Nw·λ,y] 6= 0, by (7.18), [Mw′·λ,y] 6= 0 (note that
bww0,F ,w′w0,F

= 1, cf. Remark 5.4.12) hence (xp, xp, x, 1) ∈ E∞Ω,w′·λ(ρ) (cf. (7.11)). Applying Propo-
sition 7.2.3 with w replaced by w′, we obtain [Nw′·λ,y] 6= 0. We can then start again this argument
with a w′′ such that lg(w′′) = lg(w′) + 1. Using [11, Thm. 2.5.5], the corollary follows from an
obvious induction.

Remark 7.2.5. In particular, if x ∈ E∞Ω,w·λ(ρ), then x ∈ E∞Ω,w′·λ(ρ) for all w′ ∈ W P
min, w′ ≤ w. In

the trianguline case (i.e. P = B), it was proved in [18, Thm. 5.5] that this holds without assuming
ρṽ to be generic potentially crystalline with distinct Hodge-Tate weights (see also Remark 4.3.10
(2)). The proof was quite different and based on the fact that, for any w′ ≤ w (in WF ), L(w · λ)
is an irreducible constituent of the Verma module M(w′ · λ), which does not hold in general if
w′, w ∈ W P

min and M(w′ · λ) is replaced by MP (w′ · λ). When P 6= B, the authors do not know if
this statement holds without the potentially crystalline assumption.
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Corollary 7.2.6. Assume that we are in the same situation as Conjecture 3.3.11 (we use the
notation of loc. cit.) Let xp be the point of (Spf Rp∞)rig associated to m, and assume moreover
that xp is a smooth point of (Spf Rp∞)rig. Then Conjecture 3.3.11 (1) is equivalent to Conjecture
3.3.11 (2).

Proof. By Lemma 3.3.13, we are left to show that, if x = (m,�v∈SpπLPṽ , 1) ∈ E∞Ω,w·λ(ρ), then

⊗̂v∈SpC(wṽ,Fṽ) ↪→ ΠR∞−an
∞ [m]. However, this follows directly from Proposition 7.2.3 and Lemma

7.1.6 (applied to µ = w · λ, my = m etc.).

Corollary 7.2.7 (Classicality). Let ρ be an Up-modular continuous representation of GalF over
kE. Let EΩ,λ(Up, ρ) be as in (the end of) § 3.2.4 and x = (η, πLP , χ) ∈ EΩ,λ(Up, ρ). Assume

(1) Hypothesis 3.3.1;

(2) ρx,ṽ is generic potentially crystalline with distinct Hodge-Tate weights for all v ∈ Sp;

(3) ρx,ṽ is a smooth point of (Spf Rρṽ)
rig for v ∈ S \ Sp.

Then Ŝ(Up, E)lalg[TS = η] 6= 0, i.e. ρx is associated to a classical automorphic representation of
G(AF+).

Proof. By Proposition 3.2.3, we can and do assume χ = 1 (by modifying λ and Ω). Then by
Proposition 3.2.17, there exist a dominant weight µ and w ∈ W P

min such that λ = w · µ. By
Hypothesis 3.3.1 and Proposition 3.3.8, we can associate to x a point, still denoted by x, of the
form (y = (xp, xp), πLP , 1) in E∞Ω,λ(ρ) satisfying Ŝ(Up, E)[TS = η] ∼= Π∞[my]. Moreover, by the

assumption (3), xp is a smooth point of (Spf Rp∞)rig. By Corollary 7.2.4, we see Nµ,y 6= 0 hence by

Lemma 7.1.6 (noting that, as µ is dominant, the Orlik-Strauch representation FGp
P−(Qp)

(−) there

is locally algebraic) Ŝ(Up, E)[TS = η]lalg ∼= Π∞[my]
lalg 6= 0. The corollary follows.

Remark 7.2.8. (1) Using similar arguments as in the proof of [18, Thm. 3.9], one may remove
the assumption (3) in Corollary 7.2.7 but assuming the weight λ+ wt(χ) ◦ detLP is dominant.

(2) If S \ Sp = {v1} where v1 is a finite place of F+ as in [26, § 2.3] and Up is chosen as in
loc. cit., then (Spf Rp∞)rig is smooth (so the assumption (3) is automatically satisfied).

Theorem 7.2.9. Assume that we are in the setting of § 3.2.1, and let ρ : GalF → GLn(E) be a
continuous representation unramified outside S such that the modulo p reduction ρ is irreducible
and Up-modular. Let mρ be the associated maximal ideal of TS [1/p] (via (3.19)). Assume

(1) Hypothesis 3.3.1;

(2) ρṽ is generic potentially crystalline with distinct Hodge-Tate weights for all v ∈ Sp;

(3) ρṽ is a smooth point of (Spf Rρṽ)
rig for v ∈ S \ Sp;

(4) there exists a parabolic subgroup P ⊃
∏
v∈Sp ResFṽQp B such that JP (Ŝ(Up, E)an[mρ]) has

non-zero locally algebraic vectors for LDP (Qp).

Then Ŝ(Up, E)[mρ]
lalg 6= 0, i.e. ρ is associated to a classical automorphic representation of

G(AF+).
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Proof. Let P be a minimal parabolic subgroup such that the assumption (4) holds. Thus there
exists an integral P -dominant weight λ such that JP (Ŝ(Up, E)an[mρ])λ 6= 0 (see (3.1)). As

JP (Ŝ(Up, E)an[mρ])λ is an essentially admissible locally analytic representation of LP (Qp) and
is smooth for the LDP (Qp)-action, there exists a compact open subgroup H ⊂ LDP (Zp) such

that JP (Ŝ(Up, E)an[mρ])
H
λ is a non-zero essentially admissible locally analytic representation of

ZLP (Qp). There exists thus a continuous character δ of ZLP (Qp) such that

JP (Ŝ(Up, E)an[mρ])
H
λ [ZLP (Qp) = δ] 6= 0.

We let χ be a continuous character of Z0
LP

such that wt(χ)◦detLP = wt(δ) and put δ∞ := δ(χ−1
$ ◦

detLP ), which is a smooth character of ZLP (Qp). Consider the (non-zero) LP (Qp)-representation:

(JP (Ŝ(Up, E)an[mρ])λ ⊗E χ−1
$ ◦ detLP )[ZLP (Qp) = δ∞]

which is smooth and admissible by [42, Cor. 6.4.14]. Let πLP be an irreducible subrepresentation

of (JP (Ŝ(Up, E)an[mρ])λ ⊗E χ−1
$ ◦ detLP )[ZLP (Qp) = δ∞], so we have

πLP ⊗E (χ$ ◦ detLP )⊗E L(λ)P ↪−→ JP (Ŝ(Up, E)an[mρ]). (7.20)

Let Ω be the Bernstein component of πLP . As P is minimal, using (7.20), it is not difficult to see
that Ω is cuspidal. By (3.13) and (7.20), it follows that (mρ, πLP , χ) ∈ EΩ,λ(Up, ρ). The theorem
then follows from Corollary 7.2.7.

Remark 7.2.10. The case where P =
∏
v∈Sp ResFṽQp B was essentially proved (without the as-

sumption (3)) in [19, Thm. 5.1.3] (see also [19, Rem. 5.1.5]).

Next we prove results towards the socle conjecture in [13]. Let λ = (λṽ,i,τ ) be an integral
dominant weight of Gp, h = (hṽ,i,τ ) with hṽ,i,τ = λṽ,i,τ − i+ 1 (hence h is strictly dominant). For
w ∈ W P

min, let Sw be the set of points x = (y = (xp, xp), x, 1) ∈ E∞Ω,λ(ρ)0 (recall that E∞Ω,λ(ρ)0 is
the fibre of E∞Ω,λ(ρ) at the weight 0 of zLP ) such that:

(1) for v ∈ S \ Sp, ρx,ṽ is a smooth point in (Spf Rρṽ)
rig;

(2) for v ∈ Sp, ρx,ṽ is generic potentially crystalline of Hodge-Tate weights hṽ and of inertial
type ξ0,ṽ (which is determined by Ω);

(3) wy = ww0,F .

Put S := ∪w∈W P
min

Sw. Note that S1 consists of non-critical points in S .

Proposition 7.2.11. Let x ∈ S , then we have [Nλ,y] ∈ ZCw0,F ,F ∈ Z
n(n+1)

2
[F+:Q](ÔX∞,y) (cf.

(7.14)).

Proof. Let σ be a cuspidal LP (Zp)-type for Ω. For any s ∈ Z≥1, put πx,s := (c-ind
LP (Qp)

L0
P

σ)∞⊗ZΩ

ZΩ/m
s
x. By Lemma 3.1.2 and Lemma 7.1.1, we have (noting that N∨λ,y is isomorphic to the direct

123



limit of the following E-vector spaces over s, cf. (7.12))(
HomU(g)(L(λ),ΠR∞−an

∞ [ms
y])

N0
P

fs ⊗E σ
∨)L0

P [ms
x]

∼−→ HomLP (Qp)

(
πx,s,HomU(g)(L(λ),ΠR∞−an

∞ [ms
y])

N0
P

fs

)
∼−→ HomGp

(
FGp
P−(Qp)

(
L−(−λ), πx,s ⊗E δ−1

P

)
,ΠR∞−an
∞ [ms

y]
)

∼= HomGp

(
L(λ)⊗E (Ind

Gp
P−(Qp)

πx,s ⊗E ⊗Eδ−1
P )∞,ΠR∞−an

∞ [ms
y]
)

↪→ HomGp

(
L(λ)⊗E (c-ind

Gp
Kp
σ̃),ΠR∞−an

∞ [ms
y]
)

∼= HomKp(L(λ)⊗E σ̃,ΠR∞−an
∞ )[ms

y] (7.21)

where σ̃ is a Kp-type of Gp for (Ind
Gp
P−(Qp)

πx ⊗E δ−1
P )∞ (note that (Ind

Gp
P−(Qp)

πx,s ⊗E δ−1
P )∞

is isomorphic to a successive extension of (Ind
Gp
P−(Qp)

πx ⊗E δ−1
P )∞). By [26, Lemma 4.17], the

R∞-action on the last term in (7.21) factors through Rp∞⊗̂OER
pcr
ρp

(ξ0,h) (where we recall that

Rpcr
ρp

(ξ0,h) = ⊗̂v∈SpR
pcr
ρṽ

(ξ0,ṽ,hṽ)). We deduce that the R∞-action on Nλ,y also factors through

Rp∞⊗̂OER
pcr
ρp

(ξ0,h). By Remark 6.5.2, we have Cw0,F ,F = [ÔXp∞,xp⊗̂ÔXpcr
ρp

(ξ0,h),ρp ] (here the comple-

tion in ⊗̂ is with respect to the maximal ideal associated to (xp, ρp)). The proposition follows.

Let x ∈ S and recall that, by Corollary 7.1.9, E∞Ω,λ(ρ) is irreducible at the point x. Let
my ∈ Z≥1 such that M∞Ω,λ is locally free of rank my in the smooth locus of a sufficiently small

neighbourhood of x in E∞Ω,λ(ρ). We view x as a point of (Spf R∞)rig × (SpecZΩ)rig × Ẑ0. For

w ∈ W P
min, we want to understand when x ∈ E∞Ω,w·λ(ρ).

Lemma 7.2.12. If lg(wy) ≥ lg(w0,F )− 1, then for any w ∈ W P
min such that ww0,F ≥ wy, we have

[Nw·λ,y] 6= 0, hence x ∈ E∞Ω,w·λ(ρ). Moreover, M∞Ω,w·λ is locally free of rank my at x.

Proof. Since lg(wy) ≥ lg(w0,F )− 1, by Corollary 7.1.9 and Corollary 6.4.10, E∞Ω,λ(ρ) is smooth at
the point x. Hence by Corollary 3.3.3 (3), M∞Ω,λ is locally free of rank my at the point x. By

Corollary 7.1.12 (2) and (7.18) (noting that, as lg(wy) ≥ lg(w0,F ) − 1, for w ∈ W P
min,F we have

bw0,F ,ww0,F =

{
1 ww0,F ≥ wy
0 otherwise

, see Remark 5.4.12 and Lemma 7.2.15 (1) below), we have:

∑
wy≤ww0,F≤w0,F

[Nw·λ,y] = [Mλ,y] = my

∑
wy≤ww0,F≤w0,F

Cww0,F ,y ∈ Z
[F+:Q]

n(n+1)
2 (ÔX∞,y). (7.22)

By Lemma 7.2.3, [Nλ,y] 6= 0 and the case where wy = w0,F (which implies w = 1) follows. Assume
now lg(wy) = lg(w0,F )− 1 and ww0,F = wy. By (7.22) and Proposition 7.2.11, we have

[Nw·λ,y] = myCw0,F ,y +myCww0,F ,y − [Nλ,y] ∈ myCww0,F ,y + ZCw0,F ,y. (7.23)

By (7.17) and Lemma 7.1.11, it is easy to see Cww0,F ,y /∈ ZCw0,F ,y. We deduce [Nw·λ,y] 6= 0,
hence x ∈ E∞Ω,w·λ(ρ). Again by Corollary 7.1.9 and Corollary 6.4.10, E∞Ω,w·λ(ρ) is smooth at x
hence M∞Ω,w·λ is locally free at x, say of rank m′y. Hence [Nw·λ,y] = [Mw·λ,y] = m′yCww0,F ,y ∈
Z≥0Cww0,F ,y. By (7.23) and the fact Cww0,F ,y /∈ ZCw0,F ,y (again), we deduce [Nw·λ,y] = myCww0,F ,y

(i.e. m′y = my) and [Nλ,y] = myCw,y. This concludes the proof.
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Lemma 7.2.13. Let w ∈ W P
min.

(1) Assume that, for any x′ = (y′, x′, 1) ∈ Sw, we have [Nw·λ,y′ ] 6= 0. Then for any x =
(y, x, 1) ∈ S with wy ≤ ww0,F , we have [Nw·λ,y] 6= 0.

(2) Keep the assumption in (1), and assume moreover that, for all x′ ∈ Sw, M∞Ω,w·λ is locally
free of rank my′ in the smooth locus of a sufficiently small neighbourhood of x′. Then, for any
x = (y, x, 1) ∈ S with wy ≤ ww0,F , M∞Ω,w·λ is locally free of rank my in the smooth locus of a
sufficiently small neighbourhood of x.

Proof. The lemma follows by the same arguments as in Step 9 of the proof of [19, Thm. 5.3.3].
We include a proof for the convenience of the reader.

(1) By Lemma 7.1.8, we only need to show x ∈ Zw·λ,w·λ. We use the notation in the proof
of Proposition 7.2.3. Denote by C ⊂ Xpcr

ρp
(ξ0,h) the irreducible component containing ρx,p. The

embedding in (4.38) induces an embedding

ι : C × Up ↪−→ XΩ,h(ρp)× Up

which sends y to x ∈ E∞Ω,λ(ρ) ↪→ XΩ,h(ρp)× Up. By Corollary 7.1.9, XΩ,λ(ρp)× Up is irreducible
at any point in the image of ι. We then deduce ι(C×Up) ⊂ E∞Ω,λ(ρ) (this is similar to (7.19)). It is
clear that Vww0,F ⊂ Cww0,F ⊂ C (recalling that C is irreducible and smooth, cf. [63, Thm. 3.3.8]),
and that any point in ι(Vww0,F ×Up) ⊂ E∞Ω,λ(ρ) lies in Sw. Recall the morphism in (4.38) induces

ι : Cww0,F × U
p ↪−→ XΩ,w(h)(ρp)× Up.

For each y′ ∈ Vww0,F × Up with x′ = ι(y′) ∈ Sw, we have by assumption [Nw·λ] 6= 0, hence by
Lemma 7.1.8 x′ ∈ Zw·λ,w·λ ⊂ E∞Ω,w·λ(ρ) ↪→ XΩ,w(h)(ρp) × Up. As x lies in the Zariski-closure of
such x′, it follows x = ι(y) ∈ Zw·λ,w·λ. (1) is then a consequence of Lemma 7.1.8.

(2) By (1), we have x ∈ Zw·λ,w·λ ↪→ E∞Ω,w·λ(ρ). Let Dw (resp. D1) be the irreducible component
of E∞Ω,w·λ(ρ) (resp. E∞Ω,λ(ρ)) containing x. As in the proof of (1), we have ι(Vww0,F ) ⊂ D1 and
ι(Vww0,F ) ⊂ Dw. Let Uw be a Zariski-open neighbourhood of x in E∞Ω,w·λ(ρ). Since E∞Ω,w·λ(ρ) is
irreducible at x (Corollary 7.1.9), shrinking Uw, we can and do assume that Uw and the smooth
locus U sm

w of Uw are both irreducible (note that U sm
w is Zariski-open Zariski-dense in Uw, cf. [17,

Prop. 2.3]). There exists m such thatM∞Ω,w·λ is locally free on U sm
w of constant rank m. Similarly,

we let U1 be an irreducible Zariski-open neighbourhood of x in E∞Ω,λ(ρ) such that U sm
1 is also

irreducible. ThenM∞Ω,λ is locally free on U sm
1 of rank my. We have (xp, xp) ∈ ι−1(U1)∩ ι−1(Uw)∩

(Cww0,F ×Up). Since Vww0,F ×Up is Zariski-dense in Cww0,F ×Up, we deduce ι−1(U1) ∩ ι−1(Uw) ∩
(Vww0,F ×Up) 6= ∅, and we let y′ = (x′p, x′p) be a point in the intersection. By Corollary 7.1.9 and
Corollary 6.4.10, the point x′ := ι(y′) ∈ Uw is in fact a smooth point of Uw. Hence by assumption
m = my′ = my. This finishes the proof.

Lemma 7.2.14. Let x = (y, x, 1) ∈ S and assume lg(wy) ≤ lg(w0,F ) − 2. Assume that, for all
w ∈ W P

min, with ww0,F > wy, we have

� [Nw·λ,y] 6= 0 (so x ∈ E∞Ω,w·λ(ρ));

� M∞Ω,w·λ is locally free of rank my in the smooth locus of a neighbourhood of x ∈ E∞Ω,w·λ(ρ).

We assume that one of the following two conditions holds:
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(1) there exists w ∈ W P
max such that

� w > wy and lg(w) = lg(wy) + 2;

� dim z
ww−1

y

LP
= dim zLP − 2;

� the Bruhat interval [wy, w] = {w′|wy < w′ < w} is full in W P
max, i.e. there exist distinct

w1, w2 ∈ W P
max such that wy < w1, w2 < w, lg(w1) = lg(w2) = lg(wy) + 1 (e.g. see [19,

Lemma 5.2.7]);

(2) there exists w ∈ W P
max such that

� w > wy and lg(w) = lg(wy) + 2;

� the Bruhat interval [wy, w] is not full in W P
max.

Then [Nwyw0,F ·λ,y] 6= 0 (which implies x ∈ E∞Ω,wyw0,F ·λ(ρ)), and M∞Ω,wyw0,F ·λ is locally free of rank
my at the point x.

Before proving Lemma 7.2.14, we first give an easy lemma on the multiplicities bw,w′ in The-
orem 5.4.11 (2).

Lemma 7.2.15. Let w,w′ ∈ W P
max such that w > w′.

(1) If lg(w′) = lg(w)− 1, then bw,w′ = 1.

(2) If lg(w′) = lg(w)− 2, then bw,w′ =

{
1 [w′, w] is full in W P

max

0 otherwise.

Proof. We only prove (2), (1) following from similar (and easier) arguments. We only need to
prove a similar statement for a single GLn(E) (rather than Gp). We let hence P ⊂ GLn be a
parabolic subgroup, w,w′ ∈ W P

max ⊂ W , and bw,w′ be the multiplicity of L(w′w0 ·0) in MP (ww0 ·0).
Recall first that L(w′w0 ·0) has multiplicity one in the Verma module M(ww0 ·0) (see for instance
[57, Ex. 8.3(a)]). By [57, Thm. 9.4(b)], we have an exact sequence

⊕α∈SP M(sαww0 · 0)→M(ww0 · 0)→MP (ww0 · 0)→ 0 (7.24)

where SP denotes the set of simple roots of LP and sα denotes the corresponding simple reflection.
Note that for each α ∈ SP we have sαw < w and lg(sαw) = lg(w) − 1 (e.g. see the proof of
Proposition A.2.1).

We claim that there exists a unique α ∈ SP such that w′w0 > sαww0 if and only if [w′, w]
is not full in W P

max. Indeed, we know there exist two, and only two, elements wi ∈ W such that
w′ < wi < w (see [19, Lemma 5.2.7]) and by [11, Thm. 2.5.5], at least one of wi, say w1, lies in
W P

max . If w′w0 > sαww0 for some α ∈ SP , we then deduce w′ < sαw < w, hence sαw ∈ [w′, w].
However, sαw /∈ W P

max so [w′, w] is not full in W P
max. If [w′, w] is not full in W P

max, there then exists
a unique element w′′ /∈ W P

max such that w′ < w′′ < w. This implies

w′ = w′max < w′′ < w′′max ≤ wmax = w.

As lg(w) = lg(w′) + 2, this implies w′′max = wmax = w. Using lg(w) = lg(w′′) + 1, it follows that
there exists sα ∈ SP such that w′′ = sαw.
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So if [w′, w] is full, L(w′w0 · 0) does not appear in M(sαww0 · 0) for all sα ∈ SP . By (7.24)
and the discussion above it, we obtain bw,w′ = 1. If [w′, w] is not full, let α ∈ SP such that
w′ < sαw < w. Then L(w′w0 · 0) has multiplicity one in M(sαww0 · 0) (and zero in M(sα′ww0 · 0)
for α′ ∈ SP , α′ 6= α). As M(sαww0 · 0) ↪→ M(ww0 · 0), we deduce by counting the multiplicities
of L(w′w0 · 0) in the first two terms of (7.24) that bw,w′ = 0.

Proof of Lemma 7.2.14. Assume condition (1) holds. The proof is the same as Step 10 of the
proof of [19, Thm. 5.3.3]. As w,w1, w2 > wy, by assumption, x ∈ E∞Ω,wiw0,F ·λ(ρ) for i ∈ {1, 2, ∅}.
Moreover, by Corollary 7.1.9 and Corollary 6.4.10, for i ∈ {1, 2, ∅}, E∞Ω,wiw0,F ·λ(ρ) is smooth

at x. By Corollary 3.3.3 (3), M∞Ω,wiw0,F ·λ is locally free of rank my at x. Similarly as for

(7.22), using Corollary 7.1.12 (2) (applied to the completion of E∞Ω,wiw0,F ·λ(ρ)0 at x and to the

completion of E∞Ω,ww0,F ·λ(ρ)0 at x), (7.18) and Lemma 7.2.15, we obtain equations of cycles in

Z [F+:Q]
n(n+1)

2 (ÔX∞,y) for i = 1, 2:

[Nwyw0,F ·λ,y] + [Nwiw0,F ·λ,y] = myCwy ,y +myCwi,y, (7.25)

[Nwyw0,F ·λ,y]+[Nw1w0,F ·λ,y]+[Nw2w0,F ·λ,y]+[Nww0,F ·λ,y] = my(Cwy ,y+Cw1,y+Cw2,y+Cw,y). (7.26)

If [Nwyw0,F ·λ,y] 6= 0, then x is a smooth point of E∞Ω,wyw0,F ·λ(ρ) (by Corollary 7.1.9 and Corollary

6.4.10) and M∞Ω,wyw0,F ·λ is locally free at x (by Corollary 3.3.3 (3)). By Corollary 7.1.12 (2) and

(7.18), it follows [Nwyw0,F ·λ,y] = [Mwyw0,F ·λ,y] ∈ ZCwy ,y. Note that [Nwyw0,F ] ∈ ZCwy ,y obviously
holds if [Nwyw0,F ·λ,y] = 0. In summary, there exists m′y ∈ Z≥0 such that [Nwyw0,F ·λ,y] = m′yCwy ,y.
We then deduce from (7.25): [Nwiw0,F ·λ,y] = myCwi,y + (my − m′y)Cwy ,y. By Theorem 5.4.11

(3) and Remark 5.3.5 (1), for w′, w′′ ∈ W P
max, aw′,w′′ = 0 if w′ 6= w′′ and lg(w′′) ≥ lg(w′) − 2.

Combined with (7.17) and using Lemma 7.1.10, it follows that, for w′ ∈ {wy, w1, w2, w}, we have
Cw′,y = Zw′,y 6= 0, and thus Cw′,y is irreducible. The equations (7.25) and (7.26) then imply:

[Nwiw0,F ·λ,y] = myZwi,y + (m′y −my)Zwy ,y,

[Nww0,F ·λ,y] = myZw,y + (my −m′y)Zwy ,y.

As Zwy ,y can only have non-negative coefficients in [Nww0,F ·λ,y] and [Nwiw0,F ·λ,y], we must have
m′y = my. The proposition in this case follows.

Assume condition (2) holds. Let w1 be the unique element in W P
max such that wy < w1 < w.

Similarly as above, we have that Cw′,y = Zw′,y 6= 0 (and Cw′,y is irreducible) for w′ ∈ {wy, w1, w},
that E∞Ω,w1w0,F ·λ(ρ) is smooth at the point x, and thatM∞Ω,w1w0,F ·λ is locally free of rank my at x.

We have as in (7.25):

[Nwyw0,F ·λ,y] + [Nw1w0,F ·λ,y] = my(Cwy ,y + Cw1,y) = my(Zwy ,y + Zw1,y).

By the same argument as in the last paragraph, there exists m′y ∈ Z≥0 such that [Nwyw0,F ·λ,y] =
m′yZwy ,y and [Nw1w0,F ·λ,y] = myZw1,y + (my −m′y)Zwy ,y (so my ≥ m′y). By Corollary 7.1.12 (1)
(applied with “λ = ww0,F · λ” and dx = 0), we have

[Spec ÔE∞Ω,ww0,F ·λ
(ρ)0,x] =

∑
w′∈WLP \WF
wy≤w′max≤w

c′w,w′Zw′,F ∈ Z [F+:Qp]
n(n+1)

2 (Spec ÔX∞,y). (7.27)
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By the discussion on aw′,w′′ in the last paragraph, we can deduce from Corollary 5.4.13 (1), (2)
that cw,w′ = bw,w′ for w′ as in (the sum of) (7.27). Together with Lemma 7.2.15 (2), we see that
cw,wy = 0, hence that c′w,wy = 0 by Lemma 5.4.13 (2). We can thus refine (7.27) as

[Spec ÔE∞Ω,ww0,F ·λ
(ρ)0,x] = Zw,F + c′w,w1

Zw1,F ∈ Z [F+:Qp]
n(n+1)

2 (Spec ÔX∞,y). (7.28)

As the ÔX∞,y-action on Mww0,F ·λ,y factors through ÔE∞Ω,ww0,F ·λ
(ρ)0,x, using (7.28) it follows that

[Mww0,F ·λ,y] = a0Zw,F + a1Zw1,F

for some a0, a1 ∈ Z≥0. Using (7.18) and Lemma 5.4.13 (2), we get

[Nw1w0,F ·λ,y] + [Nww0,F ·λ,y] = [Mww0,F ·λ,y] = a0Zw,F + a1Zw1,F ,

hence
[Nww0,F ·λ,y] +myZw1,y + (my −m′y)Zwy ,y = a0Zw,F + a1Zw1,F . (7.29)

As Zw,F , Zw1,F are distinct from Zwy ,y, and as Zwy ,y can only have non-negative coefficients in
[Nww0,F ·λ,y], (7.29) implies (using my ≥ m′y) my −m′y = 0, hence [Nwyw0,F ·λ,y] = myZwy ,y. This
concludes the proof.

Remark 7.2.16. If none of the conditions (1) or (2) in Lemma 7.2.14 hold, then for any
w ∈ W P

max satisfying w > wy and lg(w) = lg(wy) + 2, we have that [wy, w] is full in W P
max

and dim z
ww−1

y

LP
> dim zLP − 2. We use the notation in the proof of Lemma 7.2.14 assuming con-

dition (1). The main difference now is that we don’t know if E∞Ω,ww0,F ·λ(ρ) is smooth at x (see

Remark 6.4.11). Consequently (by Corollary 7.1.12 (1) and Lemma 7.2.15, and using similar
arguments as in the proof of Lemma 7.2.14 in the case of condition (2)), the equation (7.26) has
to be replaced by an equation of the form (the other equations being unchanged):

[Nwyw0,F ·λ,y] + [Nw1w0,F ·λ,y] + [Nw2w0,F ·λ,y] + [Nww0,F ·λ,y]

= a0Zw,y + a1Zw1,y + a2Zw2,y + a3Zwy ,y (7.30)

with ai ∈ Z≥0. Unfortunately, we do not have more control on these coefficients ai. The equations
(7.25) and (7.30) seem not enough to deduce [Nwyw0,F ·λ,y] = myZwy ,y or even [Nwyw0,F ·λ,y] 6= 0.
Note that, though we also don’t have much control on the coefficients a0, a1 in the proof of Lemma
7.2.14 when condition (2) holds, the argument here can work as there are fewer terms.

Proposition 7.2.17. Let x = (y, x, 1) ∈ S and w ∈ W P
min such that ww0,F ≥ wy. Assume that,

for all w′ ∈ W P
min such that w′w0,F ≥ ww0,F , one of the following properties holds

(1) lg(w′w0,F ) ≥ lg(w0,F )− 1;

(2) one of the conditions (1), (2) in Lemma 7.2.14 holds with wy replaced by w′w0,F .

Then [Nw·λ,y] 6= 0 (which implies x ∈ E∞Ω,w·λ(ρ)), and M∞Ω,w·λ is locally free of rank my in the
smooth locus of a sufficiently small neighbourhood of the point x.
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Proof. By Lemma 7.2.13, we are reduced to the case x ∈ Sw (i.e. wy = ww0,F ). The case where
lg(ww0,F ) ≥ lg(w0,F )− 1 already follows from Lemma 7.2.12. Assume lg(ww0,F ) ≤ lg(w0,F )− 2,
by Lemma 7.2.14 and the assumption in the proposition, we only need to prove

[Nw′·λ,y] 6= 0 and M∞Ω,w′·λ is locally free of rank my in the

smooth locus of a sufficiently small neighbourhood of the point x (7.31)

for all w′ ∈ W P
min with w′w0,F > ww0,F . To prove (7.31), again by Lemma 7.2.13, we only

need to show (7.31) for x ∈ Sw′ . By an obvious induction, we are finally reduced to the case
lg(ww0,F ) ≥ lg(w0,F )− 1, which follows from Lemma 7.2.12.

Corollary 7.2.18. Let x = (y, x, 1) ∈ S . Assume that, for any v ∈ Sp, any two factors GLnṽ,i
in LPṽ with nṽ,i > 1 (if they exist) are not adjacent in the product LPṽ

∼=
∏rṽ
i=1 GLnṽ,i. Then

[Nw·λ,y] 6= 0 for w ∈ W P
min if and only if ww0,F ≥ wy.

Proof. The “only if” part follows from Lemma 7.2.1 (which actually holds without the assumption
on the adjacent GLnṽ,i in the statement). By Proposition A.3.3 in the appendix, under the

assumption in the statement, the condition in Corollary 7.2.17 holds for all w ∈ W P
min. The “if”

part then follows by Corollary 7.2.17.

Remark 7.2.19. Without the assumption on the adjacent GLnṽ,i in Corollary 7.2.18 (for example,
when Pṽ is maximal with LPṽ

∼= GLnṽ,1 ×GLnṽ,2 and nṽ,1, nṽ,2 > 1), there may exist wy with
lg(wy) ≤ lg(w0,F )−2 such that none of the conditions (1) or (2) in Lemma 7.2.14 hold (see Remark
A.3.5). As discussed in Remark 7.2.16, in this case we don’t know how to deduce [Nwyw0,F ·λ,y] 6= 0

from [Nw·λ,y] 6= 0 for w ∈ W P
min such that ww0,F > wy. Using the method of [85], it may be possible

to obtain some cases where the Pṽ don’t satisfy the assumption in Corollary 7.2.18, but it seems
that the maximal parabolic case mentioned above is still resisting.

Theorem 7.2.20. Assume we are in the setting of Conjecture 3.2.18. Assume moreover:

(1) Hypothesis 3.3.1;

(2) Ŝ(Up, E)lalg[mρ] 6= 0;

(3) for all v ∈ Sp, the condition in Corollary 7.2.18 holds for the parabolic subgroup Pṽ associated
to Fṽ.

Then Conjecture 3.2.18 holds.

Proof. We use the notation of § 3.2.5. Note that, by local-global compatibility in the classical local
Langlands correspondence ([25]), the assumption (2) in the statement is equivalent to the existence
of an embedding ⊗̂v∈SpC(1,Fṽ) ↪→ Ŝ(Up, E)lalg[mρ]. We let Ω := ΩF and x ∈ (SpecZΩ)rig be
the point associated to πLP (πLP defined as in § 3.2.5). By the assumption (2) and the second
sentence, we have z = (ηρ, x, 1) ∈ EΩ,λ(Up, ρ). By Proposition 3.3.8, z corresponds to a point

x = (y = (xp, xp), x, 1) ∈ E∞Ω,λ(ρ). We have ΠR∞−an
∞ [my] ∼= Ŝ(Up, E)an[mρ]. By similar arguments

as above [17, Lemma 4.6], xp is a smooth point of Xp∞. By Corollary 7.2.18 and Lemma 7.1.6, it
follows that there is an embedding

⊗̂v∈SpC(wṽ,Fṽ) ↪−→ ΠR∞−an
∞ [my] ∼= Ŝ(Up, E)an[mρ]

if and only if wṽ ≤ wFṽ
w0,Fṽ for all v ∈ Sp (noting that (wFṽ

) = wy).
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Remark 7.2.21. (1) By (the proof of) Theorem 7.2.9, the assumption (2) in Theorem 7.2.20
can also be replaced by the assumptions (2), (3), (4) in Theorem 7.2.9, the assumption (4) being
for P =

∏
v∈Sp Pṽ associated to {Fṽ}.

(2) By the same argument but using Corollary 7.2.17 instead of Corollary 7.2.18, we can prove

⊗̂v∈SpC(wṽ,Fṽ) ↪−→ ΠR∞−an
∞ [my] ∼= Ŝ(Up, E)an[mρ]

if wṽ ≤ wFṽ
w0,Fṽ for all v ∈ Sp and w = (wṽ) satisfies the conditions in Corollary 7.2.17.

In particular, we have the following special case of Theorem 7.2.20:

Corollary 7.2.22. Assume that we are in the setting of Conjecture 3.2.18, and that:

(1) Hypothesis 3.3.1 holds;

(2) Ŝ(Up, E)lalg[mρ] 6= 0;

(3) for all v ∈ Sp, each r(ρṽ) has at most one irreducible constituent of dimension > 1.

For v ∈ Sp, let Fṽ be a minimal parabolic filtration of r(ρṽ). Then Conjecture 3.2.18 holds for
F = (Fṽ).

Remark 7.2.23. The case where all irreducible constituents of r(ρṽ) are 1-dimensional (i.e. the
(generic) crystabelline case) was proved in [19, Thm. 5.3.3].

A Appendix

A.1 Ω-filtration in families

Generalizing [60, § 6.3] we show that Ω-filtrations on (ϕ,Γ)-modules (cf. § 4.1.2) can interpolate in
p-adic families. The results in this section may be viewed as a parabolic analogue of the (so-called)
global triangulations.

The following theorem generalizes [60, Thm. 6.3.9].

Theorem A.1.1. Let n ≥ r ∈ Z≥1. Let X be a reduced rigid analytic space over E, M a (ϕ,Γ)-
module over RX,L of rank n, and ∆ a (ϕ,Γ)-module over RX,L of rank r such that, for any point
x of X, ∆x is irreducible and de Rham of constant Hodge-Tate weight 0. Let h = (hτ )τ∈ΣL =
(hi,τ )i=1,...,r

τ∈ΣL

be an integral positive strictly dominant weight (i.e. h1,τ > h2,τ > · · · > hr,τ ≥ 0 for

all τ ∈ ΣL). Assume that there exists a Zariski-dense subset Xalg of points of X such that for all
x ∈ Xalg:

(1) H0
(ϕ,Γ)(∆x ⊗Rk(x),L

M∨x ) is one-dimensional over k(x);

(2) Im ηx is de Rham of Hodge-Tate weights h for 0 6= ηx ∈ Hom(ϕ,Γ)(Mx,∆x) ∼=
H0

(ϕ,Γ)(∆x ⊗Rk(x),L
M∨x ).

Then there exist
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� a proper birational surjective morphism f : X ′ → X;

� a unique homomorphism η : f∗M → f∗∆ (up to multiplication by O×X′)

such that the following properties are satisfied:

(1) the set Z of closed points x ∈ X ′ failing to have properties (a) and (b) below is Zariski-closed
and disjoint from f−1(Xalg):

(a) Hom(ϕ,Γ)(Mx,∆x) is one-dimensional and generated by the pull-back ηx : Mx → ∆x of
η;

(b) Im(ηx) is de Rham of Hodge-Tate weights h;

(2) the kernel of η is a (ϕ,Γ)-module over RX′,L of rank n− r;

(3) the cokernel of η is locally t-torsion;

(4) Im η|X′\Z is a (ϕ,Γ)-module of rank r, and for all x ∈ X ′ \ Z, the induced morphism
(Im η)x → ∆f(x) is injective.

Proof. The theorem follows by a variation of the proof of [60, Thm. 6.3.9]. We include a proof
for the convenience of the reader. One main difference from loc. cit. is that in our case, for any
x ∈ Xalg, Im(ηx) is not saturated in ∆x except when r = 1. As in the first paragraph of loc. cit.,
we are reduced to the case where X is reduced, normal and connected (thus any coherent sheaf
over X has constant generic rank).

Step 1. By [60, Thm. 4.4.5 (1)] and [60, Thm.], the complex C•(ϕ,Γ)(∆ ⊗RX′,L M
∨) is perfect

and concentrated in degree [0, 2], i.e. is quasi-isomorphic to [P0 → P1 → P2] where the Pi are
locally free OX -modules of finite ranks. By [60, Cor. 6.3.6 (2)], we can obtain a proper birational
morphism f0 : X ′0 → X with X ′0 reduced and normal (and irreducible) such that

� H0
(ϕ,Γ)(f

∗
0 (∆⊗RX,L M∨)) is flat;

� H i
(ϕ,Γ)(f

∗
0 (∆⊗RX,L M∨)) has Tor-dimension less than or equal to 1 for i = 1, 2.

Note that f−1
0 (Xalg) is Zariski-dense in X ′0. Using the condition (1) and the above flatness, we see

that L := H0
(ϕ,Γ)(f

∗
0 (∆⊗RX,LM∨)) is locally free of rank 1 over OX′0 . We have thus a tautological

morphism of (ϕ,Γ)-modules over RX′0,L:

η : f∗0M ⊗OX′0 L −→ f∗0 ∆. (A.1)

It is clear that, for any x ∈ X ′0, the induced morphism ηx : f∗0Mx → f∗0 ∆x is non-zero. We have
actually an exact sequence as in [60, (6.3.9.1)]:

0→ H0
(ϕ,Γ)(f

∗
0 (∆⊗RX′,L M

∨))⊗OX′ k(x)→ H0
(ϕ,Γ)

(
f∗0 (∆⊗RX′,L M

∨)⊗OX′ k(x)
)

→ Tor
X′0
1

(
H1

(ϕ,Γ)(f
∗
0 (∆⊗RX′,L M

∨)), k(x)
)
→ 0

We deduce that the set Z0 of points x ∈ X ′0 such that H0
(ϕ,Γ)(f

∗
0 (∆⊗RX′,L M

∨))⊗OX′ k(x) is not

isomorphic to H0
(ϕ,Γ)(f

∗
0 (∆ ⊗RX′,L M

∨) ⊗OX′ k(x)) is Zariski-closed in X ′0 (with its complement

given by the flat locus of the coherent sheaf H1
(ϕ,Γ)(f

∗
0 (∆⊗RX′,L M

∨))).
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Step 2. Let Q be the cokernel of η. For any point x ∈ X ′0, since ∆x is irreducible and ηx
is non-zero, we deduce that Qx = Coker ηx is t-torsion. Let SpmA be an affinoid open of X ′.
By [60, Lemma 2.2.9], the base change of the morphism η via SpmA → RX′,L admits a model
εrA : M r

A → ∆r
A and the cokernel QrA is a model of QA (the restriction of Q to RA,L) (where we

use the notation of [60, § 2] for M r
A etc.). We have that Q

(r/p,r]
A is a finitely presented module

over R(r/p,r]
A,L . Since Qx = Coker ηx is t-torsion for all x ∈ X ′, we see Q

(r/p,r]
A is supported on

the zero locus of t in SpmR(r/p,r]
A,L , which is a rigid analytic space finite over A. We deduce

that Q
(r/p,r]
A is annihilated by tN for some N ∈ Z>0. Since Q

(r/pm,r/pm−1]
A

∼= (ϕm−1)∗Q
(r/p,r]
A , we

deduce that QrA
∼=
∏
m∈Z≥1

Q
(r/pm,r/pm−1]
A is also annihilated by tN (note that QrA is coadmissible

by [60, Lemma 2.1.4 (5)]). Applying [60, Cor. 6.3.6] to the finitely generated A-module Q
(r/p,r]
A ,

we obtain g : SpmA′ → SpmA such that g∗Q
(r/p,r]
A has Tor-dimension less than 1. Using the

ϕ-action as above, we deduce that g∗Q
(r/pm,r/pm−1]
A also has Tor-dimension less than 1, and hence

that QrA′ := g∗QrA
∼=
∏
m∈Z≥1

g∗Q
(r/pm,r/pm−1]
A has Tor-dimension less than 1 as A′-module (using

the fact that a direct product of flat A′-modules is flat, as A′ is noetherian). The morphisms
g : A′ → A (with A varying) glue to a birational projective morphism g : X ′ → X ′0 such that

QX′ := g∗Q has Tor-dimension less than 1, and we finally obtain f : X ′
g−→ X ′0 → X. By the

above discussion, QX′ is locally t-torsion.

Step 3. We have an exact sequence (by pulling-back (A.1) via g, and where we use L to denote
the pull-back of L in (A.1)):

f∗M ⊗OX′ L
η−→ f∗∆→ QX′ → 0.

Specializing to a point x ∈ X ′ and using the fact that QX′ has Tor-dimension less than 1, we get

0→ TorX
′

1 (QX′ , k(x))→ Im(η)x → (f∗∆)x → QX′,x → 0, (A.2)

and TorX
′

i (Im(η), k(x)) = 0 for i > 0. Then, specializing 0 → Ker(η) → (f∗M ⊗OX′ L) →
Im(η)→ 0 to x, we get

0→ Ker(η)x → (f∗M)x → Im(η)x → 0. (A.3)

Since QX′ is locally t-torsion, both TorX
′

1 (QX′ , k(x)) and QX′,x are annihilated by a certain
power of t. We deduce that Im(ηx) is a (ϕ,Γ)-module of rank r over Rk(x),L, and Ker(ηx)
is a (ϕ,Γ)-module of rank n − r over Rk(x),L (recall that ηx denotes the induced morphism
(f∗M)x → (f∗∆)x). We also deduce from (A.2) and (A.3):

0→ Ker(η)x → Ker(ηx)→ TorX
′

1 (QX′ , k(x))→ 0.

Since TorX
′

1 (QX′ , k(x)) is t-torsion, it follows that Ker(η)x is a (ϕ,Γ)-module of rank n − r for
all x ∈ X ′. By the same argument as in the last paragraph of the proof of [60, Thm. 6.3.9], we
deduce that Ker(η) is a (ϕ,Γ)-module of rank n− r (in the sense of [60, Def. 2.2.12]).

Step 4. We prove that U := {x ∈ X ′ | TorX
′

1 (QX′ , k(x)) = 0} is Zariski-open and contains
f−1(Xalg). Let SpmA be an affinoid inX ′ andQrA be a model ofQA := QX′ |SpmA. For x ∈ SpmA,
by the same argument as in Step 2, we see that the following statements are equivalent:

� Q
(r/p,r]
A is flat over A at x;

� QrA is flat over A at x.
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Since QX′ has Tor-dimension less than 1 (by Step 2), U ∩ SpmA is exactly the flat locus of

Q
(r/p,r]
A . We deduce that U is Zariski-open. Now assume f−1(Xalg) ∩ SpmA is Zariski-dense

in SpmA (noting that such SpmA can cover X ′). For each x ∈ f−1(Xalg) ∩ SpmA, by the
assumption (2) in the theorem, Im(ηx) ⊂ ∆f(x) is de Rham of Hodge-Tate weights h. We deduce

that Q
(r/p,r]
A ⊗A k(x) has constant dimension (determined by h). Indeed, using [6, Thm. A],

we can deduce that QrA ⊗A k(x) = ∆r
f(x)/ Im(ηx)r admits a filtration by Rrk(x),L-submodules

of graded pieces given by {Rrk(x),L/
∏
τ∈ΣL

t
hi,τ−hi+1,τ
τ

}
i=1,...,r

where tτ ∈ Rk(x),L is the element

defined in [60, Not. 6.2.7], and hr+1,τ := 0 for all τ . Since Rrk(x),L is flat over R(r/p,r]
k(x),L , we see that

Q(r/p,r]⊗Ak(x) admits a filtration with graded pieces given by {R(r/p,r]
k(x),L/

∏
τ∈ΣL

t
hi,τ−hi+1,τ
τ

}
i=1,...,r

.

Hence dimk(x)Q+A(r/p,r]⊗A k(x) is constant for x ∈ f−1(Xalg)∩ SpmA. Together with the fact

f−1(Xalg) ∩ SpmA is Zariski-dense in SpmA, we deduce that Q
(r/p,r]
A is locally free at points in

f−1(Xalg) ∩ SpmA. In particular, f−1(Xalg) ∩ SpmA ⊆ U ∩ SpmA.

Step 5. Consider the restriction D of Im η on U (see Step 4). Specializing the exact sequence

0→ D → (f∗∆)U → QU → 0

at each point x ∈ U , we get
0→ Dx → (f∗∆)x → Qx → 0.

In particular, Dx is a (ϕ,Γ)-module of rank r. By the same argument as in the last paragraph
of the proof of [60, Thm. 6.3.9], we deduce that D is a (ϕ,Γ)-module ([60, Def. 2.2.12]). For
x ∈ U , since (f∗∆)x is de Rham, Dx is de Rham as well. Since f−1(Xalg) is Zariski-dense in U ,
by interpolating the Sen weights (see for example [60, Def. 6.2.11]), Dx has Sen weights h. In
summary, Dx is de Rham of Hodge-Tate weights h for all x ∈ U . The theorem follows by taking
Z to be the union of the complement of U and g−1(Z0) (see in particular Step 3 for the properties
(2) and (3), Step 1 for (1)(a), and Step 4 & 5 for (1)(b) and (4)).

Note that in Theorem A.1.1 f−1(Xalg) is Zariski-dense in X ′ \ Z.

Corollary A.1.2. Let X be a reduced rigid analytic space over E. Let ni ∈ Z≥1 for 1 ≤ i ≤ r
and n :=

∑r
i=1 ni. Assume we have the following data:

(1) a (ϕ,Γ)-module M over RX,L of rank n;

(2) for each i, a (ϕ,Γ)-module ∆i over RX,L of rank ni such that for all x ∈ X, ∆i,x is
irreducible and de Rham of constant Hodge-Tate weight 0;

(3) for each i, a continuous character δi of L× over X;

(4) for each i, an integral positive strictly dominant weight hi = (hi)τ∈ΣL = (hi,j,τ )j=1,...,ni
τ∈ΣL

(i.e.

hi,1,τ > · · · > hi,ni,τ ≥ 0 for all τ ∈ ΣL);

(5) a Zariski-dense subset Xalg of closed points of X such that for all x ∈ Xalg, Mx admits a
filtration 0 = Fil0Mx ( Fil1Mx ( · · · ( FilrMx = Mx satisfying

� dimk(x) Hom(ϕ,Γ)(FiliMx,∆i,x ⊗Rk(x),L
Rk(x),L(δi,x)) = 1;

� for any non-zero morphism of (ϕ,Γ)-modules ηi,x : FiliMx → ∆x⊗Rk(x),L
Rk(x),L(δi,x),

Im ηx ⊗Rk(x),L
Rk(x),L(δ−1

i,x ) is de Rham of Hodge-Tate weights hi.
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Then there exist

� a proper birational surjective morphism f : X ′ → X of reduced rigid analytic spaces;

� a filtration 0 = Fil0(f∗M) ( · · · ( Filr(f
∗M) = f∗M on f∗M by (ϕ,Γ)-submodules over

RX′,L;

� line bundles Li over X ′ for 1 ≤ i ≤ r;

� unique morphisms ηi : Fili(f
∗M)⊗OX′ Li → f∗(∆i ⊗RX,L RX,L(δi)) for 1 ≤ i ≤ r;

� a Zariski-closed subset Z of X disjoint from Xalg

such that the following properties are satisfied

(1) for each i, the cokernel of ηi is locally t-torsion and Ker ηi = Fili−1(f∗M)⊗OX′ Li;

(2) the (Fili f∗M)|X′\Z are direct summands of f∗M |X′\Z as RX′\Z,L-modules;

(3) for all x ∈ X ′ \ Z, the k(x)-vector space

Hom(ϕ,Γ)

(
(Fili f

∗M)x,∆i,f(x) ⊗Rk(x),L
Rk(x),L(δi,f(x))

)
is one dimensional generated by the pull-back of ηi, and the (ϕ,Γ)-module Im(ηi,x)⊗Rk(x),L

Rk(x),L(δ−1
i,k(x)) is de Rham of Hodge-Tate weights hi for 1 ≤ i ≤ r.

Proof. The corollary follows from Theorem A.1.1 by induction. We first apply Theorem A.1.1 to
(M ⊗RX,L RX,L(δ−1

r ),∆r, X) (= the data (M,∆, X) in the theorem) to obtain the data:(
fr : X ′r → X, Zr ⊂ X ′r, ηr : f∗r (M ⊗RX,L RX,L(δ−1

r ))→ f∗r∆r

)
corresponding respectively to f , Z, η in Theorem A.1.1. Next we apply Theorem A.1.1 to
(Ker ηr⊗RX′r,LRX′r,L(δrδ

−1
r−1), f∗r∆r−1, X

′
r) to obtain (fr−1 : X ′r−1 → X ′r, Zr−1 ⊂ X ′r−1, ηr−1). By

iterating this argument, we finally get f : X ′ := X ′1
f1−→ X ′2 → · · · → X ′r

fr−→ X and we put Z to
be the union of the pull-backs of the Zi’s. The corollary follows.

Corollary A.1.3. Keep the setting of Corollary A.1.2 and let x ∈ X ′.

(1) We have that (f∗M)x ∼= Mf(x) admits a filtration 0 = Fil0Mf(x) ( Fil1Mf(x) ( · · · (
FilrMf(x) = Mf(x) by saturated (ϕ,Γ)-submodules of Mf(x) such that griMf(x)[

1
t ]
∼= ∆i,x ⊗k(x)

Rk(x),L(δi,x)[1
t ].

(2) Let A ∈ Art(E) and SpecA → X ′ be a morphism sending the only point of SpecA to
x. Let MA denote the pullback of f∗M along SpecA → X ′. Then MA := MA[1

t ] admits a
filtration 0 = Fil0MA ( Fil1MA ( · · · ( FilrMA = MA by (ϕ,Γ)-modules over RA,L[1

t ] such that
griMA

∼= ∆i,A ⊗RA,L RA,L(δi,A)[1
t ].

Proof. Specializing the objects in Corollary A.1.2 at the point x, we have (ϕ,Γ)-modules over
Rk(x),L:

{(Fili f
∗M)x = (Ker ηi+1)x}i=1,...,r−1, {Ker ηi,x}i=1,...,r, {∆i,f(x)}i=1,...,r
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where (using the fact that Coker ηi,x is t-torsion):

rkRk(x),L
(Fili f

∗M)x = rkRk(x),L
(Ker ηi+1)x =

i∑
j=1

nj and rkRk(x),L
Ker(ηi,x) =

i−1∑
j=1

nj .

We also have morphisms of (ϕ,Γ)-modules over Rk(x),L:{
Ker(ηi)x −→ Ker(ηi,x) i = 1, . . . , r

Ker(ηi,x) ↪→ (Fili f
∗M)x ∼= Ker(ηi+1)x i = 1, . . . , r − 1.

We have that Ker(ηi,x) is saturated in (Fili f
∗M)x for all i. Since Coker ηi is locally t-torsion,

by similar arguments as in Step 3 of the proof of Theorem A.1.1, we see that the cokernel of the
morphism Ker(ηi)x → Ker(ηi,x) is t-torsion, and hence this morphism is injective (as both source
and target have the same rank over Rk(x),L). We take thus FilrMf(x) := Mf(x) and let FiliMf(x)

be the saturation of the image of the composition (note that some of the injections may not be
saturated, for example the first one):

(Fili f
∗M)x ∼= Ker(ηi+1)x ↪→ Ker(ηi+1,x) ↪→ (Fili+1 f

∗M)x

↪→ Ker(ηi+2,x) · · · ↪→ Ker(ηr,x) ↪→Mf(x).

Since Ker(ηi+1)x/Ker(ηi,x) = (Fili f
∗M)x/Ker(ηi,x) ↪→ ∆i,x ⊗Rk(x),L

Rk(x),L(δi,x) with t-torsion
cokernel (both source and target having the same rank), we deduce

griMf(x)

[1

t

]
∼= Ker(ηi+1)x

[1

t

]
/Ker(ηi,x)

[1

t

]
∼= ∆i,x ⊗Rk(x),L

Rk(x),L(δi,x)
[1

t

]
.

Part (1) follows. Part (2) follows by similar arguments.

A.2 Characteristic cycles of parabolic Verma modules

We prove Proposition 5.4.8 by a generalization of Ginzburg’s method ([45, § 6.3]).

We let B ⊂ P ⊂ G be as in § 5, and we use without comment the notation there. For a
smooth algebraic variety X over E, we denote by DX the sheaf of differential operators on X, see
for instance [54, § 1.1]. Recall that OX is equipped with a canonical left DX -module structure.
We will use below the notation of [54].

For w ∈ W , we define Cw := BwB/B and CPw := PwB/B, which are locally closed (smooth)
subschemes of G/B, and CP,w := BwP/P , which is a locally closed (smooth) subscheme of G/P .
So CPw (resp. CP,w) only depends on the image of W in WLP \W (resp. in W /WLP ). Denote by

Cw, (resp. CPw , resp. CP,w) the Zariski closure of Cw (resp. CPw , resp. CP,w) in G/B (resp. G/B,
resp. G/P ). We have

G/B = tw∈W Cw = tw∈WLP \W
CPw and G/P = tw∈W /WLP

CP,w

and we remark that all these schemes are over SpecE.

For w ∈ W , consider jw : CPw ↪→ G/B. By an easy variation of [81, Lemma 5.1] and [81,
Rem. 5.2] to the case G/B, the open immersion CPw ↪→ CPw is affine, hence so is jw. Consider
the direct image

∫
jw
OPw = R(jw)∗(DG/B←CPw ⊗

L
D
CPw

OPw) ∈ Db
qc(DG/B) (cf. [54, § 1.5]). As jw is a
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locally closed immersion (i.e. the composition of an open immersion and a closed immersion), by
[54, Ex. 1.3.2] and [54, Ex. 1.5.12], we deduce that DG/B←CPw is locally free over DCPw

. Together

with the fact that jw is affine, we have
∫
jw
OPw ∼= (jw)∗(DG/B←CPw ⊗DCPw OCPw ) =: NP

w , which is a

P -equivariant coherent DG/B-module, hence by [54, Thm. 11.6.1 (i)] a P -equivariant holonomic
regular DG/B-module. The following proposition is may-be well-known to experts, but we couldn’t
find a reference.

Proposition A.2.1. We have Γ(G/B,NP
w) ∼= MP (wmaxw0 · 0)∨ where (−)∨ denotes the dual in

the BGG category Ob (cf. [57, § 3.2]).

Proof. We have CPw = tu∈WLP
Cuwmax . For u ∈ WLP , we have lg(uwmax) = lg(wmax) − lg(u).

Indeed, let Φ+ (resp. Φ−) be the set of positive (resp. negative) roots with respect B, then
for w′ ∈ W , lg(w′) =

∣∣{α ∈ Φ+ | w′(α) ∈ Φ−}
∣∣. As wmax has maximal length in WLPw,

wmax(Φ+) ∩ Φ+
LP

= ∅ hence lg(wmax) =
∣∣wmax(Φ+) ∩ (Φ− \ Φ−LP )

∣∣ +
∣∣Φ−LP ∣∣. For u ∈ WLP , u

preserves the sets Φ+ \ Φ+
LP

and Φ− \ Φ−LP , hence

lg(uwmax) =
∣∣uwmax(Φ+) ∩ Φ−

∣∣ =
∣∣uwmax(Φ+) ∩ (Φ− \ Φ−LP )

∣∣+
∣∣u(Φ−LP ) ∩ Φ−LP

∣∣
=

∣∣wmax(Φ+) ∩ (Φ− \ Φ−LP )
∣∣+
∣∣Φ−LP ∣∣− ∣∣u(Φ+

LP
) ∩ Φ−LP

∣∣ = lg(wmax)− lg(u).

Let d := |WLP |. For k = 0, . . . , d, denote by Ckw := tu∈WLP
lg(u)≤k

Cuwmax and Zkw := tu∈WLP
lg(u)=k

Cuwmax . By

the above discussion, it is clear that Zkw is closed in Ckw and Ck−1
w = Ckw \Zkw is open in Ckw, hence

open in CPw . Note that Zkw and Ckw are all smooth. Denote by ik : Zkw ↪→ Ckw, jk := Ck−1
w ↪→ Ckw,

and without ambiguity, we put i : Zkw ↪→ Cdw = CPw , j : Ckw ↪→ CPw for all k. Applying [54, Prop.
1.7.1], for k = 1, . . . , d, we have distinguished triangles in Db

qc(DCkw
) (where we use the notation

of loc. cit., for instance see page 33 of [54] for i†k, j
†
k):∫

ik

i†kOCkw → OCkw →
∫
jk

j†kOCkw
+1−−→ . (A.4)

Applying
∫
j = Rj∗ to (A.4) (for the open immersion j : Ckw ↪→ CPw , cf. [54, Ex. 1.5.22]), we obtain

distinguished triangles in Db
qc(DCPw

):∫
j

∫
ik

i†kOCkw →
∫
j
OCkw →

∫
j

∫
jk

j†kOCkw
+1−−→ .

We have by definition i†kOCkw
∼= OZkw [k]. Indeed, by the discussion below [54, Def. 1.3.1], we can

deduce that the derived inverse image of OCkw via ik as DCkw
-module is the same as the derived

inverse image of OCkw via ik as OCkw -module (which is OZkw as OCkw is obviously flat over OCkw).
Using [54, Prop. 1.5.21] and [54, Prop. 1.5.24], we deduce∫

j

∫
ik

i†kOCkw
∼=
∫
i
OZkw [k] ∼= i∗(DCPw←Zkw ⊗DZkw OZkw)[k].

We also have
∫
j

∫
jk
j†kOCkw

∼=
∫
j j
†
kOCkw

∼=
∫
j OCk−1

w

∼= Rj∗OCk−1
w

(cf. [54, Ex. 1.5.22] for the last
equality and note that there is an abuse of notation here: j in the first term is the embedding
Ckw ↪→ CPw , while j in the other terms is the embedding Ck−1

w ↪→ CPw ). In summary, we obtain
distinguished triangles in Db

qc(DCPw
):

i∗(DCPw←Zkw ⊗DZkw OZkw)[k]→ Rj∗OCkw → Rj∗OCk−1
w

+1−−→ . (A.5)
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By taking the long exact cohomology sequence of (A.5) in the case k = d (recall Cdw = CPw ), it
follows:

Rlj∗OCd−1
w

∼=


OCdw l = 0∫
iOZdw l = d− 1

0 otherwise.

Using induction and (A.5) with k decreasing, we can show for k ≥ 2:

Rlj∗OCk−1
w

∼=


j∗OCkw l = 0

0 l = 1, . . . , k − 2 (if k > 2)

Rlj∗OCkw l ≥ k + 1,

and we have an exact sequence for k ≥ 2

0→ Rk−1j∗OCk−1
w
→
∫
i
OZkw → Rkj∗OCkw → Rkj∗OCk−1

w
→ 0. (A.6)

Since j : C0
w → CPw is affine, Rlj∗OC0

w
= 0 for all l > 0. By (A.5) for k = 1, we deduce

0→ j∗OC1
w

(∼= OCPw )→ j∗OC0
w
→
∫
i
OZ1

w
→ R1j∗OC1

w
→ 0 (A.7)

and Rlj∗OC1
w

= 0 for l ≥ 2. This last fact together with Rlj∗OCkw
∼= Rlj∗OCk−1

w
for l ≥ k + 1 and

k ≥ 2 imply Rlj∗OCkw = 0 for l ≥ k + 1 and k ∈ {0, . . . , d}. Hence (A.6) becomes (for k ≥ 2)

0→ Rk−1j∗OCk−1
w
→
∫
i
OZkw → Rkj∗OCkw → 0.

These exact sequences together with (A.7) form a long exact sequence (noting that C0
w = Z0

w):

0→ OCPw →
∫
i
OZ0

w
→
∫
i
OZ1

w
→ · · · →

∫
i
OZdw → 0.

Applying
∫
jw

(which is exact, since jw is an affine immersion, see the discussion above Proposi-

tion A.2.1), we finally obtain a long exact sequence (where we also use jw to denote the affine
embeddings Ziw ↪→ G/B for all i)

0→
∫
jw

OCPw →
∫
jw

OZ0
w
→
∫
jw

OZ1
w
→ · · · →

∫
jw

OZdw → 0.

Taking global sections (which is exact, cf. [54, Thm. 11.2.3]), and using [54, Prop. 12.3.2 (ii)]
(where D of loc. cit. is also referred to as the Verdier dual for coherent left D-modules) and [45,
Thm. 2.4 (ii)], we obtain a long exact sequence of g-modules

0→ Γ(G/B,NP
w)→M(wmaxw0 · 0)∨ → ⊕u∈WLP

lg(u)=1

M(uwmaxw0 · 0)∨ → · · ·

· · · →M(wminw0 · 0)∨ → 0. (A.8)

By [57, Prop. 9.6], Γ(G/B,NP
w) has the same formal character as MP (wmaxw0 · 0)∨. By [54,

Thm. 11.5.3], Γ(G/B,NP
w) ∈ Op(0). Taking duals, we deduce from (A.8) a surjective morphism

M(wmaxw0 · 0) � Γ(G/B,NP
w)∨ which, by [57, Thm. 9.4 (c)], has to factor through MP (wmaxw0 ·
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0) � Γ(G/B,NP
w)∨. As both have the same formal character, It follows MP (wmaxw0 · 0) ∼=

Γ(G/B,NP
w)∨, which concludes the proof. (Note that we cannot apply directly [57, Thm. 9.4 (b)]

to the dual of (A.8) to deduce this result as it is a priori not clear if the map ⊕u∈WLP
lg(u)=1

M(uwmaxw0 ·

0)→M(wmaxw0 · 0) is the same as in loc. cit.).

Recall we have equivalences of categories (see the discussion above Proposition 5.4.7):

Modrh(DG/P , B)
i∗P←−
∼

Modrh(DG/B×G/P , G)
i∗B−→
∼

Modrh(DG/B, P ).

We remark that the equivalence of categories ι := i∗P ◦ (i∗B)−1 in general does not induce iso-
morphisms of U(g)-modules when taking global sections. For example, for P = B, we have
Γ(G/B, ι(L(w · 0))) ∼= L(w−1 · 0).

For w ∈ W and Uw = G(w, 1)B × P (seen in G/B × G/P ), we have i−1
B (Uw) = CPw (resp.

i−1
P (Uw) = CP,w−1) and Uw ∼= G ×P CPw (resp. Uw ∼= G ×B CP,w−1). We use jw to denote

the embeddings CPw ↪→ G/B, Uw ↪→ G/B × G/P and CP,w ↪→ G/P . Let Ñw :=
∫
jw
OUw ∈

Modrh(DG/B×G/P , G), and NP,w :=
∫
jw
OCP,w ∼= (jw)∗(DG/P←CP,w ⊗DCP,w OCP,w) (where the

isomorphism follows from the fact that jw : CP,w → G/P is an affine locally closed immersion,
see the discussion below (A.9), see also [22, Prop. 1.4.5]). Similarly as in [54, (13.1.7)] (with one
B replaced by P , which does not cause any problem), we have i∗BÑw

∼= NP
w and i∗P Ñw

∼= NP,w−1 .

Recall from § 5.4 that MP (wmaxw0 · 0) ∈ Modrh(DG/B×G/P , G) satisfies

i∗BMP (wmaxw0 · 0) ∼= LocBB

(
MP (wmaxw0 · 0)

)
∈ Modrh(DG/B, P ).

By Proposition A.2.1, i∗BMP (wmaxw0 · 0) is isomorphic to the Verdier dual of NP
w
∼= i∗BÑw (for

example see [45, Thm. 2.4] and see [54, § 2.6] for the Verdier dual of coherent left D-modules).
From this, together with [54, Thm. 2.7.1] and the fact that i∗B induces an equivalence of categories,

we deduce that MP (wmaxw0 · 0) is isomorphic to the Verdier dual of Ñw.

We can now prove Proposition 5.4.8 by generalizing the proof of [45, Thm. 6.2].

Proof of Proposition 5.4.8. As MP (wmaxw0 ·0) is isomorphic to the Verdier dual of Ñw, both have
the same characteristic cycle (cf. [54, Prop. 2.6.12]). It is sufficient to show [Xw,λ] = [Ch(Ñw)].
Consider qP,λ : G×P rP,λ → g. We have as in (5.2) XP,λ

∼= G×B q−1
P,λ(b). Similarly as in Remark

5.2.3 (2), we see that q−1
P,λ(b) is equidimensional of dimension dim rP,λ with irreducible components

given by {q−1
P,λ(b)w}w∈W /WLP

, where q−1
P,λ(b)w denotes the Zariski closure of the preimage q−1

P,λ(b)0
w

of CP,w in q−1
P,λ(b) (with the reduced subscheme structure) via the composition q−1

P,λ(b)→ G/P ×
g → G/P . We also have Xw,λ

∼= G×B q−1
P,λ(b)w. Let κP,λ denote the morphism G×P rP,λ → zλ,

(g, ψ) 7→ ψ and q−1
P,λ(b)w := q−1

P,λ(b)w ×κP,λ,zλ {0} (with the canonical scheme structure). Then we
have an isomorphism of schemes

Xw,λ
∼= G×B q−1

P,λ(b)w−1 .

By Proposition 5.4.7, it is sufficient to show (as cycles in T ∗G/P )

[
q−1
P,λ(b)w−1

] ∼= [Ch(i∗P Ñw)] = [Ch(NP,w−1)] =
[

Ch
(∫

jw−1

OCP,w−1

)]
.
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By abuse of notation, we still denote λ ◦ detLP by λ, which is now a dominant weight of t (with
respect to B). Let χ−λ be the character of P (which factors through LP ) of weight −λ over
E. Put L−λ := G ×P χ−λ, which is a line bundle over G/P . By the Borel-Weil-Bott theorem,
H0(G/P,L−λ) ∼= L−(−λ) (:= the finite dimensional algebraic representation of G of lowest weight
−λ, i.e. L−(−λ)N

−
= E(−λ) for the unipotent radical N− of the Borel subgroup B− opposite to

B). Indeed, we have by definition

H0(G/P,L−λ) ∼= {f : G→ E algebraic functions | f(gp) = χ−1
−λ(p)f(g), ∀ p ∈ P, g ∈ G} (A.9)

with the G-action given by (gf)(g′) = f(g−1g′). Let LλP ⊂ LP be the kernel of χ−λ : LP → E×.
Consider κ : Y := G/(LλPNP ) � G/P . Each element in H0(G/P,L−λ) can be viewed as an
algebraic function on Y . Let e be the highest weight vector of L(λ) ∼= L−(−λ)∨ (which is the
finite dimensional algebraic representation of G of highest weight λ with respect to B), i.e. Ne = e
and βe = χλ(β)e = χ−1

−λ(β)e for all β ∈ P where N ⊂ B is the unipotent radical. Let e∗ be the
lowest weight vector of L−(−λ). Put f1 : G → E, g 7→ 〈e∗, ge〉 (with 〈−,−〉 the natural pairing
between L(λ) and L−(−λ)), which corresponds to e∗ via (A.9). Let

fw−1 := w−1f1 = [g 7→ 〈e∗, wge〉]

which corresponds to w−1e∗ via (A.9) and which we can and do view as an algebraic function
on Y . Applying [22, Prop. 1.4.5] (that easily generalizes to our connected split reductive group
G) and using the natural surjection G/B � G/P 7, we can deduce that κ−1(∂CP,w−1) (where

∂CP,w−1 = CP,w−1 \ CP,w−1) is exactly the zero locus of fw−1 |κ−1(CP,w−1 ).

Let U ⊂ G/P be (Zariski-open) complement of the zero locus of the (global) section fw−1 of
the line bundle L−λ over G/P . So κ−1(U) = Y \ f−1

w−1(0) and CP,w−1 = CP,w−1 ∩ U , in particular
CP,w−1 is Zariski-closed in U . Denote by ι : CP,w−1 ↪→ U the closed embedding, then we have (see
[54, Ex. 2.3.8] for the first isomorphism, the last isomorphism is induced by the Killing form)

Ch
(∫

ι
OCP,w−1

)
∼= T ∗CP,w−1

U ∼= T ∗CP,w−1
G/P ↪→ T ∗G/P ∼= G×P (g/p)∨ ∼= G×P nP .

where T ∗CP,w−1
G/P denotes the conormal bundle of CP,w−1 in G/P . Recall we have qP : T ∗G/P ∼=

G×P nP → g, (g, ψ) 7→ Ad(g)ψ, and q−1
P (n)red = ∪u∈W /WLP

T ∗CP,uG/P ↪→ T ∗G/P (for example by

the same argument as in the proof of [31, Prop. 3.3.4]).

We now apply Ginzburg’s method in [45, § 6.3] to Λ := Ch(
∫
ιOCP,w−1 ) and f := fw−1 in

order to calculate Ch(
∫
jw−1
OCP,w−1 ) = Ch(NP,w−1) (don’t confuse jw−1 with the above ι, and

note that jw−1 is not closed in general). We have T ∗G/(LλPNP ) ∼= G ×LλPNP rP,λ (identifying
g to g∨ via the Killing form). For x ∈ Bw−1P , let dfx ∈ Eλ + nP such that (x, dfx) ∈ df ⊂
G×LλPNP (Eλ+ nP ) ∼= T ∗G/(LλPNP ). As the map q : G×LλPNP (Eλ+ nP )→ g, (g, ψ) 7→ Ad(g)ψ
coincides with the moment map T ∗G/(LλPNP )→ g∨ (∼= g) (cf. [31, § 1.4]), we have for X ∈ g the
equality (q(x, dfx))(X) = 〈e∗, w(−X)xe〉. By multiplying x on the right by an element of P , we
can and do assume that x has the form uw−1 ∈ CP,w−1 with u ∈ B satisfying wuw−1 ∈ B−. Let
K(·, ·) denote the Killing form on g, we can calculate:

q(uw−1, dfuw−1)(X) = −χw−1(λ)(u)K
(

Ad(uw−1)(λ), X
)
. (A.10)

7This surjection induces a surjection G×B χ−λ � G×P χ−λ, and we have H0(G/B,G×B χ−λ) ∼= L−(−λ). We
can then deduce the desired results for Schubert cells in G/P from those for Schubert cells in G/B given in [22,
Prop. 1.4.5].
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Hence q(uw−1, dfuw−1) ∈ E×Ad(uw−1)(λ). By unwinding the definition of q(−,−), this implies
dfuw−1 ∈ E×λ.

It is clear that G/(LλPNP ) is a principal Gm-bundle over G/P , and there is a natural induced
Gm-action on T ∗G/(LλPNP ) such that (T ∗G/(LλPNP ))/Gm ∼= G ×P rP,λ. For a ∈ E×, we claim
that we have by (A.10) an isomorphism of schemes:

(κ∗Λ + adf)/Gm ∼= q−1
P,λ(−aw−1(λ) + n) ∩ κ−1

P,λ(−aλ). (A.11)

Indeed, by checking the formula at each closed point of CP,w−1 , we can obtain the equality after
taking the reduced subscheme structure on both sides. However, as in the proof of [45, Thm.
6.3], the left hand side is locally isomorphic to a translation of Λ ∼= T ∗CP,w−1

G/P ⊂ T ∗G/P ∼=
G ×P nP ⊂ G ×P rP,λ in G ×P rP,λ, hence is reduced. On the other hand, we have a closed
immersion

q−1
P,λ(−aw−1(λ) + n)×G×P rP,λ κ

−1
P,λ(−aλ) ↪−→ q−1

P (b)×G×P rP κ
−1
P (−aλ), (A.12)

which is an equality on closed points. By Proposition 5.2.9 and its proof, q−1
P (b)×G×P rP κ

−1
P (−aλ)

is smooth and Zariski closed in q−1
P (b). It is easy to see that the closed subschemes

κ−1
P (−aλ)×G×P rP q

−1
P (b)w′ (for w′ ∈ W /WLP ) of q−1

P (b)×G×P rP κ
−1
P (−aλ) are disjoint, hence each

is open and smooth (and reduced). We deduce

q−1
P (b)×G×P rP κ

−1
P (−aλ) = tw′∈W /WLP

κ−1
P (−aλ)×G×P rP q

−1
P (b)w′ .

Then one can check that (A.12) factors through a closed immersion

q−1
P,λ(−aw−1(λ) + n)×G×P rP,λ κ

−1
P,λ(−aλ) ↪−→ q−1

P (b)w−1 ×G×P rP κ
−1
P (−aλ),

which is bijective on closed points hence is an isomorphism since the right hand side is reduced.
In particular, the right hand side of (A.11) is also reduced so (A.11) holds.

Let Λ] := q−1
P,λ(E×w−1(λ) + n) ∩ κ−1

P,λ(E×λ). By similar arguments as above, one can show
isomorphisms of reduced schemes

Λ]
∼−→ q−1

P,λ(b)w−1 ×G×P rP,λ κ
−1
P,λ(E×λ)

∼−→ q−1
P (b)w−1 ×G×P rP κ

−1
P (E×λ).

We also have Λ] ∼= q−1
P,λ(b)w−1 ×G×P rP κ

−1
P (zreg− ss) (e.g. using the fact that both have the same

E-points and are reduced), hence Λ] is Zariski-open (and Zariski-dense) in q−1
P,λ(b)w−1 . Thus the

scheme theoretic image of Λ] in (T ∗G/(LλPNP ))/Gm ∼= G×P rP,λ is just q−1
P,λ(b)w−1 . By Ginzburg’s

formula ([45, Thm. 6.3], see also [45, Thm. 3.2], and note that the theorem is “algebraic” so it can
be applied with C replaced by E) applied to the case where j is the open immersion U ↪→ G/P
and M is

∫
ιOCP,w−1 (so gr M is just Ch(

∫
ιOCP,w−1 ) and lims→0(gr M )s in loc. cit. is the fibre of

the scheme theoretic image of Λ] at 0 via κP ), we obtain:[
Ch
(∫

jw−1

OCP,w−1

)]
=
[
q−1
P,λ(b)w−1 ×κP,λ,zλ {0}

]
.

The proposition follows.
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A.3 Bruhat intervals of length 2

We show some properties of Bruhat intervals of length 2 in certain parabolic quotient of Sn, that
are used in Corollary 7.2.18.

We write w ∈ Sn in the form w =

(
1 2 · · · n

w−1(1) w−1(2) · · · w−1(n)

)
. For i 6= j ∈ {1, . . . , n},

we denote by tij the transposition exchanging i and j. If w =

(
1 2 · · · n
a1 a2 · · · an

)
and i < j,

then tijw =

(
1 · · · i · · · j · · · n
a1 · · · aj · · · ai · · · an

)
. Let r ≥ 1, and ni ∈ Z≥1 for 1 ≤ i ≤ r such that∑r

i=1 ni = n. Put si :=
∑i

j=1 ni and Ji := {si−1 + 1, . . . , si}. We have thus {1, . . . , n} = tri=1Ji.
Let WJ be the subgroup of Sn generated by the tjk for j, k ∈ Ji, i = 1, . . . , r (so WJ

∼=
∏r
i=1 Sni).

Denote by W J
max ⊆ Sn the set of maximal length representatives of WJ\Sn.

Lemma A.3.1. We have w =

(
1 2 · · · n
a1 a2 · · · an

)
∈ W J

max if and only if for any j = 1, . . . , r the

sequence (aj)j∈Ji is decreasing.

Let [w1, w2] be a Bruhat interval of length 2, i.e. w1 < w2, lg(w2) = lg(w1) + 2, and [w1, w2] =
{w′ ∈ Sn | w1 < w′ < w2}. Recall |[w1, w2]| = 2 (cf. [19, Lemma 5.2.7]). Assume w1, w2 ∈ W J

max,
and denote by [w1, w2]J := {w′ ∈ W J

max |w1 < w′ < w2}. Recall [w1, w2]J is called full if
[w1, w2]J = [w1, w2]. As lg(w2) = lg(w1) + 2, there exist reflections tab, tcd such that w2 = t1t2w1.
We call a full interval [w1, w2]J (of length 2) nice if the integers a, b, c, d cannot be contained in
two Ji.

Remark A.3.2. Identifying Sn with the Weyl group W of GLn, J corresponds to a parabolic
subgroup P of GLn containing B such that WLP = WJ . It is easy to see that, if [w1, w2]J is full

and nice, then dim z
w2w

−1
1

LP
= dim zLP − 2 (see Proposition 5.3.3 for the notation).

Proposition A.3.3. Let w =

(
1 2 · · · n
a1 a2 · · · an

)
∈ W J

max with lg(w) ≤ lg(w0)− 2. Assume that

the partition {Ji} satisfies: if |Ji| > 1 then |Ji−1| = 1 (if i ≥ 2) and |Ji+1| = 1 (if i ≤ r−1). Then
there exists u ∈ W J

max such that u > w, lg(u) = lg(w) + 2 and one of the following two properties
is satisfied:

(1) [w, u]J is full and nice;

(2) [w, u]J is not full.

We will frequently use the following easy lemma (see for example [11, Lemma 2.1.4]):

Lemma A.3.4. Let w =

(
1 2 · · · n
a1 a2 · · · an

)
∈ Sn and i < j. Then tijw is a cover of w (i.e.

tijw > w and lg(tijw) = lg(w) + 1) if and only if ai < aj and there does not exist i, j, k with
i < k < j such that ai < ak < aj.

Proof of Proposition A.3.3. Let I := {j | aj < aj+1}. Since w ∈ W J
max, for any j = 1, . . . , r, the

sequence (aj)j∈Ji is decreasing. We have thus I ⊂ {sj | j = 1, . . . , r − 1}. Since w 6= w0, I 6= ∅.
We prove the proposition by a (somewhat tedious) case-by-case discussion.
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Case (1): Assume there exist sk1 , sk2 ∈ I such that k2 > k1 + 1. In this case, we don’t need
the assumption on {Ji}. For ki, consider the set Ii := {(j1, j2) | j1 ∈ Jki , j2 ∈ Jki+1, aj1 < aj2}.
We have (si, si+1) ∈ Ii, so Ii 6= ∅. Let (ji,1, ji,2) ∈ Ii such that ji,1−ji,2 is maximal. We have thus

aji,1 < aji,2 and

{
aji,1−1 > aji,2 if ji,1 − 1 ∈ Jki
aji,1 > aji,2+1 if j,2 + 1 ∈ Jki+1.

By Lemma A.3.4, tji,1ji,2w is a cover of w (in

fact, for any (j1, j2) ∈ Ii, tj1j2w is a cover of w). By the choice of (ji,1, ji,2) and Lemma A.3.1, we
see that tji,1ji,2w ∈ W J

max. As k2 > k1 + 1, tj1,1j1,2 and tj2,1j2,2 commute. Put u := tj1,1j1,2tj2,1j2,2w,
then it is easy to see that [w, u]J = [w, u] = w < tj1,1j1,2w, tj2,1j2,2w < u is full and nice.

Case (2): There exists k such that I = {sk}. We have either nk = 1 or nk+1 = 1. Note that
we cannot have nk = nk+1 = 1 since if so lg(w) = lg(w0)− 1.

(2.1) Assume nk = 1, let j ∈ Jk+1 be maximal such that ask < aj . We have j ≥ sk + 2 since
otherwise lg(w) = lg(w0) − 1. Put u := tsk(j−1)tskjw, then lg(u) = lg(w) + 2 and [w, u] = w <

tskjw, tsk(j−1)w < u. However tsk(j−1) /∈ W J
max. So [w, u]J is not full.

(2.2) The case nk+1 = 1 is parallel to (2.1).

Case (3): There exists k such that I = {sk, sk+1}. By our assumption on {Ji}, we can further
divide this case into two cases: nk+1 = 1 or nk = nk+2 = 1.

(3.1) nk+1 = 1: let j ∈ Jk be minimal such that aj < ask+1 (note that sk + 1 = sk+1 in this
case).

(3.1.1) If j < sk, put u := tj+1sk+1
tjsk+1

w ∈ W J
max. In Sn, the interval [w, u] is given by

w < tjsk+1
w, t(j+1)sk+1

w < u. However, t(j+1)sk+1
w /∈ W J

max. So [w, u]J is not full.

(3.1.2) If j = sk, let j1 ∈ Jk+2 (resp. j2 ∈ Jk+2) be maximal such that aj1 > ask+1
(resp.

aj2 > ask) (recalling that ask+1+1 > ask+1
> ask). Note that j2 ≥ j1.

(3.1.2.1) If ask+1
> aj2 , then put u := tsk+1j2tsksk+1

w ∈ W J
max. Then [w, u]J = [w, u] = w <

tsksk+1
w, tskj2w < u. Indeed, as ask+1

> aj2 , tskj2w is a cover of w. It is also easy to see that
[w, u]J is nice.

(3.1.2.2) If ask+1
< aj2 (so j1 = j2), put (again) u := tsk+1j2tsksk+1

w ∈ W J
max. In this case we

have [w, u]J = [w, u] = w < tsksk+1
w, tsk+1j2w < u, and [w, u]J is nice (so the only difference with

(3.1.2.1) is that tskj2w is replaced by tsk+1j2w).

(3.2) nk = nk+2 = 1. Let j1 ∈ Jk+1 (resp. j2 ∈ Jk+1) be maximal (resp. minimal) such that
aj1 > ask (resp. aj2 < ask+2

).

(3.2.1) If j1 ≥ sk + 1 (resp. j2 ≤ sk+1− 1), which implies nk+1 > 1, then one can use the same
argument as in (2.1) (resp. (2.2)) to find u ∈ W J

max such that [w, u]J is not full.

(3.2.2) If j1 = sk + 1 and j2 = sk+1, and if nk+1 > 1 (so j2 > j1), then put u :=
tsk(sk+1)tsk+1sk+2

w= tsk+1sk+2
tsk(sk+1)w. It is easy to see [w, u]J = w < tsk(sk+1)w, tsk+1sk+2

w < u
is full and nice.

(3.2.3) If nk+1 = 1, this is a special case of (3.1.2.2).

This concludes the proof.

Remark A.3.5. Without the assumption on {Ji} in Proposition A.3.3, it could happen that
for any u ∈ W J

max, u > w and lg(u) = lg(w) + 2, [w, u]J is full but not nice. For example,

let n = 4, r = 2, J1 = {1, 2}, J2 = {3, 4}, and w = t12t34t23 =

(
1 2 3 4
3 1 4 2

)
∈ W J

max.
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Then u = t34t23t12t23t34 =

(
1 2 3 4
4 2 3 1

)
is the only element in W J

max such that u > w and

lg(u) = lg(w) + 2. One can check [w, u]J = [w, u] =
{(1 2 3 4

4 1 3 2

)
,

(
1 2 3 4
3 2 4 1

)}
hence is

full. However, in this case, any full interval (of length 2) is not nice.

A.4 Errata to [19]

• It turns out that the conjecture [19, Conj. 2.3.7] (describing Xw ∩ Vw′ for w′ ≤ w) is wrong,
some counter-examples were found by Seginus Mowlavi. It is however true for most pairs w′ ≤ w,
see his forthcoming PhD. thesis [71].

• In the equality following the definition of the scheme Z in [19, (2.11)], Ñ ×N Ñ should be re-
placed by (Ñ ×N Ñ )red (in fact, it is possible that Ñ ×N Ñ = (Ñ ×N Ñ )red, but we don’t need it).

• The following erratum is due to Benjamin Schraen and Zhixiang Wu and corrects a mistake in
the proof of [19, Prop. 3.7.2]. We use below the notation of loc. cit. It is stated there that the
map f : V̂x̃ → Ûx induces an injection on global sections, which is false in general. Fortunately
this can be corrected.

Let us recall the context of the proof of [19, Prop. 3.7.2]. We have a reduced affinoid space U
over L, x ∈ U a point and a morphism of formal schemes Ûx → Xr where Xr = Spf Rr and Rr
is a (framed) deformation ring. We construct a proper birational morphism f : Ũ → U which is
obtained as a composition of normalizations and blowing up. It is proved in the first part of the
proof of [19, Prop. 3.7.2] that if x̃ ∈ Ũ maps to x ∈ U , the composite morphism of formal schemes

̂̃
U x̃ −→ Ûx −→ Xr

factors through a closed formal subscheme Xr,M• = Spf Rr,M• ⊂ Xr. Now, the actual proof
diverges from [19, Prop. 3.7.2].

Note that, f being a composition of normalizations and blowing up, is projective locally on
U . Up to refining U , we can assume that Ũ is a closed rigid analytic subspace of PnU for some
n ≥ 1. By [12, Cor. 5.4 (c)], up to further refining U , we can assume that there exists a p-adically
complete topologically finitely generated OL-algebra A0 and a closed formal scheme W0 ⊂ PnSpf A0

such that U = (Spf A0)rig and Ũ = Wrig
0 . As A0 is a p-adically complete ring, it follows from

[46, Cor. 5.1.8] that there exists a projective scheme W0 over SpecA0 whose p-adic completion is
isomorphic to W0. Let W := W0[p−1], this is a projective scheme over SpecA where A := A0[p−1].
We can identify the closed points of U and SpecA and the closed points of Ũ and W . As the
completion of SpecA (resp. of W ) and U (resp. Ũ) at x (resp. x̃) are isomorphic, it is sufficient
to prove the statement with U replaced by SpecA and Ũ replaced by W .

Note that the map W → SpecA is proper dominant. It is proper since it is projective. The
dominance follows from the fact that the map f : Ũ → U is surjective so that all the closed points
of SpecA are in the image of W → SpecA.

Let I be an ideal of A such that
√
I = mx. Let WI := W ×SpecA Spec(A/I) and ŨI :=

Ũ ×(Spf A0)rig (Spf(A0/I ∩ A0))rig so that ŨI is isomorphic to the rigid analytic space associated
to the projective k(x)-scheme WI .
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The map Spec(A/I) ↪→ SpecA gives rise to an A/I-point of the formal scheme Spf Âmx

and to a morphism of formal schemes Spf(A/I) ↪→ Spf Rr. Let us prove that the composition
Rr → A/I → H0(WI ,O) factors through Rr,M• . Namely we have a map

H0(WI ,O) ↪→
∏

y∈|WI |

OWI ,y ↪→
∏

y∈|WI |

ÔWI ,y

where |WI | is the set of closed points of WI , and the assertion follows from the fact that each
Rr → ÔWI ,y factors through Rr,M• . This being true for all I, the map

Rr −→ lim←−
I

H0(WI ,O)

factors through Rr,M• .

Since the map W → SpecA is dominant and A is reduced, the map A→ H0(W,O) is injective.
As lim←−I H

0(WI ,O) is the completion of H0(W,O) for the mx-adic topology (see [46, Thm. 4.1.5])

and Âmx is a flat A-module, the map Âmx → lim←−I H
0(ŨI ,O) is injective. This proves that the

map Rr → Âmx factors through Rr,M• , which gives the desired statement in [19, Prop. 3.7.2].

• In [19, § 4.3], all [K : Qp]n(n+3)
2 should be replaced by n+ [K : Qp]n(n+1)

2 .

• In [19, § 5], the BGG category O should be replaced by its full subcategory Oalg of objects with
integral weights (see [74]).
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groupes réductifs sur un corps local. Travaux en Cours, 1–32, Hermann, 1984.

[9] Roman Bezrukavnikov and Simon Riche. Affine braid group actions on derived categories of
Springer resolutions. Annales Scientifiques de l’École Normale Supérieure, 45:535–599, 2012.
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