Bernstein eigenvarieties

Christophe Breuil and Yiwen Ding

Abstract

We construct parabolic analogues of (global) eigenvarieties, of patched eigenvarieties and
of (local) trianguline varieties, that we call respectively Bernstein eigenvarieties, patched Bern-
stein eigenvarieties, and Bernstein paraboline varieties. We study the geometry of these rigid
analytic spaces, in particular (generalizing results of Breuil-Hellmann-Schraen) we show that
their local geometry can be described by certain algebraic schemes related to the generalized
Grothendieck-Springer resolution. We deduce several local-global compatibility results, in-
cluding a classicality result (with no trianguline assumption at p), and new cases towards the
locally analytic socle conjecture of Breuil in the non-trianguline case.
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1 Introduction

Let p be a prime number. The study of p-adic eigenvarieties is an important and fruitful theme
in arithmetic geometry. This paper is motivated by the role that eigenvarieties play in the study
of local-global compatibility problems in the (p-adic) Langlands program (e.g. see [19] or [37]).
The “classical” theory of eigenvarieties has the restriction that one can only see finite slope p-
adic automorphic forms or representations, or, in terms of Galois representations, trianguline
representations. In order to extend the theory to the non-trianguline case, we construct in this
paper a parabolic version of eigenvarieties, that we call Bernstein eigenvarieties. Note that there
was already some work in that direction, cf. [53], [68], [2] (see after Theorem 1.4 below for a
brief comparison with [53]). These spaces parametrize certain p-adic automorphic (resp. Galois)
representations which are not of finite slope (resp. not trianguline). Following the strategy and
methods in the series of articles [17], [18], [19] (which themselves are based on many previous
results by other people), we study and use the geometry of these Bernstein eigenvarieties and of
their patched and (local) Galois avatars to obtain various local-global compatibility results in the
non-trianguline case.

Before stating our main results, we briefly give the global setup of the paper (with some
simplifications for convenience). Let m > 2 an integer, F'" a totally real number field and F a
totally imaginary quadratic extension of F'* such that all places of F* dividing p split in F. We
fix a unitary algebraic group G over F* which becomes GL,, over F' and such that G(F'* ®g R)
is compact and G is split at all places above p. Let UP = vaoo,p U, be a compact open subgroup
of G(AY), and E be a sufficiently large finite extension of Q,. Put

S(UP,E) == {f : G(FY)\G(AX,)/U? - E, f continuous},

which is a Banach space for the supremum norm and is equipped with a continuous (unitary)
action of G(F,") := G(F* ®q Q) by right translation on functions. For simplicity, we assume in
this introduction that p is inert in F'™, and we fix a place p of F dividing p. We have then G (FJ ) =
GLn(F,) = GL,(F,) and S(UP,E) is a unitary Banach space representation of GL,(Fy). We
recall that the locally algebraic vectors S(UP, E)!2 (for the action of GLy, (F, ©)) admit a description
in terms of classical automorphic representations of G (see for example Proposition 3.2.1 (1)).
The space S (UP, E) is also equipped with a faithful action of a certain commutative global Hecke
algebra T(UP) over Of (the ring of integers of E) which is generated by sufficiently many prime-
to-p Hecke operators. With some more assumptions (on G, F, etc., see § 3.2.4 and § 3.3), one can
show that

e T(UP) is isomorphic to a finite product of complete noetherian Og-algebras T(U? )5, indexed
by some n-dimensional continuous representations p of Galg over the residue field kg of Op;

e for each p such that T(UP); # 0, there is a surjective morphism R; s — T(UP);, where R; s
is the universal deformation ring of certain deformations of p (see § 3.3).

These properties are not necessary for our construction of Bernstein eigenvarieties, but for con-
venience we assume they hold in the introduction. With respect to T(U?) = [[;T(UP)p, we

have a decomposition S(U?, E) D, S(u, E)5 of GL,(F,)-representations. We fix henceforth

p such that T(U?); # 0, and thus §(UP,E)5 # 0. Let m, C T(UP)5[1/p] be a maximal ideal
and p : Galp — GL,(FE) the associated representation, where Galy, := Gal(L/L) for a field L.



The subspace S (UP, E)plm,] of S (UP, E); annihilated by m, is an admissible unitary Banach
space representation of GL,(F},). The study of its relation with the local Galois representation
Pp = p[GalF@, referred to as local-global compatibility, is one of the main themes in the (p-adic)
Langlands program. We first state our local-global compatibility results, which are obtained using
the aforementioned Bernstein eigenvarieties, and we describe these latter afterwards. For these
results, as in [19] we also need the following so-called Taylor-Wiles hypothesis:

Hypothesis 1.1. (1) p > 2;

(2) the field F is unramified over F, F does not contain a non trivial root ¥/1 of 1 and G is
quasi-split at all finite places of F'T;

(3) U, is hyperspecial when the finite place v of FT is inert in F;
(4) b is absolutely irreducible and p(Galp 7)) is adequate.

Let B C GL,, be the Borel subgroup of upper triangular matrices and T’ C B the subgroup of
diagonal matrices. We first have the following classicality result.

Theorem 1.2 (cf. Theorem 7.2.9). Assume Hypothesis 1.1 and the following hypothesis (at p)':

(1) pg is potentially crystalline with distinct Hodge-Tate weights and is generic (in the sense of
§2.3);
(2) there exists a parabolic subgroup P O B of GL, such that Jp(:S’\(Up,E)%n[mp]) has non-

zero locally algebraic vectors for LB(F,), where Jp(-) is Emerton’s locally analytic Jacquet
functor for P ([40]) and LIQ is the derived subgroup of the Levi subgroup Lp DT of P.

Then §(U7’,E)[mp]lalg # 0, i.e. p is associated to a classical automorphic representation of
G(Ap+).

The theorem in the case P = B was proved in [19]. Indeed, the assumption (2) in Theorem
1.2 when P = B is equivalent to Jp(S(U?, E)5"[m,]) # 0, which means that p appears on the
(classical) eigenvariety associated to G with tame level UP. The main novelty of Theorem 1.2 is

that p,, is not necessarily trianguline.

Assume that p,, is generic potentially crystalline and let r(p,) be the Weil-Deligne repre-
sentation associated to p,. It admits a decomposition r(p,) = @]_,r; by absolutely irreducible
Weil-Deligne representations r; (which are distinct as p,, is generic). Each ordering of the r;
defines a partial flag .# on r(p,), and we let P O B be the associated parabolic subgroup. We say
& is a P-filtration on r(p,), or a refinement of p,,. By Fontaine’s theory, the filtration .# induces
a P-filtration %, on Dgr(pe)r := Dar(pe) ®(Fy0q, F) (Fy ®F, - E) for each 7 : F, — E. Let Fil,
be the full flag of the Hodge filtration on Dqr(pe)-. The relative position of the partial flag .7,
and the full flag Fil; is measured by an element w € #}'**, where #3*** is the set of maximal
length representatives in the Weyl group # = S,, of GL,, of the right cosets #7,,\# (here #1,,
is the Weyl group of Lp). More precisely, fixing a basis of Dqr(py)- over E, then .7, (resp. Fil;)
corresponds to an element in GL,, /P (resp. GL,, /B), still denoted by .%, (resp. Fil;). There ex-
ists a unique w, € #5"** such that (%,,Fil;) lies in the GLj-orbit of (1,w,) € GL,, /P x GL,, /B

'"We also need some mild assumption on p, for finitely many finite places v { p of F that we omit in the
introduction, see Theorem 7.2.9.



for the diagonal GLy-action (where w, here denotes a lifting of w, € # in Ngi,,(T)). We let

ws = (wr) € WEE = rpyen VB

On the automorphic side, to any w € 1?‘1}? (defined as 7/]?‘1%;‘ but with “maximal length”
replaced by “minimal length”), one can associate as in [13, § 6] a topologically irreducible locally
Qp-analytic representation C(w,.#) of GL, (F,) over E. We refer to loc. cit. and § 3.2.5 for its
precise definition. We recall that, when w = 1, C(1,.%) is isomorphic to the locally algebraic
representation of GL,(F,,) associated to p, by the classical (suitably normalized) local Lang-
lands correspondence (and is actually independent of .%) and that if S(U?, E)[m,)®®& £ 0, then
§(UP,E)[mp]1alg = C(1,.7)9™ for some m € Z>1. Let wg € #r, = HT:F@—>EW be the element
of maximal length, the following theorem establishes several new cases of [14, Conj. 5.3].

Theorem 1.3 (cf. Theorem 7.2.20). Assume Hypothesis 1.1, §(UP,E)[mp]la1g # 0, and that py,
is generic potentially crystalline with distinct Hodge-Tate weights. Assume moreover

GL,, - 0
(x) any two factors GLy, in Lp = : : with n; > 1 (if they exist) are not

0 -+ GLy,
adjacent.

Then for w € ﬁn;; we have a GLy(F),)-equivariant injection C(w, F) — S(e, E)5tmy] if and
only if wwy > wz for the Bruhat order’.

The case P = B was proved in [19] (see also [14], [36] for related work). When P # B, almost
nothing was known, except very partial results in [38]. Note that, if there is at most one r; with
dimgr; > 1, then the assumption (%) is empty and [14, Conj. 5.3] is proved for any refinement
Z of p,. The technical assumption (x) comes from some properties of the geometry of Bernstein
eigenvarieties (see the discussion at the end of this introduction). Without (x), we still have some
partial results towards [14, Conj. 5.3], for instance the “only if” part in the conclusion of Theorem
1.3 holds without any assumption on P.

When P = B, both Theorem 1.2 and Theorem 1.3 followed from an extensive study of
eigenvarieties (and of the corresponding patched eigenvarieties and trianguline varieties) in [17],
[18], [19]. We follow the same strategy in this work.

Let us start by defining the global Bernstein eigenvarieties. We need more notation. We fix
GL,, --- 0

a parabolic subgroup P 2 B of GL,, and write its Levi subgroup Lp as : :
0 oo GL,,
We fix Q@ = []._; ©; a cuspidal Bernstein component of Lp(Fy,) = [[;_; GLy,(F,), and denote
by Zq = ®!_,2q, the corresponding Bernstein centre (over E). Thus a point of (Spec Zq)"#
corresponds to an irreducible smooth cuspidal representation of Lp(F,,), and we frequently use
the associated representation to denote the point. Let Zy := Z1,(OF,) (where Z, is the center

of Lp) and é\o be the rigid space over E parametrizing continuous characters of Z;. We fix a
uniformizer @ of F{,. For a continuous character x of (O;@)eas with s € Z>1, we denote by x the

character of (ng)@s such that Xw|(0; yor = X and Xw((wkl, .. ,wkS)) =1for any k1,...,ks € Z.
©

2Note that for w € Wr,, w €’ Iﬁn}:’; is equivalent to wwg € 7//15“21;



Finally we also fix A = (\i)1<i<n = (M\i,r) 1<i<n an integral P-dominant weight of GL,,(F,,). The
T Fo—E
following theorem summarizes some key features of Bernstein eigenvarieties:

Theorem 1.4 (cf. § 3.2). For each (2, \) as above there is a rigid analytic space Eq x(UP,p) over
E and an injection of rigid spaces over E

o : Eaa(UP, D) — (Spf T(UP)5)"8 x (Spec Zq)"8 x Z (< (Spf R55)"8 x (Spec Zg)"8 x 2))

satisfying the following properties:
(1) the induced morphism Eq \(U?,p) — Z, is locally finite;

(2) a point (n, 7L, %) € (Spf T(UP)5)"8 x (Spec Zq)"& x Z, lies in Ea(UP,p) if and only if
there exists an injection of locally Qp,-analytic representations of Lp(F,) (where m, denotes the
mazimal ideal of T(UP)5[1/p] associated to n):

Ly O (Xw 0 detr,) @5 L\ p — Jp(S(UP, E)3)[m,)]

where Jp(-) is Emerton’s Jacquet functor for P, L(\)p is the algebraic representation of Lp(F,)
of highest weight \ (with respect to BN Lp), and dety,, : Lp(F,) — Z1,,(F,) is the determinant
map;

(3) Eax(UP,p) is equidimensional of dimension [Fy, : Qp|r;
(4) the set of classical points, i.e. the points (n,7r,,x) € Ear(UP,p) such that

T1p ©F (Yo 0 detr,) @5 LN p < Jp(S(UP, B)E")[m,],

is Zariski-dense in Eq \(UP, D).

Similar spaces have been constructed in [53] (see also [2] for a construction via overconvergent
cohomology, and also [68]), but the new feature in Theorem 1.4 is that we take into account
the action of the full Bernstein centre (rather than just the action of Zp,(F,)), obtained by
applying Bushnell-Kutzko’s theory of types. This allows to parametrize the full Lp(F,)-action,
which is particularl;ir@ortant for our applications. When P = B, we have an isomorphism
Zy % (Spec Zq )8 = T(F,,) (= continuous characters of T(F,,)) and we can show that all (reduced)
varieties £g \(UP,p)™ are isomorphic to the (finite slope) reduced eigenvariety &(UP,p)™¢, see
Remark 3.2.6.

We next discuss p-adic families of Galois representations on g z(U?,p). For a point z; of
(Spec Zqg,)"& (i € {1,...,7}), we denote by 7, the associated irreducible supercuspidal rep-
resentation of GLj,(F,) over £ and we let r,, := rec(m,,) be the associated (absolutely irre-
ducible) Weil representation via the classical local Langlands correspondence (normalized as in
[49]). The Weil representation r,, corresponds to a Deligne-Fontaine module DF,, (see for in-
stance [21, Prop. 4.1]), which by Berger’s theory [6, Thm. A] corresponds in turn to a p-adic
differential equation A, i.e. a (¢,I')-module of rank n; over Ry y,), F, which is de Rham of
constant Hodge-Tate weight O (here k(z;) is the residue field at z; and Ry(s,) r, is the Robba
ring associated to F,, with k(z;)-coefficients). Let x := (n,(z;),x = (xi)) € Eax(UP,p), the
image of 7 via the injection (Spf T(UP);)"® — (Spf R;.s)™® corresponds to a continuous repre-
sentation p, : Gal(F/F) — GL,(k(z)) over the residue field k(z) of Eq\(UP,p) at x. We put

Px,po ‘= px’Gale .



Theorem 1.5 (cf. Theorem 3.2.16, Proposition 3.2.17). Let = as above.

(1) The (¢,I')-module Drig(pe,p) associated to pg, admits a P-filtration File Dyig(pe,e) by
saturated (o, I')-submodules of Drig(ps,o) such that fori=1,... r:

(gri Drig(px,p))[l/t] = (A;Z ®Rk(z),% Rk(x),F@ (Xi,w))[l/t]a (1.1)

where Ry (q),r,(8) denotes the rank one (p,I")-module associated to a continuous character 6§ and
Al = Ay, ORpe,rp Rk(x)vpp(unr(q*Si*”(l*”i)ﬂ)), q being the cardinality of the residue field
of Fy, si—1 :=r1+ - -+ ri_1 and unr(a) denoting the unramified character of Fg sending any
uniformizer to a.
(2) For 1 : F, — E, the Sen T-weights of ps., are given by {hj, - +wt(x:)-} 1<i<r , where
si—1+1<ji<s;
wt(x')r denotes the T-weight of X' for a continuous character x' of (’)}X,p (or of FY).

We call a filtration on a (¢, I')-module satisfying the property (1.1) an Q-filtration, and call
({Az,},{xi}) a parameter of the Q-filtration. Theorem 1.5 (1) gives an analogue of the fact that
p-adic Galois representations over eigenvarieties are trianguline. The proof of Theorem 1.5 (1) is
based on an interpolation result for 2-filtrations in families given in § A.1, which is an analogue
of the theory of global triangulation of [60], [67], [4].

We now define rigid analytic spaces which are (local) Galois avatars of Bernstein eigenvarieties
and analogues of the trianguline variety of [52], [17] when P = B. They parametrize Galois

representations admitting an Q-filtration. Let p,, := ﬁ‘Gale and h := (hy)i=1,.n = (hir)i=1,..n
T Fo—FE

with h; , = A\; - — 7+ 1. Note that the weight h is strictly P-dominant. Let Rﬁp be the universal

framed deformation ring of p,. Define Uqn(p,,) as the subset of (Spf Rﬁp)ﬂg x (Spec Zq)'e x Z
which consists of the points (g, (z;), (x;)) such that:

e the parameter ((z;), (x;)) is generic in the sense of § 4.2;

® Diig(0) admits an Q-filtration {Fil; Dyig(0)} such that one has embeddings
8% Drig(0) ®R’“(z>aF@ ,Rk(l")’F@ (X;zlﬂ) — Aqg, ®Rk(z),Fgo Rk(lﬂ),Fm (Zhsi)

where the image has Hodge-Tate weights (hg, ,11,...,hs,) (here 2P ::HTZFP‘%E 7(z)sio7).

We define Xq n(p,,) to be the (reduced) Zariski-closure of Ug n(p,,) in (Spf Rp@)rig x (Spec Zq)"8 x
:‘5\0 and denote by tqn : XQ’h(pp) — (Spf Rﬁ@)rig x (Spec Zq)'& x 2\0 the closed embedding. We
call Xon(p,) a Bernstein paraboline variety. When P = B, one can check that Xqn(p,,) is
isomorphic to the trianguline variety X;(p) of [17] (see Remark 4.2.4 (1)). It also has similar
geometric properties as X (p) (compare the following theorem with [17, Thm. 2.6]):

tri

Theorem 1.6 (cf. Theorem 4.2.5). (1) The rigid analytic space Xq n(p,,) is equidimensional of
dimension

n2+[Fp:Qp]<Tl(Tl2_1)+r).

(2) The set U n(p,,) is Zariski-open and Zariski-dense in Xq n(py,)-

(3) The rigid analytic space Uq n(p,,) is smooth over E, and the natural morphism Uq n(p,,) —
(Spec Zq)"& x Zqy is smooth.



Note that, differently from the trianguline case, the proof of Theorem 1.6 crucially uses Kisin’s
results on potentially crystalline deformation rings ([63]).

Similarly as in [17], the Bernstein paraboline varieties are closely related to a patched version of
the Bernstein eigenvarieties. Recall that under Hypothesis 1.1, it was constructed in [26] a p-adic
unitary Banach space representation Il of GL, (F,,) equipped with an action of a certain patched
Calois deformation ring Ry, = RE.®o, Rp  (commuting with GLy(F{)). There is an ideal a of R

-~

such that one has a surjection Ro/a - Rj s and an isomorphism Il [a] =2 S(UP, E)5. Applying
the construction of Bernstein eigenvarieties with S(UP, E) replaced by I, we can construct an
embedding of rigid analytic spaces
Lo s EXN(P) — (Spf Roo)™ x (Spec Zq)™™8 x Zg
= (Spf RE,)"8 x (Spf R;_ )™ x (Spec Z0)"™ x Zp (1.2)

which satisfies the properties in the following theorem:
Theorem 1.7 (cf. § 3.3). (1) A point (my,7L,, %) € (Spf Reo)® X (Spec Zq)"8 x Zq lies in En(p)
if and only if one has an Lp(F,)-equivariant embedding

TLp ®8 (Xw o detr,) ®p L(A)p — Jp(I15> ") [m, ]

where T~ denotes the Roo-analytic vectors in the sense of [17, § 3.1].
(2) The rigid analytic space £\ (p) is reduced and equidimensional of dimension

dim(Spf R2,)™ + n? + [F, : Q)] ("("2_1) 7).

(3) There is a natural morphism of rigid spaces
Ea(UP) — EZA(P) X (spt o )ris (SP Rp5)™®
which is bijective on points (where the morphism (Spf R;s)"'® — (Spf Roo)™® is induced by
Roo/a —» Rﬁ,S)'
(4) The embedding (1.2) factors through

EEN(P) — (Spf RE,)™® x j(Xan(p,,)) (1.3)

(where j is a certain shift of the natural embedding, see (3.32)) and induces an isomorphism
between £ (p) and a union of irreducible components of (Spf RS)"® x 3(Xa,n(p,,)) equipped with
the reduced closed rigid subspace structure.

To gain a better understanding of the embedding (1.3), we are led to study the local geometry
of Bernstein paraboline varieties. As in the trianguline case (when P = B), it is closely related to
certain schemes appearing in parabolic generalizations of Grothendieck’s and Springer’s resolution
of singularities. We now define these schemes. For a closed algebraic subgroup H of GL,, (seen over
F,), put Hy, := (Res(gi H) Xgpecq, Spec E. Likewise, for a Lie subalgebra b of the Lie algebra gl,,
over Fy,, put by, := h®q, E. Let g, (resp. gp) be the closed E-subscheme of (GLy,, /By) X gl,,
(resp. of (GLy, /P) X gl,, ;) defined by:

{(ng,I,Z)) € (Gme /BBO) X gln,p | Ad(g_l)d} € b@}

8



(resp. {(gPy,v) € (GLng /Pp) X gl | Ad(g™ ") € tpp}),
where b C gl,, (resp. tp = np % 31,,,) is the Lie algebra of B (resp. of the full radical Np x Zp,,, of
P = Np x Lp). Put
Xpp i =08pPgp Xgl, o Gp-

We define a morphism 7 as the composition:

7 Xpy s (GLng /Py) X (GLny /By) X al,, — (GLn,p /Pp) % (GLy,, /By)
= HwEWIg]?‘Z GLn7@(17 w)(Pp x Bp)

where the second map is the canonical projection. For w € #p'p*, let Uy, := GLp (1, w) (P, x By,)

and X, the reduced closed subscheme of Xp, defined as the Zariski-closure of TF_l(Uw). One can

show that {Xw}we“//;‘gx are the irreducible components of Xp, and that Xp, is equidimensional
Fo

of dimension

n(n—1)

[Fy : Q0 + dimep, = [F : Q) (”("2_1) +7) +dimnp,,

The following geometric property of X, is particularly important for our applications:

Theorem 1.8 (cf. Theorem 5.3.1). Let w € #pp* and x = (91 Py, g2 B, 0) € Xy (GLy,p /Fp) X
(GLn,, /By) % gl

n,ps then the scheme X, is unibranch at x.

When P = B, it was showed in [19, Thm. 2.3.6] that the whole scheme X,, is normal. When
P # B, the geometry of X, appears seriously more difficult and we don’t know if X, is normal.
The proof of Theorem 1.8 is inspired by a result of Le, Le Hung, Morra and Levin in the setting
of deformation rings ([65, Lemma 3.4.8]) and a priori only works for those points x € X, with
gl, ,-factor zero (as in Theorem 1.8).

Let = (0, (%), (xi)) € Xan(p,) such that ¢ is almost de Rham (in the sense of [44]) with
distinct Sen weights. We fix an Fy, ®q, k(z)-linear isomorphism o : F, ®q, k(z) = Dpar(0) =
(Bpar ®q, 0)%F where Bygr is the ring of [44, § 4.3] (see also § 6.1). By an analogue of
Theorem 1.5 (1) for the variety Xon(p,,) instead of g A (UP,p), the (o, ')-module Diig(0)[3] over
Ri(), F@[%} admits a P-filtration .#, which induces a P-filtration (still denoted) .%, on Dygr(0) =
(Bpdr @By WdR(Drig(g)[%]))GalF“ (see for instance [19, Lemma 3.3.5 (ii)] for Wyr(—), see also
§ 6.2). We use Fil, to denote the complete flag given by the Hodge filtration on Dpqr(0). Using
the framing «, the filtration .#, (resp. Fil,) corresponds to an element still denoted by .%, (resp.
Fil,) in GL, /P, (resp. in GL,  /B,). Finally, let v,qr be Fontaine’s nilpotent operator on
Dpar(0). As both .#, and Fil, are stabilized by vpqr, we have

YpdR = (fg, Filg, l/de) € ‘vayp — (Gme /Pp) X (GL,Lp /Bp) X gln@ . (1.4)

There exists thus wz, € Wﬁ};@; such that ypar € 7 Uy, ). In fact, wg, is independent of the
choice of o and is equal to the element wg defined above Theorem 1.3 if o = p, and #, = &
(note that we have vpqr = 0 in this case).

By an analogue of Theorem 1.5 (2), one can show that for each 7 : F,, — F, the set of 7-Sen
weights of o is given by {k; ;- := hjr + Wt(Xz‘(j))r}jzl,...,n where i(j) € {1,...,r} is such that
8i(j)—1 < J < 8i(j)- There exist then a unique element w, = (wy, ) € Wﬁlﬁ; and a strictly dominant



weight h, (which is in fact given by the (decreasing) Sen weights of g) such that k, = wy(hy)

where ky := {kz jr}j=1,..n-
T Fo—E

By generalizing [19, § 3], we have:
Theorem 1.9 (cf. § 6.4). Keep the above notation and assume o is de Rham (equivalently vpar =
0) and #, is generic (in the sense of (6.5)).

(1) We have wgz < wywy.

(2) There exists a formal scheme Xgmﬁf. over E such that the associated reduced formal scheme
of Xy, at

Ypar, and formally smooth of dimension n*[F, : Qp] over the completion X;h(\ﬁp)x of Xa,n(p,)
at x:

(XD)\H/)[I )red is formally smooth of dimension n® + dim po over the completion )?w

0,Me z,YpdR

— = O,wg v
XQ,h(pgD)x — (XQ,,/\,LZ.)red — sz»yde'

In particular, Xo n(p,,) is unibranch at the point x.

By Theorem 1.9 (2) and Theorem 1.7 (4), we deduce the following “R = T”-type result:

Corollary 1.10. Let z = (mP, 0,7, X) € £\ (p) — (Spf R5,)™& x (Spf Rpp)rig x (Spec Zq)'8 x
:Z\o. Assume that mP is a smooth point of (Spf R5.)"'® and that o is generic potentially crystalline

with distinct Hodge-Tate weights. Then the embedding (1.3) induces an isomorphism after taking
completions at x.

We now discuss the problem of companion points on Bernstein eigenvarieties (resp. on patched
Bernstein eigenvarieties, resp. on Bernstein paraboline varieties), which will be crucial to attack
the socle conjecture. Let y be a point of (Spf Rj.s)"8 (resp. of (Spf Reo)™®, resp. of (Spf Rpp)rig),
and ¢ be the Galp, -representation associated to y. We assume g is generic potentially crystalline
with distinct Hodge-Tate weights. We let h be the (decreasing) Hodge-Tate weights of p and A =

(Nir)i=t1,..n With \; ; = h; »+i—1 (so X is dominant with respect to B). Assume r(p) = ®!_,r,,
T Fo—E

with z = (z;) € (Spec Zq)"8. Note that, as g is generic, the P-filtration ry, C 1y @1z, C -
on r(p) corresponds to a unique Q-filtration on Dyig(p), see § 2.3. Consider the point z :=
(y,z,1) in (Spf R5s)"8 x (Spec Zq)"® x Zy (resp. in (Spf R5)"8 x (Spec Z0)"8 x Zj, resp. in
(Spf Rpp)rig x (Spec Zo)"8 x Zp). As usual, we denote by w - p the dot action on a weight .

Conjecture 1.11. Let w € Wrﬁn’&, then x € EquA(UP,D) (resp. T € S&’w_)\(ﬁ), resp. ¥ €

X0 w(h) (ﬁp)) if and only if wwo > wg, .

Asw e Wnﬁm Fy w(h) is strictly P-dominant and w - A is P-dominant, so the corresponding
rigid spaces in Conjecture 1.11 are well defined. The reader who is familiar with companion
points in the trianguline case may find the statement of Conjecture 1.11 a little strange. Indeed,

for the classical eigenvariety £(UP,p) (the case of the patched eigenvariety or of the trianguline

—

variety being similar), there is a canonical embedding £(U?,p) < (Spf R;,s)"® x T(F,) and the
companion points are the distinct points that lie above a same point y € (Spf R@g)rig. In our
case however, as there are different rigid spaces depending on (€2, A), it seems more convenient to
fiz the point x € (Spf R; )¢ x (Spec Zq)"8 x é\o and let the Bernstein eigenvarieties (together
with the embedding tq )) vary. See Remark 3.3.12 and Remark 4.3.10 for more details.
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By Theorem 1.9 (1) and a study of the relation between potentially crystalline deformation
spaces and Bernstein paraboline varieties (cf. § 4.3), we can prove Conjecture 1.11 for Bernstein
paraboline varieties:

Theorem 1.12 (cf. Corollary 6.4.12). Let w € Wnﬁn,Fﬁ, then x € Xqumn(P,) if and only if
wwy > Wz, .

Using Theorem 1.7 (3) and Theorem 1.7 (4), Theorem 1.12 then implies the “only if” part of
Conjecture 1.11.

We now move back to the global applications in Theorem 1.2 and Theorem 1.3, both of
which are about irreducible constituents in the socle of §(UP,E)an[mp]. Let y be the image of
m, via (Spf R;s)"® < (Spf Reo)™. Let m, C Rs[1/p] be the associated maximal ideal, then
S(Ur, E)an [m,] & Il ~a%[m,]. In particular, to prove Theorem 1.2 and Theorem 1.3, it suffices
to show the same statement with [I%=~2%[m,] instead of S(Ur, E)™ [m,]. Let .# be a P-filtration
on r(p,) as in the discussion above Theorem 1.3. As before let h be the (decreasing) Hodge-
Tate weights of p, and A = (A7) with X\;» = h;j» +i — 1. Let © be a Bernstein component
of Lp(F,) and z = (x;) € (Spec Zq)"8 such that r,, & r; for i = 1,---,7 (so  and z are
determined by p and .#). We then associate to p and the P-filtration .# on r(p,) a point

vz = (y,z,1) € (Spf Roo)'® x (Spec Zq)'e x :?\0. From the locally analytic representation theory,

. . n(ntl) ~
for each w € #2! , we can construct a cycle WNway, 7] € ZIFTQ=5 (Spec Ox__ ), where Z4(—)

is the free abelian group generated by the irreducible closed subschemes of codimension d and
Ox.. .y is the completion of X := (Spf Rs)"® at the point y, such that:

e [Nyay.z] # 0 if and only if C(w,.#) embeds into ITHe=20[m,].

It is also not difficult to prove the implication [Ny, 2] # 0= 22 € £3,.(p). It turns out that
this implication is in fact an equivalence (which then implies that, in this case, the existence of
companion points is equivalent to the existence of companion constituents):

Proposition 1.13 (cf. Proposition 7.2.3). For w € Wﬁ}‘;, WNway,z] # 0 if and only if x5 €
gs%ow)\(ﬁ>

We first discuss the proof of Theorem 1.2. The assumption (2) in loc. cit. guarantees that
there exist a parabolic subgroup P D B of GL,, and a P-filtration .# on r(p,,) such that the above
associated point .z = (y,z,1) € (Spf Rso)"® x (Spec Zq '8 x 27\0 lies in a certain patched Bernstein
eigenvariety £5°,. \(p) for some w € V/ﬁlﬁ; Using Proposition 1.13 (and a bit of representation
theory), one can deduce x5 € £, (p). Then the classicality follows by applying Proposition 1.13
to w = 1 and using that C'(1,.%) is locally algebraic.

We now discuss the proof of Theorem 1.3. We henceforth fix a filtration .# and write ¢ := x &,
Nwy) == WNway.z]. Note that, as 1580 [m, lale o S(e, E)[m,]'3!# is non-zero and isomorphic
to a direct sum of copies of C(1,.%), we have [N),] # 0 and z € £3,(p). The “only if” part
(with no assumption on P) already follows from Proposition 1.13 and Theorem 1.12. So we need
to show z € £\ (p) for w € Wﬁf}z such that wwg > wg. Let lg(—) denotes the length function
on Weyl group. The case where lg(wz) > lg(wp) — 1 is not very difficult (and holds for any P).
We assume in the sequel lg(wg) < lg(wg) — 2. By induction and some similar arguments as in
the proof of the “if” part of Theorem 1.12, one is reduced to showing the following statement:

11



max

o if ¥ € EF iy (p) for all w' € WpTp* such that w' > wg, then x € £, ., A (D)-

Thus, assuming x € Sg@?w,wg./\(ﬁ) for all w' € I;‘,f}?g’:, w' > wg, we need to show [Ny ;wgry] 7# 0.
One important fact is that the cycles [Ny.5,] can be related to cycles coming from irreducible
components of certain generalized Steinberg varieties. Let Zp, be the fibre of Xp, at 0 € 37, ¢
via

Xpp — 3Lp.p> (91P,92Bp, ) — Ad(gfl)w

where @ means the natural projection tp, — 31, . One can show that Zp, is equidimensional
with (reduced) irreducible components given by {Z,, := (Zp, N Xw)red}weyylg?;z . Let ypar be the
point of Xp,, associated to p, and .F as in (1.4). As vpqr = 0, Ypar € Zp,. Similarly as in
Theorem 1.8, one can prove that for w € Wﬁ‘ﬁ;‘, if ypar € Zuw, then Z,, is unibranch at ypqr (cf.

Theorem 5.4.3). Using Theorem 1.9 (2), for w € ﬁlﬁ;‘, one can then associate to the completion

A . . . .01 nnt+1) ~
O Zuwpar f Zw at ypar a unique irreducible cycle [3q,,] € AR R (Spec Ox, ). We have

® 3,y # 0if and only if w > wz.

By results on the characteristic cycles associated to generalized Verma modules (that we couldn’t
really find in the literature and that we prove in § A.2), we have the following statements:

L4 [ngwo)\,y] € ZZOBUL?»Z/;

e if z is a smooth point of £, (p) for w € Wg‘}i, there is an integer m, € Z>; such that

in Z[F+:Q]n(n2+l) (Spec 63600,1/)3

Z bw,w’ [Nw’~>\,y] = My ( Z bw,w’?’w’wmy) (15)

w' EVER, w' EVER,
w<w’ <w g wo w<w’ <w g wo
where by, . is the multiplicity of the simple U(g,)-module L(w’ - 0) of highest weight w' -0
in the parabolic Verma module Mp(w - 0) of highest weight w - 0.

If z is not smooth, we also have an equation similar to (1.5) but with the coefficients myb, . on
the right hand side replaced by certain non-negative integers that we do not know how to control
(the left hand side staying unchanged).

Let us assume m, = 1 in the rest of the argument for simplicity. To use these equations to
deduce [Ny swy-ay) # 0, we are led to three cases (recall we have assumed lg(wg) < lg(wo) — 2),
with the third case still resisting without a further assumption on P:

Case (1) is exactly the same as in [19] (in particular we are always in this case when P = B):
assume that there exist wi, wo, w € 15“;;‘ such that w > wz, lg(w) = lg(wg) + 2, {w,wa} =

-1
[we,w] == {w' | wy <w' <w}and dimz;7 = dimjr,,e — 2. Under these conditions, by a

tangent space argument, one can prove that £3° ., \(p) is smooth at x for w' € {wy, we, w}. We
can deduce from (1.5) equalities:

[Nw1w0~/\,y] + [ngwo)\,y] = 3w1,y + ng,y
[ngwov\,y] + [ngwo~k,y] = 3w2,y + 3wgz,y (1'6)
[Nwwo-%y] + [Nwmo-)\,y] + [Nwzwo-k,y] + [wawo-k,y} = 3w,y + 3w1,y + 3w2,y + 3w97y-
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Using that 3,7, can only have non-negative coefficients in [Nyypy.a,y] for w',w” € pr, and

WNwzwory] € Z>03w .5y, it is not difficult to deduce from the equalities in (1.6) that [Ny, ;wo-ry] 7
0°.
Case (2): assume that there exists w > wg with lg(w) = lg(wg) + 2 such that there is a
max

unique wy € ¥ o such that wz < w1 < w (in other words, the Bruhat interval [wg,w] is not
full in the quotient #7,, r,\#F,). In this case, we deduce from (1.5) equalities:

[-/\/’wlwo-)\,y] + [Nwﬁgwo-k,y] = 3w1,y + ngz,y
[Nww()')\,y] + [Nw1w0')\7y] = a03w,y + alSwl,y

for some a; € Z>p. Though we don’t have more control on the a;, these equalities are (again)
sufficient to imply [Ny s we-ay] 7 0.

Case (3): assume that, for any w < wgwy with lg(w) = lg(wzw)—2, we have dim 3151;@;0“]71 >

min

dim3zp, — 2 and there exist wy,wy € #p'y. such that {w | w<w <wgwy} = {wy,ws}. The

o0

main difference with Case (1) is that we do not know if £ (p) is smooth at the point z (the

LWWO A
—1

tangent space argument collapses because of dim 5%}? Z}Ow > dimjp, , — 2). Consequently, the

third equation in (1.6) has to be replaced by an equation of the form (the two others staying

unchanged)

[Nwwov\,y] + [Nwlwov\,y] + [ngwo-k,y] + [wawo%y] = 03w,y + A1 3wy + 23wsy + 33wy

for some a; € Z>¢. Without more control on these coefficients a;, this equation together with the
first two in (1.6) seem not enough to imply [Ny s wo-,y) 7 O-

The assumption (*) in Theorem 1.3 is there precisely to avoid Case (3) (cf. Proposition A.3.3,
see also Remark A.3.5 for an example of Case (3) for GLy).

One may expect other arithmetic applications of Bernstein eigenvarieties. In fact, the results
in this work provide a framework to which many arguments for classical eigenvarieties may be
adapted (as what we already do in this paper). In a forthcoming work [50] of Yigin He, Bernstein
eigenvarieties are used to establish some local-global compatibility results on simple L-invariants
for certain GL,-representations attached to Zelevinsky’s linked segments (which was previously
only known in the trianguline case).

Finally, we remark that in his PhD. thesis [55], Shanxiao Huang proves results that parallel
Theorem 1.4, Theorem 1.5, Theorem 1.6 and the global analogue of part (4) of Theorem 1.7 (i.e.
a version without patched objects).
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2 Preliminaries

2.1 General notation

Let L be a finite extension of Q, and E be a finite extension of QQ, sufficiently large such that X, :=
{r: L= Q) ={r:L< E}. Fork = (k;)rex, € Z®¥zl denote by 2K := [les, T(2)k
L* — E*. Let Oy, resp. O be the ring of integers of L, resp. F, kg the residue field of F, wy, be
a uniformizer of Or, qr, := |0 /wr| and valy(x) the valuation on L* such that valy(wr) = 1. For
a character y of O, denote by x, the character of L™ such that x, ‘Of = x and X, (wr) = 1;

for a character ¢ of L*, denote by dg := 0 ‘Of' We use the convention that the Hodge-Tate weight

of the p-adic cyclotomic character if 1. For a group A and a € A, we denote by unr(a) : L* — A
the unramified character sending any uniformizer to a.

Let A (resp. X) be an affinoid algebra (resp. a rigid analytic space), we write R4 1 (resp.
Rx 1) for the Robba ring associated to L with A-coefficients (resp. with Ox-coefficients) (see
[60, Def. 6.2.1]), and R 4,(9) for the (¢,I')-module of character type over R4 associated to a
continuous character § : L* — A* in [60, Const. 6.2.4].

Let m € Z>1, ™ be an irreducible smooth admissible representation of GL,,(L), denote by
rec(rm) the F-semi-simple Weil-Deligne representation associated to 7 via the local Langlands cor-
respondence normalized as in [49]. We normalize local class field theory by sending a uniformizer
to a (lift of the) geometric Frobenius. In this way, we identify characters of the Weil group
Wy C Galy := Gal(L/L) and characters of L™ without further mention. Let Xcyc denote the
cyclotomic character of Galy, (and of L*).

Let Q be a cuspidal Bernstein component of GL,,(L) ([8]) and 7 € Q. We put

po = {n:L* = E* | r®gnodet X}, (2.1)
ud* = {n:L* — E* unramified | 7 ® g n o det = 7}.

We have ud™ C po and it is easy to see that both are finite groups (look at the central characters)
and independent of the choice of 7 in Q. Denote by Zq the corresponding Bernstein centre (see
§ 2.2 below for more details). For a closed point x € Spec Zq, denote by m, the associated
irreducible cuspidal smooth representation of GL,, (L) over k(z), ry := rec(m;) and A, the p-adic
differential equation associated to r . Recall from [6] that A, is the (¢, I')-module of rank m over
Ri(z),r which is de Rham of constant Hodge-Tate weight 0 such that Dpsi(A,) (forgetting the
Hodge filtration) is isomorphic to the Deligne-Fontaine module associated by Fontaine to r, ([21,
Prop. 4.1]). We may use the associated GL,,(L)-representation or the associated Weil-Deligne
representation or the associated p-adic differential equation to denote a closed point of Spec Zq
depending on the situation.

Throughout the paper, we denote by B the upper triangular matrices in GL, and we will
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consider parabolic subgroups P of GL,, containing B, i.e. of the form

GL,, % - *
0 GL e *
: o , (2.2)
: : . *
0 0 --- GL,
where n; € Z>1 such that > ._,n; =n. Fori € {1,...,r} we define s; := 23':1 n; and sp := 0.

We denote by Lp the Levi subgroup of P containing the group T of diagonal matrices. An integral
weight A = (A1,..., An) of GL,, is called P-dominant (resp. strictly P-dominant) if for j =1,...,r
with n; > 1, and s;_1 <1i < sj_1 +n; — 1, we have \; > Aiyq (resp. Aj > Xiq1).

We use lg(—) to denote the length function on elements in Weyl groups. Let # = S,, be the
Weyl group of GL,,, and #7,, C # be the Weyl group of Lp. Denote by erin C W (vesp. #.F )
the set of minimal (resp. maximal) length representatives in % of the right cosets in #7,,\ ¥/ .

Let wg € # be the element of maximal length. Then w € #L if and only if wwy € #L . We

min max"*
denote by #; = />t (resp. #ip1 = WLEM) which is the Weyl group of Res@p GL,, (resp.
Res@p Lp). Then WnﬁmL = (#E )PLl (resp. WHI;X’L = (#F )PrLl) is the set of minimal (resp.
maximal) length representatives in #7, of #1, 1 \#1. Put wor = (wo,...,wo) € #1 for the
element of maximal length in #7. We use “” to denote the dot action of a Weyl group on the

corresponding weight space (cf. [57, Def. 1.8]).

If X is a scheme locally of finite type over E, or a locally noetherian formal scheme over Op
whose reduction (modulo an ideal of definition) is locally of finite type over kg, we denote by X"&
the associated rigid analytic space over F. If X is a scheme locally of finite type over E or a rigid
analytic space over E, we denote by X4 the associated reduced Zariski-closed subspace. If z is a
point of X, we denote by k(z) the residue field at =, Ox , the local ring at x, (5X7x its mp, -adic
completion and )?x the affine formal scheme Spf O x,z- If x is a closed point of X, then O X,z 1S &
noetherian complete local k(z)-algebra of residue field k(z).

2.2 p-adic differential equations over Bernstein components

Let m > 1, Q be cuspidal type of GL,,(L) and Zq be the associated Bernstein centre over F
(that we recall below). In this section, we construct a “universal” p-adic differential equation on
(Spec Zq)™® that interpolates {Az} e (spec 2)re-

Let 7 be an irreducible smooth representation of GL,,(L) over E of type Q2. We assume that
FE contains the m-th roots of unity. By comparing the central characters, we see that there exists
mo|m such that p,, = {a € EX | m ®@g unr(a) odet = 7}, where p,,, denotes the group of mo-th
roots of unity in E*. We equip E[z,27!] with an action of fi,, by a(z) := az for a € p,. We
then have a natural isomorphism

2o 2 [z, 570 & B[e™, 5]

such that the induced map G,, := Spec E[z, z71] — Spec Zq sends a to 7 ®g unr(a) o det.

We first construct a (o, T)-module on GLE. Let A be the p-adic differential equation over
RE,1, associated to m (or equivalently to rec(m)). Let

Aj = E(zj,t5)/(2t; —ij)a
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then the maximal spectrum SpmA; is {z € Gls | p7 < lz], < P’} (mapping z to p_jzj
and 271 to p77t;) and {Spm Aj}jezs, form an admissible covering of Guni. We define Ay, =
A®Rp Ra; p(unr(z)), which is a (¢, I')-module free of rank m over Ra; . These {Ay;}jez,

glue to a (¢, I')-module over Rigrie 1, where Rrie ;s defined as in [60, Def. 6.2.1].

Let Gy, be a primitive mg-th root of unity. Since 7 = 7m ®g unr(gy,,) o det, we have A =
A ®rp, Rep(unr(sn,)). Let 11 1 A - A ®gy, Re r(unr(y,)) be an isomorphism of (¢, T')-
modules. For a continuous character § of L™, we also use ¢; to denote the induced morphism

A ®RE,L RE,L((S) — A ®RE,L REjL(unr(ng)) ®RE,L RE,L(é) We put for i € Zzli

L =110110-011: AL A ORp.L RE,r(unr(Spy,)) a2 A ORp L RE’L(unr(gfm)).
Since Hom, r)(A, A) = E and E contains all mo-th roots Qf unity, we can multiply ¢; by a scalar
in £ so that ¢, = ida. Let A%j = A®RE,L7€Aj,L(unr(§,ﬁmz)). The isomorphism ¢; induces an
isomorphism (still denoted) ¢; : Ay, = A’AJ_ satisfying ¢, = ida Ay We fix a basis ¢ of A over
RE,rL, and still denote by e the corresponding basis e ® 1 of AZAJ_ over Ry, . We do not ask that
11 respects e (i.e. sends e to e ® 1), hence the isomorphisms ¢; in general do not stabilize e.

It is clear that Spm A; is stable by the induced action of t,, on GH8. The action of g O
Aj induces an action on R A;,L- We equip A A; with an Ry, r-semi-linear action of fi,,, such that
S acts via

-1
Mg, — Al “ Ay,

where the first map sends v®a € AQr,  Ra, (unr(z)) to v®ch, (a) € A®r, , Ra, r(unr(sh, 2)).
Indeed, one can check that this defines a group action of fi,, that commutes with the (¢,T')-
action.

Define Ap, := A::m. By [7, Prop. 2.2.1] (applied first to B = A;, S = R%SA and G = i,
then letting r,s vary), we can deduce that Ap; is a (¢,I')-module free of rank m over Rp; 1
where Bj := Agmo = Bz, ]0) /(2" — p?’™). The affinoids {Spm B;};cz., then form an
admissible covering of (Spec Zg)™®. Moreover it is easy to see that {Ap; }jez., glue to a (¢, T)-
module over R(gpec z, s, that we denote by Ag. One checks that Ag is independent of the
choice of 7 of type Q. It is also clear that for a point = € (Spec Zq)"® with 7, the associated
smooth representation of GL,,(L) over k(z), the fibre A, := z*Aq is isomorphic to the p-adic
differential equation associated to 7.

2.3 Potentially crystalline representations

We recall the structure of potentially crystalline Galois representations.

Let p be an n-dimensional potentially crystalline representation of Galy, over E. Let L' be a
finite Galois extension of L such that p|gal,, is crystalline. Consider the Deligne-Fontaine module
associated to p:

DF(p) := (Dr := (Baris ®q, p) "', ¢, Gal(L' /L)),

where D/ := (Beyis ®Q, p)GalL’ is a finite free L{, ®q, E-module of rank n, L{, being the maximal
unramified subextension of L’ (over Q,), where the ¢-action on Dy, is induced from the ¢-action
on Bes, and where the Gal(L'/L)-action on Dy, is the residual action of Galy. By Fontaine’s
equivalence of categories as in [21, Prop. 4.1], we can associate to DF(p) an n-dimensional Weil-
Deligne representation r(p) of Wy, over E (and we can recover DF(p) from r(p) as in loc. cit.).
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Let P be a parabolic subgroup of GL,, as in (2.2). Assume that r(p) admits a filtration
F :Fillr(p) = (0 =Filf r(p) C Fil{ r(p) C -+ C Fil, x(p) = x(p))

by Weil-Deligne subrepresentations such that dimp Fil7 r(p) = 22:1 n;. We call such a filtration
a P-filtration. We call the filtration .# a minimal filtration if r(p); := grf r(p) is an irreducible
Weil-Deligne representation for all i. We assume that % is minimal in the sequel. In this case, the
Galois representation p is called generic if Hom(r(p);,r(p);) = 0 and Hom(x(p);,r(p);(1)) =0
for all ¢ # j (where Hom is taken in the category of Weil-Deligne representations and (1) means
the twist by z € L* — W) It is easy to see that being generic does not depend on the

choice of minimal filtrations on r(p), and that if p is generic then r(p) = &]_,r(p);. Let ; be the
Bernstein component of GL,,(L) such that the smooth irreducible representation corresponding
to r(p); via the classical local Langlands correspondence (normalized as in [49]) lies in §2;. Let
Q= []; Q;, which is a Bernstein component of Lp(L). The minimal P-filtration . will also be
called an Q-filtration.

The P-filtration .% corresponds to a filtration (still denoted) .# = Fil7 DF(p) (and still called
a P-filtration) on DF(p) by Deligne-Fontaine submodules, such that Fil’fz DF(p) is associated to
Fil7 r(p) via [21, Prop. 4.1]. If p is generic, we have then DF(p) & @!_, er? DF(p).

As p is potentially crystalline, it is de Rham, and thus we have Dgr(p) = (Dy- ®r L’)Gal(L//L),
which is a free L ®g, E-module of rank n. The P-filtration .7 on DF(p) induces a P-filtration
Z on Dgr(p) by free L ®q, E-submodules Fil7 Dar(p) := (Fil7 Dy ®r) L)Gal(L'/L) - Recall also
that Dgr(p) is equipped with a natural decreasing Hodge filtration FilZf Dygr(p) (induced by the
one on Beis) given by (not necessarily free) L ®q, ' submodules. We assume that p has distinct
Hodge-Tate weights. Hence, for each 7 € ¥, we have a complete flag (with an obvious notation

for Dar(p)r)
0& Fﬂ[—{hn,TDdR(P)T G Fﬂ]—{hn_l,TDdR(P)T GG Fﬂ]—{hl,TDdR(P)T = Dar(p)~
where h; ; are the integers such that dimpg grflhi TDdR(p)T = 1. Thus the Hodge-Tate weights of
p are h = (hi)izl,...,n = (hl,'r > > hn,T)TGEL-
We fix a basis of Dgg (p), over E for each 7 € X1,. The filtration .% (resp. Filfl) on Dyg(p) thus
corresponds to an E-point of the flag variety Res@p GL, / Resép P (resp. Resép GL, / Res(L@p B)):

g91(Resgy, P)(E) = (g1,-P(E))rex,  (resp. g2(Res, B)(E) = (92, B(E))rer, ).
For each 7 € ¥, there exists thus a unique wg , € #;L. . such that
(91-P(E),92-B(E)) € GL,(E)(1,wz )(P x B)(E) C (GL,, /P x GL,, /B)(E)

where we still use wz » € Ngr,, (T) to denote a lifting of the corresponding element in % (which is
traditionally denoted by Wz ;). We write wg := (wz +)rexn, € W=l We call (p, F) non-critical
if wg = wo 1, or equivalently wz , = wo for all 7 € ¥p,.

Consider the (¢,I')-module Dyig(p) over R 1 associated to p (see [6] and the references
therein). Let A (resp. Fil7 A) be the p-adic differential equation over Rp 1, associated to DF(p)
(resp. to FileDF(p)), or equivalently to r(p) (resp. to Filfzr(p)). Then .Z := Fil7 A gives an
increasing filtration on A by saturated (¢, I')-submodules. Consider

M(p) = Drig(p)[1/t] = A[1/t].
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By inverting ¢, the filtration .# on A induces an increasing filtration (still denoted) .# :=
{FﬂfZM(p) = (Fil‘f‘\A)[l/t]} on M(p) by (¢,I')-submodules over Rg 1[1/t]. Finally, the fil-
tration . on M(p) induces a filtration on Diig(p):

F = {Fil Dyy(p) := Fil? M(p) 1 Dysg(p)} (2.3)

by saturated (¢, I')-submodules of Dyig(p). By Berger’s equivalence of categories ({6, Thm. A]),
F ﬂfz Drig(p) corresponds to the filtered Deligne-Fontaine module Fil;ﬁo} DF(p) equipped with the
induced filtration from the Hodge filtration on D/ = (Beis ®q, p)%2l (coming from the filtration
on Beis). Such a filtration will be called an Q-filtration on Dyig(p) (see § 4.1.2 for a definition in
a more general setting).

One sees that the Hodge-Tate weights of Fil7 Dyig(p) are given by (recall s; = 23:1 n;)
{P(ws wo)-1 (1) - - -+ Rwi ~wo)~1(s:),r resy » hence the Hodge-Tate weights of gr? Dyig(p) are

(wr()s, 1415, wr(h)s,) = (M cwo)~2(si1+1)75 - Rwr rwo) =2 (5:)7) rexs,

(which are decreasing as wg ;wo € #,L ). In particular, (p,.F) is non-critical if and only if the
Hodge-Tate weights of gr? Dyig(p) are (hg,_,11,...,hs,) for i = 1,...,7. Since gr{ Dyig(p) C
t=N grfz A for N sufficiently large, using [6, Thm. A] and comparing the weights, we have an

injection of (¢,I')-modules over Rg f, for i =1,...,7:

gty Diig(p) @R, R, (z707 ey s gr7 A (2.4)

Finally let p : Gal;, — GL,(kg) be a continuous representation, & : I, — GL,,(F) be an inertial
type (where I, C W, denotes the inertial subgroup), and h € Z">Ll be a strictly dominant weight
as above. We denote by Rgcr(ﬁ ,h) the universal potentially crystalline framed deformation ring
of p of inertial type & and of Hodge-Tate weights h (cf. [63]).

3 Bernstein eigenvarieties

In this section, we construct Bernstein eigenvarieties from p-adic automorphic representations. In
§ 3.1, we give the general formalism of the construction, which can be applied to any admissible
locally analytic representation of (a product of copies of) GL,. We then apply in § 3.2 this
formalism to p-adic automorphic representations on compact unitary group, to get what we call
Bernstein eigenvarieties. We prove basic properties of the latter, like the density of classical points,
etc. We also show that the Galois representations associated to points on Bernstein eigenvarieties
admit a certain filtration, and address the problem of companion points. Finally, in § 3.3, we
apply the general formalism to the “patched” p-adic automorphic representation of [26] to obtain
a patched version of Bernstein eigenvarieties (that has a more local flavor).

3.1 Abstract construction

This section gives a general formal construction of certain rigid analytic spaces from Emerton’s
Jacquet modules of locally analytic representations, using Bushnell-Kutzko’s theory of types.
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3.1.1 Notation and setup

We will assume that the reader has some familiarity with p-adic functional analysis, and we use -
most of the time without further mention - the various foundational results in [76], [77], [78], [79]
and [42].

For a locally Q,-analytic group H, denote by C®~12(H, E) the space of locally Qp-analytic
functions on H with values in E and by D(H, E) := C%~13(H, E)V its strong dual (the distri-
bution algebra), which is a Fréchet-Stein algebra when H is compact. Denote by C*°(H, E) —
CY—a(H, E) the closed subspace of locally constant functions on H with values in E, and set
D*>(H,E) :=C>®(H,E)", which is a Hausdorff quotient of D(H, FE).

For a topologically finitely generated locally Q,-analytic abelian group Z, denote by 7 the
rigid space over E parameterizing locally Qp-analytic characters of Z (cf. [42, Prop. 6.4.5]). By
[42, Prop. 6.4.6], there is a natural injection D(Z, E) — I‘(Z O3). For x a locally Qp-analytic
character of Z, we denote by m, the associated maximal ideal of E[Z]. If Z = (L*)" or is a
compact open subgroup of (L*)" (for L as in § 2.1), and x is a locally Qp-analytic character of

Z, we denote by wt(x) the weight of x (see [19, Notation]). For instance if y is E-valued, then
wt(x) = (Wt(X)r)res, = (Wt(X)ir)ie1,.n € (E™)FLl. In this case, for A = (\;,) € (Z")*2]] we
by

TEL]
denote by §) the algebraic character of Z of weight A.
For a continuous Banach representation 11 of a p-adic Lie group G, we denote by II?" the locally

Qp-analytic subrepresentation of II and by 1128 C I12" the locally Qp-algebraic subrepresentation
of 1I.

Let .# be a finite index set. For any i € .#, assume we have a finite extension F; of Q,. For
each Fj, we fix a uniformizer w;, and denote by ke, : F — Olé- the map sending w; to 1 and
being the identity on Of .

Let G := [[;c.r Resg; GL,, (an algebraic group), and G := G(Q,). For each i € .Z, we fix
a parabolic subgroup P; of GL,, containing the Borel subgroup B of upper triangular matrices,
and let Lp, the Levi subgroup of P; containing the group 7' of diagonal matrices. Let P :=
[Lics Res(g; P, 2 By :=lics Resg; B, and Lp := [[;c.» Resg; Lp, which is the Levi subgroup
of P containing Ty := [[;c » Resg; T. Let Np (resp. Np,) be the unipotent radical of P (resp.
of P;), P~ (resp. P;) the parabolic subgroup opposite to P (resp. to P;), Np- (resp. Np-) the
unipotent radical of P~ (resp. of P;"), Zp,, (resp. Zp,,) the centre of Lp (resp. of Lp,), and LB
(resp. Lll% ) the derived subgroup of Lp (resp. Lp,). We have therefore

Fi - Fi - Fi
NP - Hie‘] ReSQP NP” P = Hieﬂ Res@p Pl ’ NP7 = H’L’E:V Res@p NP-f?
Fi _ Fi
ZLP = Hie] RGSQP ZLPZ-’ L][D) - Hlef ReSQp LILD)Z

We denote by g, bz, p, np, [p, np—, 31, [}Q the Lie algebra over F of G, B+, P, Np, Lp, Np—,
Zip, LE, respectively. For a Lie algebra h over E, denote by U(f) the universal enveloping algebra
over E. We define

LOP = Hieﬂ LPi(OFi) - LP(QP)7 ng = Hief ZLP,- (OFz) = L(I)D N ZLP(QP) C ZLP(QP)
N9 =Ty Np(OR) C Np(@y), NS = [I,os Np-(Or) C Np-(Qy)

and denote by detz,, the determinant map Lp(Q,) = Z1,(Qp). For each i € .#, Lp,(F;) has the
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GLy, 0 - 0

0 GL,,, --- 0
form . . 0 for some r; € Z>1 and integers n; ; € Z>1, 1 < j < r; with
0 0 <o GL; T

> iiiniy = n. Hence Lp(Qp) = [[;cs [1j GLn, ;(F;). For each (i,j) € & x {1,...,7;} we fix
a cuspidal Bernstein component £); ; for Gan( F;), and we let Q := [[,c » HFl Qw' Let Zq,
(resp. Zq) be the Bernstein centre of €; ; (resp. of Q) over E (see § 2.2), we have an isomorphism
of commutative E-algebras

20 ¥ Ries Q4L 2,

Let (J; j,0?.) be a maximal simple type of §; ; (cf [23, § 6]) such that the compact open subgroup

1 ]7 z ]
Ji; is contained in GLy, ;(OF,). Recall that a? ;.; is an absolutely irreducible smooth representa-
GL,. .(O
tion of J;; over E. Put o;; := Ind; ”( ") aoj, which is an absolutely irreducible smooth

representation of GLy, ;(OF,) over £ (e g. see the proof of [75, Cor. 6.1]). Let

, , LY

ol = Xic s &;1:1 U?’j, J = H Jij and o :=Nc s &;;1 oi; = Ind;” o
1:7.7

which is an absolutely irreducible smooth representation of L(I)D over F. Recall we have natural

isomorphisms of commutative E-algebras (where “c-ind” denotes the compact induction)

EndGL S (F) (C_lndGLmj(OF ) Uz,]) = EndGL S (F) (C ln? ) 3 U?,j) = ZQi,j
LP Qp ) Z
Q-

1

1%

Endp,(g,)(c- mdLoi @) o) Ende«@ ) (c-ind ;

Let A be an integral P-dominant weight of G, i.e. A = (A\j)ier = (Nir) icr with each weight

T EF
Air of GL;, being P;-dominant (cf. § 2.1), and L(\)p the algebraic representation of Lp(Q)) over
E of highest weight A. If X is moreover dominant, we denote by L()\) the algebraic representation
of G, (over E) of highest weight A.

3.1.2 (9, \)-part of Jacquet-Emerton modules

Let V' be an admissible locally Qp,-analytic representation of G(Q,) over E. Using Emerton’s
locally analytic Jacquet functor and the type theory (a la Bushnell-Kutzko), we associate to V' a
certain Zq X ng—module Ba (V).

First applying Emerton’s Jacquet functor Jp(—) ([40]) to V', we obtain an essentially admissi-
ble locally Q,-analytic representation Jp(V') of Lp(Q)) over E. Let A be an integral P-dominant
weight of G. We then define

Jp(V)x 1= Homgp (L) p, Jp(V)) = (Jp(V) @5 LO)H)* 2 lim (Jp(V) @5 L) H) "
H

(3.1)

where H runs through compact open subgroups of LB(Qp). This is a closed Lp(Q,)-subrepresen-
tation of Jp(V) ®p L(A)Y (with the induced topology).

We equip the space of locally analytic functions CQP*la(ng, E) with an Lp(Qp)-action given
by the regular action of Zg on CQP_la(Zg , E') precomposed with:

(detLP)

Lp(Qp) Z1p (@) = [] Zer, (F: i, 5] 2, (0r) = 20, (3.2)

=84 =4
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Let o be an irreducible smooth representation of L% as in § 3.1.1. We put:
By (V) := Hompyg (0, Jp(V) NET A V4 S )
~ Ly
= (0¥ @p (Jo(VEC¥ (2], B))) " (33)

where Jp(V)A&éECQP*Ia(Z%P,E) is the completion of Jp(V)A®ECQP*Ia(ng,E) equipped with
the projective - or equivalently injective - tensor product topology (note that both factors are
vector spaces of compact type) and with the diagonal action of Lp(Q,). We view B, (V) as
a closed subspace of 0¥ ®@p JP(V),\<§)ECQP_13“(Z2P,E) which is an E-vector space of compact
type (recall the finite dimensional o is equipped with the finest locally convex topology). Hence
B, (V) is also an E-vector space of compact type.

Remark 3.1.1. The definition of B, (V') might appear somewhat artificial. The motivation is to
construct an object parametrizing Lp(Qp)-subrepresentations of Jp(V')x that lie in the Bernstein
component Q up to twist by continuous characters of Zr,,(Qp) (see Proposition 3.1.8). One
may consider removing the factor CQP*la(ng, E) and using types for LE(Q,) instead of the type
(0,LY) for Lp(Qp). The resulting object is actually more natural. However, it is not clear to
the authors how to use such an object to parametrize the Lp(Qy)-subrepresentations of Jp(V')x
discussed above.

Next, we discuss various group actions on B, (V).

There is a natural locally Qp-analytic action of Z7,(Q,) X ng on 0" ®g
Jp(V))\(@ECQP*la(ZgP, E) where Z,,(Qp) acts on Jp(V)y, ng acts on CQP*la(ng, E), and there
is no action on ov. It is easy to check that this action of Zr,(Q,) x Z%P commutes with the
diagonal L%-action (LY acting on all 3 factors). So we see that B, (V) inherits a locally Q,-
analytic action of Zp,(Q,) x ng‘ In order to avoid confusion, we write Zy for ng when it acts
on C@P_la(ng, E) alone and we use the notation Y for this action. Likewise we write Z; for
Z1,,(Qp) when it acts on Jp(V'), alone and use the notation T for this action.

We write Ag for the action of Z1,,(Q,) on B, (V') induced by the diagonal action of Z,,(Q,)
on JP(V),\@)ECQP_M(Z]%P, E) (and the trivial action on ), i.e. A is given by the action of Z1 x Zy
composed with the morphism

id, (3.2
Z1,(Qy) 2222,

Denoting by 1), the central character of o (a character of Z1,,(Qp)), we see that the restriction
A0|Zg on B, (V) is given by 1,. We deduce hence for any 20 € ng (see the (detr,)~! in
P

(3.2)):

Z1,(Qp) x Z}, = 21 x Z,. (3.4)

T1(2°) = ¥ (2°) Yo (detr, (2°)). (3.5)
With our choice of the uniformizers w;, we have a map Z < F.*, 1 + w;, that induces a map

@ies " — Z1,,(Qp). We denote by Z, its image. Then the action of A is determined by Ag|z,
(since A0|Zg acts via 1, and Zr,,(Q,) = ng X Zg). On the other hand, the action of Z; x 2
P

restricts to an action of Z5 x Zp on B, z (V). Since (3.2) is trivial on Z, using (3.4) we see that
T1lze = Aoz

From the natural bijection

B, (V) = Homyp ,(q,) (C—indig(@p) o, JP(V)A(@ECQP_IE‘(Z%P, E))
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we deduce that B, (V') is also equipped with a natural action of Zg = Endj, P(Qp)(c—indéﬁ @) o)
P

which commutes with the action of Z; x Z3. Moreover, we have a natural morphism

Zpp(Qp) — Endz . (q,) (C-indié;((@p) a) ~ Za

and it is easy to see that the Zy,,(Qp)-action on B, x(V') induced by this map coincides with the
Ag-action. In particular (from the last assertion in the previous paragraph) the action Y1|z_ can

be recovered from the Zg-action. With (3.5), we finally see that the action of the full Z; can be
read out from the action of Zy x Zq.

The following lemma is straightforward (using tensor-Hom adjunction).

Lemma 3.1.2. Let M be a finite length Zqo-module over E, then we have
~ . L ~ _
HOIHZQ (M, Bg7)\(V)) — HOmLP(Qp) ((c-lndLé;(Qp) 0.) ®ZQ M, JP(V),\@ECQP la(ng,E)).

Lemma 3.1.3. The action of Z X Zy (seen inside Z1 x Zy) on By x(V) makes it an essentially
admissible representation of Z5 x Zy.

Proof. We first consider Jp(V)y. Since Jp(V), is an essentially admissible representation of
Lp(Qp) (by [40, Thm. 4.2.32] and [35, Lemma 2.8]), the topological dual (with the strong topology)

Jp(V)Y is a coadmissible module over D(H, E)@EF(ZL/P@,,), OZL/@ )) for an arbitrary compact
pp

open subgroup H of Lp(Q,). Shrinking H, we can and do assume H has the form H = HP x
Zp where HP (resp. Zpy) is a compact open subgroup of LB(Q,) (resp. of Z1,(Q,)). Hence
D(H,E) = D(HP,EY®pD(Zy, E). Since the HP-action on Jp(V), is smooth, the action of

D(H, E)@EF(Z;@]D), O on Jp(V)y factors through

ZL/P@»)

D*(HP,BE)®pD(Zy, B)®pT(Z1,(Qp), OZL:((\@P)%

and further through its quotient

DOO(HD7 E)@EF(ZLP (QP)’ OZ[;(T@P))

o —

via the embedding D(Zg, E) — I'(Z1,(Qp), OZL/((\@ )),
p\p

We now consider Jp(V),\@)ECQP*la(ZgP, E). We denote Z7 , by Zy (vesp. Zj, resp. Z() when
it acts on Jp(V)AééECQP*Ia(Z%P,E) by only acting on the term CQp*la(ng,E) (resp. by only

(id,det 1)
acting on Jp(V),, resp. by acting via ng 2 e Z x Zp). In particular the Zj-action

coincides with T1|Zg . Note that (3.2) defines a trivial action of HP x Z on CQp_la(ng, E), so
P
the diagonal action of HP x Z, is the same as the one given by only acting on Jp(V)y. It follows
from the previous discussion that the strong dual of Jp(V)\® ECQP*I‘E‘(Z%P, E) is a coadmissible
module over (recall Z; = Z1,,(Q,) acts via Y1)
D*(HP, E)&5I' (21, 05)8ED(20, E)
=~ D*(H, B)& T (Zz, O7=)®rD(2), E)&£D (2, E).
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Using the group isomorphism
ZY x 2y = 2} x 2y, (a,b) = (a,bdetr,(a)™h),
we see that the strong dual of Jp(V),\& ECQP_la(ZEP, E) is also a coadmissible module over

Dy := D*(HP, )& gl (Za. O )D(2], E)ErD(Z0, E).

We now finally consider B, (V). Let M := (0¥ ®p JP(V)A@)ECQP_M(Z%P, E))v (a Fréchet
space). We use Zy, Zj, Z{ to denote the corresponding induced action of ng on M that acts
trivially on ¢¥. Shrinking H if necessary, we assume the H-action on o is trivial. Using the
previous paragraph, we see that M is a coadmissible module over Dy. Noting that the action of
Z{ coincides with Ag| R B, (V) is by definition a direct summand of:

o~ D
W= (0V @p Jp(V)\&eC%1(ZY )" (21 = v.).

Endow M®p, k,, ( (Zw, O~ )® vD(Z2y, E)) with the locally convex quotient topology from
M@p(T (Zw7 = )®ED(ZO, )) where k,,, denotes the projection Dy — F(Zw, Oz~ )®ED(ZO, E)
which sends DOO(H D E) to E by moding out by the augmentation ideal, which sends D(Z[,FE)
to E via the character 1., and which is the identity for the other factors of Dy. Then we have
an isomorphism
WY 2 M@pyn,, (0(Ze, OF 72)%8D (20, E))
where the right hand side is the Hausdorfl completion of M®p, s, ( (Zw7 O~ )®ED(ZO, E))
As M is coadmissible over Dy, we deduce that WV is coadmissible over I“(Zw7 = )® eD(2, E).

Hence W is an essentially admissible locally Q,-analytic representation of Zf x Zp, and so is

Bo (V). O

We use the notation 3¢ := 31, to emphasize the action on B, x(V) derived from Zj. For an
E-algebra A, m C A an ideal, and an A-module M, we denote by M[m*>] := hgnM[mn] the
A-submodule of M consisting of elements annihilated by m” for some n > 0.

Lemma 3.1.4. Let d be a weight of 30, then we have

Boa(V)[30 = 7] @BM Go=0m]mFl = B BoalV)0 = 0lfmy]m™]

meSpm Zq,x

where § (resp. x) runs through the smooth characters of Ao = Zr,,(Qp) (resp. through the locally
algebraic characters of Zy = ng of weight 9) and ms C E[Aq] (resp. my C E[Z0]) is the mazimal
ideal associated to § (resp. x). Moreover, each summand in the direct sums is finite dimensional
over E.

Proof. We have by definition using (3.2):

Boa(V)[50 = 0] = (Jp(V)\BpCY (20 E)31, = 0] ©p 0¥)L*
= (Jp(V)Alsr, = 0 0 dety, | @pC% (20 E)s1, =0l ®@p o) r. (3.6)
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As C@Ia_l"‘(ZgP7 E)sr, =0 = C‘X’(ng, E) is topologically isomorphism to a direct limit of finite
dimensional E-vector spaces. We deduce by [64, Prop. 1.2] that (3.6) remains unchanged if ® is
replaced by ®p. As in Lemma 3.1.3, let H be a compact open subgroup of L% such that H acts
trivially on o and H = HP x Zy where HP := HN LB and Zy := HN ZgP. By (3.6), we see
that B, x(V)[30 = 9] is a Ag-equivariant direct summand of

(Tp(V)lsrp = dodetr,] @5 CH (2 E)31, =0l @pa”)"

It thus suffices to prove the statement for the latter. We have

_ H
(JP(V)alszp =0 odetr,] @p C (2], E)51, =0 @ 0”)

~ HP _ Zy

- ((JP(V)A ®po’)" 3o, =0dodets, ]| @ C¥ (2], E)3r, = °]> '
By [53, Thm. 4.10], we have

HP HD
(Jp(V)x@paY)" [, =0odets,] = P Ip(V)r@r0Y)" [0, =0 odety,][mf]
6/
where ¢’ runs though the locally algebraic characters of Z; = Z7,,(Q,) of weight d (and [m§f] is
for the corresponding Zij-action). Moreover, by the proof of loc. cit. and the same argument as in
D

the proof of [20, Prop. 4.1], each (Jp(V)\ ®p UV)H (32, = 0 odetr,][m$] is finite dimensional
over E. For such ¢, we easily get:

(1) 95 0) " 51 = Do dety Jmd 0 CO (2, BYlsr, =2)) " (37
> @ ((TrVep o)™ i, =00 detr, Jimi) p O (20, By, =2)) " my ]
dx
= @ ((7p()r 260%) " oz, = 00 detr, JimiF] @ €& (20, B)lsr, =0]) [my] )
m,x

where [m$°] is for the smooth action of Ay = Zr,,(Q,), [m,] for the locally algebraic action of
2y = Z%P (with x as in the statement) and [m®] for the smooth action of Zq (m as in the
statement), noting that smooth representations of Zy over E are semi-simple. By unwinding the
actions of Z; and Ay, if a summand in the right hand side of (3.7) is non-zero, then 667! is a
locally algebraic character of weight 9 o dety,, which is trivial on Z5 and ¢'|z, = (x odetr )|z, -
We deduce that for each smooth character § of Ay and each locally algebraic character y of 2
of weight 0, there exist at most finitely many ¢’ such that (3.7) is non-zero. Likewise replacing
characters 0 of Ay by maximal ideals m of Zg. The lemma follows. O

We discuss the problem of the choice of o and A\. We first introduce some notation.

Notation 3.1.5. (1) For a continuous character x of ng (resp. of ZLP,L-(OFZ'))7 denote by X
(resp. Xw,;) the character of Zp,(Qp) (resp. of Zp, (F;)) that is trivial on Zg (resp. on Zg, =
Zs N ZLy (Fi)) and is equal to x on ng (resp. on Zp, (OR,)).

(2) For a continuous character § of Zr,(Qp) (resp. of Zr, (F;)), put 50 = 5\Z2P (resp.
R 5|ZLPZ- (OFi))’ 502 = (0% (resp. (50@ = (6Y), ) and ot = (5(502)*1 (resp. 0" = 5((5%1_)*1).
Hence 63" (resp. 6%) is an unramified character of Zy,(Qp) (resp. Zrp, (F;)) and 6 = dunrs)
(resp. § = 0260 ).

wi
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Let 9 be a smooth character of Zp,(Q,) over E, 0/ := 0 ®p (¥" odety,) and €’ the Bernstein
component associated to o’. We have an Lp(Q,)-equivariant isomorphism

c-indﬁ[g(@v) o = <c—ind§é;(Qp) 0) ®p (podetr,), fr g flg) (detp,(9)]@1. (3.8)
Denote by ¢y, the following composition
Ly Endp,,q,) (C—indﬁi((@p) o) — End,(qg,) ((c—indﬁé;((@p) o) ®p (Yodetr,))
(Qp) 0./)

~ . 4L
— Endp,(q,) (c—lndL(’);

where the first map is given by twisting by 1) odety,,, and the second map is induced by (3.8). We
easily check that v : Zq — Zq sends m € Spec Zqy to 7 ®p (! odetr,) € Spec Zqg. Let X be
another integral P-dominant weight for G such that there exists an integral weight d of Z,,(Q))
with A — X = d odety, (in particular L()\)p’Lg(Qp) = L(A’)p\Lg(Qp)). Let §, be the algebraic
character of Z1,(Qp) (over E) of weight 2. Recall 6, = 63269 _ from Notation 3.1.5.

Lemma 3.1.6. There is a natural isomorphism of vector spaces of compact type
twyo ! BJQ)\/(V) AN Bm)\(V)

satisfying the following compatibility for the Zq X Zg x Zy- and Zq X Zg X Zy-actions, where
vE By V), a€Zy, feZy and vy € Zp:

twyo (@, 8,7) - v) = (6 0 detLp)(ﬁ)(5a¢)_1(7)((%g};(b;i(a))aﬁﬁ) 'tW¢,a(U))-
Proof. We have Zp-equivariant isomorphisms (using (3.8) for the second):
two ¢ By y(V) = Homy,(g,) <c-ind§g;(@p) o', Jp(V)r ®p (6; ' o dety,)@pC% (29, E))
= Homq,) ((cindgs @ o, Jp(V)r @5 (557 0 dety, )BEC® (20, B) @ (47" o dety,))
such that two((a, 8) -v) = (Yo detLP)(ﬁ)((L;I(a), B) - two(v)). We have an isomorphism

(6w~ g o detr ) RpCY (2}, E) — CH(Z],.B) (3.9)
1@ f +— [e f(2)(69)°(2)]

which is Lp(Q,)-equivariant (but not Zy-equivariant) where Lp(Q)) acts on the left hand side
by the diagonal action (with Lp(Q,) acting on CQp_la(ng,E) via (3.2)). This isomorphism,
together with twg, induce an isomorphism

twi : By x — Homp,(qg,) (c—indig(@p) o, Jp(V)\ ®E ((5;11/)_1);“ o detLP)®ECQP_1a(ng, E)>

satisfying twi((a, 3,7) -v) = (¢ o detLP)(ﬁ)(éo_lz/Fl)(*y)((qul(a),ﬂ,’y) -twl(v)) for (o, 8,7) €
Zq X Zg % Zp. We have isomorphisms:

twy : Homp () (C‘indfi((@”) o, Jp(V)r @ (6 9~ )a" o detr,, )@pCH (2], E)>
=5 Hom g, ((c-indyf @ 0) @ (500)2 o detr,), Jo(VABRCE (2, E))

w

s Homy, (g, (c-indﬁg;(@“ o, Jp(V)ABpCo (29 | E))

25



where the second isomorphism is induced by (3.8) (for the unramified character (%)) and twy

means the composition. It is straightforward to check that twy is Zp-equivariant and satisfies for
(Oz,ﬁ) € Zq X Zz:

twa((a, B) - v) = (65 ¢~ 1)@" o detr, ) (B) (t(sppyar (@), B) - twa(v)).

We put twy, 1= twpotwy. Forgetting the actions of Zq and Zqr, we see that twy,; is given by
the following composition
0

Lp

By (V) ((a’)v @ Jp(V)r®p (6,1 o detLP)®ECQP_la(ZLP,E)>

0
LP

= (UV RE JP(V))\ RE ((551’;)_1 o detLP) RE ((5327#02)_1 o detLP)@)EC@f’_la(ZgP,E))

0
LP

= <Uv @r Jp(V)r ®F ((551;)_1 ° detLP)@)ECQp_la(Z%P’ E))
N L
= (0¥ @p Jp(V)ABECY (20, B)) " = Boa(V)

where the third isomorphism is induced by (3.9). In particular, twy, ; is a topological isomorphism.
O

Let (J! J,( ;)') be another maximal simple type of Q;; and K;; be a maximal compact

0] 0§/
o' =W, ;o; ; and K':= [, ; K] ; (so that o’ is an absolutely irreducible representation of K’ over
E). By [23, Cor. 7.6], (J', (o ) ) is conjugate to (J,0°), i.e. there exist h € Lp(Q,) such that
J' = hJh~! and a bijection ¢ : 0° =5 (00 satisfying ¢, (av) = (hah™ )i, (v) for a € J, v € oV.
The morphism ¢, induces a bijection:

open subgroup of GLy, ;(F;) containing .J; ;. Define ("0 = Izi,j(o-ij)/7 ol = C—indJ/’ (a0.)
) P i,j

i = c-ind; ") 60 25 cind [ (010, F s [g s (£ gh)))
satisfying 7, (gf) = (hgh™1)(in(f)) for g € Lp(Q,). We deduce isomorphisms
Zq = Endy,(q,)(c-ind; Lp(Qy) 0°) = Endy,(q,)(c-ind P(Qp)( 0.
We fix such isomorphisms in the rest of this paragraph. We define:
Bya(V) = (') @ Jp(V)aEpC® (2}, 2)"

where K’ acts diagonally on Jp(V),\®ECQP_la(ng,E) via the embedding K’ — Lp(Q,) and
(3.2). We endow B, (V) with an action of Z, = ng, Z5 and Zq as in § 3.1.2.

Lemma 3.1.7. There exists a natural isomorphism of vector spaces of compact type which is
equivariant under the action of Zq X Zg X Zy:

B, (V) = By A (V).
Proof. We have a Zq X Z5 X Zp-equivariant isomorphism

By (V) 2 Homy (0", Jp(V) @€Y (2], E))

26



and a similar isomorphism for B,/ \(V). Let W := Jp(V),\@)ECQP_Ia(ZgP, E), one can check that
the following diagram commutes

Hom (%, W) — Hom j ((¢')?, W)
Zl zl
Homy,,(q,) (C_indgp((@p) a?, W) — Homy,(q,) (C—ind?f((@p)(g’)o, W)’

where the top map is given by f + [v = h(f(:;'(v)))], and the bottom map is given by F
[w = h(F(i," (w)))]. One sees moreover that the top map is a topological isomorphism, that the
bottom map is bijective and Zq X Z5 X Zp-equivariant. The lemma follows. O

By Lemma 3.1.7, the Zq x Z5 X Zp-module B, \(V') does not depend on the choice 0. We
denote hence B A(V') := B, (V) in the sequel.

3.1.3 Local Bernstein eigenvarieties

We keep the setting of § 3.1.2. We construct certain rigid analytic spaces parametrizing irreducible
Zq x Zp-submodules of Bg (V).

By Lemma 3.1.3 and [42, § 6.4], there exists a coherent sheaf Mg (V') over the rigid analytic

space Zg X 2o such that B \(V) is isomorphic to the global sections of Mgq (V). Moreover,
Mq (V) is equipped with an O?Xé\o—linear action of Zq. Using the fact that the action of Z5

factors through Zq (see before Lemma 3.1.2), we conclude that Mgq (V') gives rise to a coherent
sheaf, still denoted by Mg \(V), over (Spec Zq)"& x Z; such that

T'((Spec Z0)"™ x Zo, Mo a(V)) = Boa(V)". (3.10)

We let Supp Mg A(V) be the Zariski-closed support of Mg (V) (defined by the annihilator of
Ma (V).

Proposition 3.1.8. Let x = (mz,,x) = ((mi;),(xi;)) € (Spec Zq)"e x Z,. Then we have a
bijection of k(x)-vector spaces (xz as in Notation 3.1.5):

(z*Ma(V))" 2 Homy, g, (7L, @) (X © detr,) @5 L(A) p, Jp(V)).
In particular, (71, x) € Supp Mo (V) if and only if there is an Lp(Q,)-equivariant embedding
TLp Qn(z) (Xz © detrp) @p L(A)p < Jp(V).
Proof. By definition, we have a bijection
(2" Maa(V))" = Baa(V)[Za = 71, 20 = X]-

By unwinding Bq (V) (£ B\ (V)), we see that the right hand side is isomorphic to (denoting
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by My, the maximal ideal of Zq corresponding to 7z, )

Homz, (ZQ/mWLP,HomLP(@p) (c md (Qp) o, Jp(V)x @p(a) (Xél o detLP)))

— HOIHLP(Q (WLP, Jp(V)x @) (Xg' ©detr,))

»)
= HOIHLP Qp (7T Xw o detLp) JP(V) )
= HomLP(Qp (7T ®k(:1: Xw o detLP) JP(V) XE L()\)%)
= Homy,,(qg,) (7TLP®k (Xxwodetr,)®r L(A\)p, Jp(V )
where the first isomorphism follows from Lemma 3.1.2; the second is obvious, the third follows

from (3.1) and the fact that 71, ®p (xw odety,,) is smooth for the LB(Q,)-action, and the fourth
is easily induced by the natural map L(\)p @ L(\)}, — E. The proposition follows. O

The following proposition easily follows from Lemma 3.1.6:

Proposition 3.1.9. With the setting of Lemma 3.1.6, we have an isomorphism of rigid analytic
spaces

Supp Mo A(V) = Supp Mo x(V), (7L, x) = (70, @5 (Ve (635) odety,, ), x (¥°) 1 (55) 7).
Remark 3.1.10. Assume P = By, we have Zq = Z5, Lp(Qp) = Ty(Qp) and L(A\)p = 6.
Using the isomorphism

Lo (Spec ZQ)rig X 27\0 — ZLP (Qp) = Tﬁ(@p)a (ﬂva X) = 7TLPXE(S)\

we can also view Mgq (V') as a coherent sheaf over T;(@p) and Supp Mq (V') as a closed rigid

subspace ofT;(@;). By Proposition 3.1.9, the resulting rigid subspaces Supp Mq (V) of Ty/(@p)
for different (2, X) are all the same. Moreover, in this case, one can directly associate to the
(essentially admissible) locally analytic representation Jp(V) of T.#(Qp) a coherent sheaf M(V)

over Ty(Qp) without using L(\)p and without tensoring by the factor (?fol"l(ZgP7 E) such that

F(T;(@,),M(V)) =~ Jp(V)V. For each point v = 6 ofT;(@), the fibre (z* M(V))V is naturally
isomorphic to Jp(V)[Z1,(Qp) = 6]. By Proposition 3.1.8 (and using tq ), we see that M(V)
and Mq (V') have isomorphic fibres (as E-vector spaces) at each point.

Set (see (2.1) for ug, ,):

noi={(Wiy) ser = Z1p(Q) = BX | iy € oy, },
J=1L..T

we define an action of uq on (Spec Zq)"8 x Z, such that 1 = (vi;) € no sends ((m;5), (xi,;)) to
((Wm' ©p wr (i (@), (Xij¥ilox ))-
By Proposition 3.1.9 (or by Proposition 3.1.8), we have

Corollary 3.1.11. For z € (Spec Zq)'® x 2o, we have T € Supp Mo (V) if and only if Y (x) €
Supp Mq (V) for one (or any) ¢ € ugq.
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Finally we show that, under certain assumptions, Supp Mgq (V') is closely related to Fredholm
hypersurfaces. We first unwind a bit the definition of the Jacquet-Emerton modules.

Let H be a compact open subgroup of G, = G(Q,), and Ny := HNNp(Q,). Let Lp(Q,)* =
{z € Lp(Q,) | z2Nyz=t C Ny}. Recall that VV# is equipped with a natural Hecke action of
Lp(Qp)* given by

1
) = W 2 o

Then Jp(V) is defined to be (VV#)g, where (—)g denotes the finite slope part functor for the
action of Zy,(Qp)" := Lp(Q,)" N ZL,(Qp) (cf. [40, § 3.2]).

[D

Lemma 3.1.12. We have Jp(V), = (VN @p L(/\)})[g)fs >~ ((VNe @5 L(N)Y)es) ©

Proof. Recall Jp(V)\ = (Jp(V) @p L(A)) )[’L’) by (3.1). By [40, Prop. 3.2.9], we have Jp(V) ®p
LY = (VN g LAY ) where the Hecke action of z € Z,,,(Q,)T on VNI @5 L(\)} is given
by 7, ® z. It is clear that the action of [ commutes with Z,(Q,)*. By [40, Prop. 3.2.11], the
lemma follows. O

We fix o as in (3.3) and recall that we have an isomorphism Bq (V') = B, (V).

Lemma 3.1.13. We have an isomorphism of locally analytic representations of Zg X Zy:

> 0
Boa(V) = (V¥ @p LOVR)B R (20, B) 0p ) )

where Zg (resp. Zo) acts on the RHS by its action on VN# @ L(\)Y (resp. on CQP_la(ng, E)).

Proof. We have isomorphisms

Bo(V) = ( VNE @p LNE)P), BeC% (22 E) 95 o

-

- 0
=~ ( VNI @ LY )®ECQP*IE“(Z%,>,E)®EUV)LP>f=

fs

(¢

- ((VNH 95 LY >P® (78 E) o),
((
(¢

where the first isomorphism follows from Lemma 3.1.12, the second from [40, Prop. 3.2.9], the
third from [40, Prop. 3.2.11], and the last from the fact that [Z acts trivially on the factors
C@P_la(Z0 ,E) and oV. O

Remark 3.1.14. Let z € Z1,,(Q,)" and let Y, be the subgroup of Z1,(Qp) generated by z.
Assume Y, Z1,,(Qp)" = Z1,.(Qp). By [40, Prop. 5.2.27], the lemmas also hold with “(—)g” (for
the whole group Zr,,(Qp)) replaced by the finite slope part “(—)y,_g” for Y.

We now take H uniform pro-p in G, and z € Z such that

(1) H=(Np-(Qp)NH)x(Lp(Qp)NH)x(Np(Qp)NH) =: Ny X Ly x N, and H is normalized
by L(])J;
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(2) Ly = (Lp NLP(Qp)) X (L N Zrp(Qp)) =: LY X Zry;

(3) Ly acts trivially on o;

(4) z € Z1,,(Qp) " and satisfies N, (2" Nyz™") =0, N C 2Nzt and Y. Z1,,.(Qp) " = Z1,.(Qp)
where Y, is the subgroup of Zr,,(Q,) generated by z;

(5) H is normalized by z ' Ngz.

The existence of H satisfying (1), (2) and (3) is clear. It is also clear that there exists z €
Z1,,(Qp)" such that (4) holds. By multiplying z by an element in Z,(%P, we can take z € Zg.
Finally, replacing H by HP" for some m > 1, (5) also holds (with the other properties unchanged).
As an example, one can take H to be [[;c ,(1 + @?M,(Op,)) for k sufficiently large, and z =

[Lic.s 2z with

: ri—1 ri—1 r;—2 ri—2
zi::dlag(wil N A -~/ R /v ,...,1,...,1)€ZLPZ_(LZ-).

ni 1 ng,2 Ni,r,

By (1) and (5), one can deduce that
H' = (zHz )Ny = (N2 ') x Ly x Ny

contains H (note that H' is also an open uniform pro-p subgroup of G,). The following proposition
is analogous to [17, Prop. 5.3] (see also [40, Prop. 4.2.36]).

Proposition 3.1.15. Assume that V|g = CY~2(H' E)®* for some k € Z>1. There exist an

admissible covering ofé\o by affinoid opens Uy CUs C --- CUR C --- and the following data for
any h =1 where Ap == Oz (Up):

e a Banach Ap-module My, satisfying the condition (Pr) of [24];
e an Ap-linear compact operator, denoted by zp,, on the Ap-module My, ;

ap : My — Mp1®a,., An

/Bh : Mh+1®Ah+1Ah — Mh
ap, 0 By, = zpy1 with By, Ap-compact;

e Ap-linear continuous maps { such that Bp o ap, = 2z, and

e a topological O(é\o)—linear isomorphism
~ 0\ V
M = (((VNH ®p LN D) @eC¥ (2] ,F)op UV)LP> = lim M),

commuting with the action induced by (7, ® z) @1®1 on the LHS and the action of (zp)n>1
on the RHS.

One can visualize all the above conditions in the following commutative diagram

M Tt Mh+1 EE— Mh+1 ®Ah+1 Ap, 6h My,
lﬂz lthrl Zh41 ® 1Ahl L/Oéh lzh
M T Mh+1 EE— Mh+1 ®Ah+1 Ap, Bh My,
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Proof. We put
Ly

W= (VN @p L H)@pCY (2], E) 95 o) (3.12)

and N := WV. By definition, M is a direct summand of N equivariant under the action of Zy and
of (1,®2)®@1®1. Let s := |H'/H|, thus V| = C%~1a(H, E)®*s. We have then an L g-equivariant
isomorphism VN7 = (CQp_la(NI},E)@ECQP_la(LH,E))@kS Let r := dimpg L(\))}, we have Ly-
equivariant isomorphisms (see for example [35, Lemma 2.19] for the second isomorphism):

VNH XRE L()\)% = (CQp_la(NI;’E)&’ZECQP_M(LH’E))@I% ®5 L()\)%
&~ (CQp—la(N;I, E)éECQp_la(Lh“ E))EBrks
= (CQp—la(N}_Ia E)@ECQp—la(Lg, E)®ECQP_1a(ZLH, E))@Tks'

There exists s’ such that (C@P_la(ng, E)®p oY)\, =C% (7, , E)® where the Ly-action

det7 !
on the right hand side is induced from the regular Zz,,,-action via Lg i> 2Ly Let m = krss',

we then have

w

12

~ = Gam
( CH Ny, B)2pC» (L, BE)opC% ™ (Z1,,, E)2pC (2L, E))LH>

~ ®m
@p_la N E) (CQp_la(ZLHa E)@Ec@p_la(ZLH7 E))ZLH)

lle
S

= (U (N, B) B (€Y ey % 2y, B) )

where the Zr,,-fixed vectors in the last term are for the Zr ,-action induced from the regular
Zr, % Zr,-action via the morphism Zr,,, — Zr, X Zr,, a — (a, detzllj (a)). Using the isomor-
phism Zp,, x Z1,, — Zp,, X Z1,, (a,b) — (a, det;}lj (a)b), we finally deduce a Zp,,,-equivariant
isomorphism:

W (€Y ™(N;, E)@pc® (2L, E)"
where Z7,,, acts on W via Zp,,, < 2y, i.e. by only acting on the factor CQp_la(ng, E)in (3.12) by
the right regular action, and similarly with C%~13(Z; | E) on the right hand side. The proposition

follows then from (an easy variation of) the argument in the proof of [17, Prop. 5.3] (with II™Vo of
loc. cit. replaced by W). O

3.2 Bernstein eigenvarieties

In this section, we first give our global setup. Then we apply the formalism of § 3.1.3 to construct
rigid analytic spaces, called Bernstein eigenvarieties, parametrizing certain p-adic automorphic
representations. We also show some basic properties of Bernstein eigenvarieties.

3.2.1 p-adic automorphic representations

We briefly recall the global setting of [14, § 5] (which will be the same as ours) and introduce
some notation.

We fix embeddings oo : Q — C and Lp Q — @p. We let F' be a CM field that is a totally
imaginary quadratic extension of a totally real field F* such that all the places of FT dividing
p split in F. We let G/F™ be a unitary group of rank n > 2 associated to F//FT, i.e. such that
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G X p+ F 2 GL,, /F. We assume that G(F,") is compact at all archimedean places v of F*. For a
finite place v of F'* such that v splits in F', we choose a place v of F' dividing v. For such places,
we have natural isomorphisms F,” & Fj and i3 : G(F,[) = G(F5) = GL,,(F5).

We let UP be a compact open subgroup of G(AZ}") of the form UP = [[,, ., U» where U,
is a compact open subgroup of G(F)) which is hyperspecial when v is inert in F. We choose a
finite set S of finite places of F'* containing the set S, of places dividing p and the set of places
v such that either v is ramified in F' or U, is not maximal at v. We assume moreover that for
all places v ¢ S that are split in F, U, = igl(GLn(OFa)). We let TY := hﬂ[ ®uer T, where
T, := Og[U,\G(F,")/U,] and I runs through the finite sets of places v of F* which are not in
S and split in F' (recall that E is a sufficiently large finite extension of ;). Note that T, is

@ili 0 )Uv] for1 <i<n.

polynomially generated over Og by the operators 15 ; = [UU% ! < 0 ny
n—

We consider the usual spaces of p-adic automorphic forms of level UP in that context:

SWUP,E) = {f:G(F)\G(A%,)/UP — E, f continuous},
S(UP,05) = {f:GEFH\G( 4 )/UP — Op, f continuous}.
We equip S(UP, E) with the norm defined using the unit ball S(U?, O), in particular S(U?, E)

is a p-adic Banach space. This Banach space is also equipped with a natural continuous unitary
action of G(F* ®g Qp) = [Toes, GLn(F%), and an action of TS (with each element acting via

a continuous operator) that commutes with G(F™ ®g Q,). Note that all these actions preserve

~

S(UP,OFg). We also have

S(U”, Op) = Jjm S(U”, Op /w}) 2 lim liny S(UPUy, Op/w)
s Up

S

where S(UPU,, Op/w},;) denotes the space of functions G(F)\G(AY,)/(UPU,) = Op/w},.

For an automorphic representation m = 7o, @c 7° = T ¢ 7P ¢ 7p of
G(Aps) = G(F' 8o R) x G(AR,) = G(F* 8¢ R) x GAT?) x G(F* @9 Qy),

we associate an algebraic representation Wy ,, of G(F+ ®g Q,) over Q, as in [14, Prop. 5.1] (and
as in the references therein). Recall that we have (for example see [14, Prop. 5.1] for (1) and part
(a) in the proof of [16, Lemma 6.1] for (2)):

Proposition 3.2.1. (1) We have a G(F* ®g Q,) x T*-equivariant isomorphism
S(UP, B)™ o Q, = @ (r°°7) @5 (mp 05 Wip)) ™™,

where ™ runs through the automorphic representations of G(Ap+).

(2) Assume UP is suﬁjciently small, then for any compact open subgroup H of G(F+ ®¢ Qy),
there exists m such that S(UP, E)|g = C(H, E)®™.

3.2.2 Bernstein eigenvarieties: construction and first properties

We apply the construction in § 3.1 to the locally Q,-analytic representation S (UP, E)* of G(FT®q
Q) = [, GLu(F5).
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We first modify the notation in § 3.1 to be consistent with § 3.2.1 in an obvious way. The
index set .# will be S, and G, will be G(FT ®g Q,) = [l,cs, GLn(F%). The element i € ¥ will
be replaced by v everywhere (for example, F; in § 3.1 will be Fy etc.) and we fix a uniformizer wy
for each Fy. As in 3.1, we fix a parabolic subgroup P; D B of GL,, for each v with a fixed Levi
subgroup Lp, D T and denote by Np, its nilpotent radical. We fix a cuspidal Bernstein component
Q for Lp(Qp) = Hvesp Lp (Fy) = Hvesp Hgil GLy, ;(F5), and let 0 = Kyeg, @;17:1 o5 be a
smooth absolutely irreducible representation of LY := [T, Sy H;il GLy; ;(OF;) over E associated
to Q as in § 3.1. We finally fix an integral P-dominant weight A\ = (A, ) ves, for G, where

1=1,....,n
Yy :=Xpg,. Forie{l,...,r5} weset s5, := 22‘21 ny,; and sz = 0.

~

By the discussion above Proposition 3.1.8, B \(S(UP, E)*)Y gives rise to a coherent sheaf
M (UP) over (Spec Zq)™8 x Z where Z = Z%P. By functoriality, Bo x(S(UP, E)*") is naturally
equipped with an action of T° that commutes with the action of Zq x Z5. We deduce that

Mq A (UP) is equipped with a natural O(Spec Zo)riex é\o—linear action of T®. For each affinoid open

U = Spm R of (Spec Zq)"8 x Z,, the (commutative) R-subalgebra Ag of Endr(Mgqx(UP)|v)
generated by T? is a finite type R-module. These {Spm Ar} then glue to a rigid analytic space,
denoted by Eq (UP), which is finite over (Spec Zg)'8 x Z,. From the definition of Ea(UP), we
see that Mg \(UP) is also a coherent sheaf over g »(U?).

The following properties follow easily from the construction, Proposition 3.1.8 and Corollary
3.1.11.

Proposition 3.2.2. (1) For a finite extension E' of E, an E'-point of Eq \(UP) can be identified
to a triple (n,7L,,X) where n : TS — E' is a system of Hecke eigenvalues and (7p,,X) is an
E'-point of (Spec Zq)"& x Zj.

(2) We have an isomorphism equivariant under the action of Zq X Zy X TS:
T(EqA(UP), Mo (UP)) = Boa(S(UP, E)™)V.

Moreover, for x = (n,7rp,X) € Eax(UP), the above isomorphism induces an isomorphism of
k(z)-vector spaces:

(2" Mo (U?))" = Homy,q,) (71, @ (xmodets, ) €5 LN p, Jo(SUP, BY™)[TS = ]). (3.13)

(8) Forn :T% — E' a system of Hecke eigenvalues and (71, %) an E'-point of (Spec Zq)"8 x
2y, the following are equivalent:

o there exists a point x € Eq \(UP) of parameter (n,7r,,X);

e there exists a point x € Eq\(UP) of parameter (n,¢(wrp,x)) for any ¢ € uq (see the
discussion above Corollary 3.1.11 for the action of uqo on (Spec Zq)"& x Zq);

e the vector space on the right hand side of (3.13) is non-zero.

By Proposition 3.1.9, we have

Proposition 3.2.3. With the notation of Proposition 5.1.9, we have an isomorphism of rigid
spaces

Ea(UP) = Eq x(UP), (0, mLp, X) (77, TLp @F ((Qbog(dgg)_l) odetr, )7X(¢OQ)_1(53,Q)_1>‘
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Let z € Z C Z1,,(Qp) be as in the discussion above Proposition 3.1.15. We define &, as the
composition

Kz s Eqr(UP) — (Spec Zq)"¢ x Zy —> (Spec E[Zg))"® x Z9 — G18 x Z, (3.14)

where the last two morphisms are induced by E[Y,] — E[Zg] — Zq (recall Y, is the subgroup
of Z5 generated by z). It follows from [40, Prop. 3.2.23] and Proposition 3.1.15 (see also the

proof of [17, Lemma 3.10]) that (x.)Mgq (U?) is a coherent sheaf over G8 x Z, and &, is finite.
We denote by Z,(UP) its scheme-theoretic support in G%g X é\o. Note that the first morphism
in (3.14) factors through the scheme-theoretic support of Mg x(UP) in (Spec Zq)"8 x Z,, and k.
factors through Z,(UP). We define x as the composition (the second map being the canonical
projection)
K : Eqa(UP) = (Spec Z0)™8 x Zy — Zg

which obviously factors through k.. By exactly the same argument as in the proofs of [17, Lemma
3.10] and [17, Prop. 3.11] (with [17, Prop. 5.3] replaced by Proposition 3.1.15), we have:

Proposition 3.2.4. (1) The rigid space Z,(UP) — Gl x Z"\g is a Fredholm hypersurface of
G x 2o (cf. [17, § 3.3]). Moreover, there exists an admissible covering {U/} of Z,(UP) by
affinoids U] such that the composition

g: Z.(UP) = Gl& x Zy — Z,

induces a finite surjective morphism from U] to an affinoid open W; of 27\0, and such that U/
is a connected component of g=*(W;). For each i, I'(U], (k2)«Max(UP)) is a finitely generated
projective O (W;)-module.

(2) There exists an admissible covering {U;} of Eq x(UP) by affinoids U; such that

e there exists an affinoid open W; ofé\o satisfying that k is a finite surjective morphism from
each irreducible component of U; to W;;

. OSQA(U;;)(Ui) 1s 1somorphic to an Oé\o (W;)-algebra of endomorphisms of a finitely generated
projective Oz (W;)-module.

We also have as in [17, Cor. 3.12], [17, Cor. 3.13] and [18, Lemma 3.8] by the same arguments:

Corollary 3.2.5. (1) The rigid space Eq x(UP) is nested ([3, Def. 7.2.10]), equidimensional of
dimension }_,c s ([F5 : Qplrs), and has no embedded component.

(2) The morphism k. is finite and the image of an irreducible component of Eq \(UP) is an
irreducible component of Z,(UP). The image of an irreducible component of Eq \(UP) by K is a
Zariski-open of 2.

(8) The coherent sheaf Mgq \(U?) is Cohen-Macaulay over Eq \(UP).

Remark 3.2.6. Assume P = By, := [[,cq B(F3), and let T, := [[,cg T(F5). Consider the
composition (cf. Remark 3.1.10)

LN A

EQ)\(UP) — (Spec ZQ)rig X :Z?) e Tp.
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Using Proposition 5.2.3, the Bernstein eigenvarieties Eq x\(UP) equipped with the above morphism
over T, are all isomorphic for different (2, X). Moreover by Remark 5.1.10 and (the same ar-
gument as in the proof of) [3, Prop. 7.2.8], one can show that Eq \(UP)™d is isomorphic to the

standard reduced eigenvariety E(UP)'Y constructed directly from JBp(g(Up, E)2™) (see for example

[14, § 7).

3.2.3 Density of classical points

We prove Theorem 3.2.11 below.

Definition 3.2.7. Let © = (03, Tz, 15, Xz) be a point in Eq \(UP).
(1) We call x classical if

Homy,(g,) (Te.tp @5 ((Xe)z 0 detr, ) @5 LV p, Jp(SUP, EYU)TS =,]) £0. (3.15)

(2) We call x very classical if

o X is locally algebraic and the weight \* := (wt(xz) o detr,) + A is dominant;

e any irreducible constituent of the locally analytic parabolic induction
an
(Indgﬁ%p) (Tarp @5 ((Xa)m 0 dety,) @5 L(A)p)) (3.16)
which is not locally algebraic, does not admit a G(Qp)-invariant Og-lattice.

Lemma 3.2.8. A very classical point x = (1, Ty.1p, Xaz) i classical.

o0

Proof. We write (Xz)g in the form (Xz)gs dwi(y,) Where (Xz)g is a smooth character of Zp,(Q,)
(recall from § 3.1.1 that dyy(y,) is the algebraic character of Zr,(Q,) of weight wt(x.)). By
Proposition 3.2.2 (3) we have

Homy, . (qg,) (”Mp @8 (Xo)z © detr, ®pL(\) p, Jp(S(UP, B)*™)[T* = 7733]) # 0.
By [14, Thm. 4.3] (the notation of which we freely use), any non-zero element in the above vector

space induces a non-zero morphism of G(Q,)-representations (recall g, p~ denote the Lie algebra
of G(Qp), P~(Qp) respectively, and ép denotes the modulus character of P(Q)))

J—“g— ((U(g) QU(p-) Lf(_)\I)P)vﬂmyLP XE 51;1 QF ((Xz)ogo odetr, ))
— S(UP, E)*[T® = n,] — S(UP, E)™.

By the results of [74], the representation on the left hand side has the following properties:

e it has the same irreducible constituents as the representation (3.16);
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e there is a G(Qp)-equivariant surjection (where (IndIGD(_%’Q?p)(—))OO is the smooth parabolic

induction)

]-“]Ci ((U(g) Qup-) L_<—/\I)P)v; T, Lp OF 5131 ((ch) odety,, ))
— F (L7 (N), e @1 05 @ ()X 0 et ) )
o (mdgﬁ%p) (To1p ©1 65" @5 (x2)Z o detLP))>oo ®p L(X®)
and any irreducible constituent of the kernel is not locally algebraic.
The lemma then follows easily by definition. O

We have the following numerical classicality criterion.

Proposition 3.2.9 (Numerical classicality). Let

&= (Mo Ta,Lps Xa) = Nz @S, Ta5r Qves, Xas) € Ear(UP)

such that x, is locally algebraic and N\* = (wt(x,) o detr,) + A is dominant. Assume that for all
veS,and ke {1,...,r5}, we have

k 59,k
E Val Wﬂ'(t 5. wv < E sv,j + Sv,j—1 — Sﬂ,k) - E : E :>\57j77—
j=1 TEYG j=1

+ Tlenzf:l { Wt Xx vk, Wt(X$)7L7,k+1,T —+ A’J,s;)’k,f - )"17,317’;6+1,7' + 1}7 (317)

where valy denotes the p-adic valuation normalized by sending wy to 1, Wt(Xz)o k.~ =
Wt(Xz,5)k 7, and where Wr, 5, denotes the central character of 7,5 ;. Then the point x is very
classical.

Proof. By [74, Thm. (i),(ii)], the representation (IndP( (Q) )(7T17LP ®E((Xx)godetLp)@)EL()\)p))an

admits a Jordan-Holder filtration with graded pieces of the form:
]:g* (L_(_w : )‘x)’ﬂ-w,LP QF ((Xm) o detLP) ®F 5 )

where L~ (—w - A®) runs through irreducible constituents of U(g) ®yg-y L™ (=A%)p. In par-
ticular, each w - A* is P-dominant. Assume that there exists an irreducible constituent V of

(I dG(% | T Lp ®p ((Xz)m o detr,) ®F L()\)p)an such that V' admits a G(Q,)-invariant lattice

and V is not locally algebraic. We deduce that there exists
1#w = (wy)ves, = (W5r)ves, € ¥/ Pl = H Ve, = Wk

TEXY ’UGSp

such that w - A\* is P-dominant and V is a constituent of Fgf(L*(—w “AN), e Lp @8 ((Xa) ©
detLP)®E5131). We let Q7 O Py be the maximal parabolic of GL,, such that w-\ is Hvesp Resgi Q%

dominant, i.e. (w-A")z - is Qy-dominant for all v € S, and 7 € X5. We set @ := Hvesp Resgz Q5.
We have by [74, Thm. (iii)]

FR (L7 (0 X merp @5 () 0 detr, ) @ 65

~J — x L QP
:fg,(L (—w- A7), (2@ o (T @ ((X2) © detr,) ©p 651)) )
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By [74, Thm. (i),(ii),(iv)], there exists an irreducible constituent 7, of the smooth representation

L 0o
(I dLZEgzng (Qp )(Wz Lp @ ((X2)x odetr,) ®p 6p )) such that

Ve FS (L (—w- A%),7L,)
<—>Ig_(L_(—w-)\””),(Ind E g (Q)(ﬂ'pr@E((Xz) odetr,) ®g 65"))™ )

Since V admits a G(Qj)-invariant Opg-lattice, we see by [13, Cor. 3.5] that for any z € Z1,,(Q,)" C
Z1,,(Qp)" we have (where Wr, denotes the central character of 7p,,)

val, (Gue (z)d;l(z)wwLQ (z)) > 0. (3.18)

By [35, Lemma 3.18], we easily deduce (noting that 3, in loc. cit. is independent of the choice
of \) that for each v € S, such that wy # 1 there exists k € {1,...,ry} such that z :=
(wq’;, R 7w/ 170 PN 1) S ZLQT)(FT))+ C ZLQ(@p)+ and

S7.k

Valg (611;)\737)\1” (Z)) S Z (Agvsi,k+17‘r B Agzsi,k::‘r - 1)
TEY
wTJ,T7é1
= Z (Wt(Xx)57k+1,T - Wt(Xﬁ)%’,k,T + )\E,Sak+177’ - A5755’k77' - 1) .
7'625
w'T),‘r7£1

Together with (3.18), we deduce

V&l:g (5)\7” (2)6}_31(2)‘*)7@@ (Z)) > Z (Wt(X:c)"J,k,T - Wt(Xx)'ﬁ,k—}—l,T + )"17,8177;9,7— - )"ﬁ,sakJrl,T + 1)

TEXNY
wﬁ,ﬁél
We compute:
k
valy (6;1(2)) = Z (Sa,k — S35 — S'ﬁ,j—l)
i=1
! ST,k 53,k
valy (e () = DD A= DD Awet D Z iy Wt ()5
TEYF j=1 TEYF j=1 TEYF j=1
Kk
valy (wﬂ'LQ (Z)) = Zval Wrs, 5 w” Z Z "5 Wh(Xa ), T)
TEY; j=1
Hence we deduce
k ST,k
Zval w,,m Wu > Z S35+ Sv5-1 — Sﬁ,k) - Z Z)‘ﬁ,jﬁ
7=1 7=1 TEXy j=1
+ Z (Wt(Xa:)E,k,‘r - Wt(Xx)'ﬁ,kJrl,T + )"6,35’;6,7' - )\’6,357k+1,‘r + 1)7
TEXY
wy, 71

which contradicts (3.17) noting that wt(xz)z ks — Wt(Xa )5 k11,7 + Agsp 7 — My 0, T 1 = 1 for
all 7 as A" is dominant and that the set {r € X5 | wy . # 1} is non-empty since wy # 1. The
proposition follows. O
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Remark 3.2.10. (1) Similar results (but in the setting of overconvergent cohomology) were 0b-
tained in [2].

(2) Note that all the terms on the right hand side of (3.17) except Wt(Xa)v k,r — Wt(Xa )7 k1,7
are constants for points in Eq \(UP).

(3) Recall there is a finite morphism of E-algebras E[Z5| — Zq such that the associated
morphism Spec Zq — Spec E[Z] sends a point 7, 1, € Spec Zq to the character z — Wr, 1 (2).
We have hence finite morphisms (see also (3.14)):

Ea(UP) —s (Spec 2q)"8 x Zy — (Spec E[Zg])"™8 x Zq.

Note that the criterion in (3.17) only uses the information of the image of x in (Spec E[Zg])"8 x
Z.

The following theorem follows from the classicality criterion (Proposition 3.2.9) by the same
argument as in the proof of [17, Thm. 3.19] (see also [28, § 6.4.5]).

Theorem 3.2.11. The set of very classical points is Zariski-dense in Eq x(UP). Moreover, for
any point x = (), 7L, x) € Eqx(UP) with x locally algebraic, and for any admissible open U C
Ea(UP) containing x, there exists an admissible open V- C U containing x such that the set of
very classical points in 'V is Zariski-dense in V.

3.2.4 Galois representations

We study families of Galois representations on £q (U?). In particular, we show that the associated
(¢, T')-modules admit a special kind of filtration.

We now assume that that G is quasi-split at all finite places and that F'/F* is unramified at
all finite places. By [48, Thm. 2.3], to an automorphic representation 7 of GG, one can associate
an n-dimensional continuous essentially self-dual representation p, of Galp over E (enlarging
E if necessary). In fact, if 7¥7 # 0, the T-action on 7" is given by a system of eigenvalues
0 : T — E. The representation p, is unramified outside S. And for any v ¢ S that splits in F,
the characteristic polynomial of p,(Frobg) (where Frobg is a geometric Frobenius at v), is given
by

. . JG—1) - . . n(n-1)

X (1 (ND) T ()X e ()" (ND) ™5 e(T), (319
where N is the cardinality of the residue field at v. Using Proposition 3.2.1, to all classical points
T = Mg, Tz, Lps Xa) € Eo(UP) (Definition 3.2.7 (1)), we can associate a continuous representation
pz of Galp that is unramified outside S and satisfies (3.19) (with 7, replaced by 7,). Denote by

Gal3 the Galois group of the maximal extension of F' that is unramified outside S. Put
O(Eqx(UP)Y := {f € O(Eq ) (UP) | |f(z)]|p <1 for all x € Eq A (UP)}.

Using that T preserves S(UP, O), it is easy to see that the natural morphism TS — O(Ea(UP))
has image in O(Eq\(UP))°. Using the density of classical points (Theorem 3.2.11) and [28, Prop.
7.1.1], we deduce

Proposition 3.2.12. There exists a unique n-dimensional continuous pseudocharacter
T : Galy — O(Eqx(UP))°

such that the evaluation of J at any classical point x of Eq \(UP) coincides with Trace(p,).
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By [83, Thm. 1(2)], we deduce

Corollary 3.2.13. For each point © = (Mg, Te,Lp, Xz) € Eq(UP), there exists a (unique) semi-
simple continuous representation p, of Galp over k(x) which is unramified outside S and such
that Trace(pz(Frobg)) = 0. (T5,1) for any v ¢ S split in F'.

Next, we study the behaviour of the restriction of the Galois representations {p.}.eg, , (r)
at p-adic places.

Let © = (g, Ta,Lps Xa) € EaA(UP). Recall 7y 1, = ‘XUESpﬂ-LLP;} = @vegp( @gl 71':17”5’2'). Let

1-ng,

Ty 5, = rec(my 5,)(—5= —53,-1), an irreducible Weil-Deligne representation of W of dimension
ny -

)

Assume first that the point z is classical. By Definition 3.15 and [17, Thm. 4.3], there exists
a non-zero Gp-equivariant morphism (recalling A* = (wt(x,) o detr,) + A)

G 00 —1\*® z g a
(Indp(,(%gp) Ta,Lp On(z) ((Xa)m o detr, ) @p 5P1) @ LAY — S(UP, EB)™8[T% = 5,] (3.20)

where (XUC)OQo = Myes, (Xmﬁ)?;’a = Myes, X7, (Xx;,l)?;a denotes the smooth character of Zr,,(Q,)
such that (Xu)gdwt(y.) = (Xz)w- By Proposition 3.2.1 (1), there exists a classical automorphic
representation m = oo WP X (X, ngg) such that n; = n,, and a GL,, (Fy)-equivariant surjection

GLy (F5 00 _1\*®
(IndPg(l(%)) T, Lp. Ok (z) ((Xwﬁ?)w;, o detLP5 ) RE 6P51> —» T
We have then (see for example [80, Thm. 1.2(b)])

vec(my) lw, = €D (rec(mem) (g = s51) Gae recl (a50)Z,))- (3.21)
=1

Denote by r, 7 the Weil-Deligne representation associated to (the Deligne-Fontaine module of)
pa5, and r¥~ its F-semi-simplification. By the local-global compatibility in classical local Lang-

lands correspondence for £ = p (e.g. [25]), we have r*- = rec(my)(15%). We deduce hence

U7

II;E|WF5 = @ (rxﬂ,i ®k(z) rec((Xﬂc,E,i);@;))'

i=1
We call the point z generic if, for € = 0,1 and for all ¢ # ¢’ and v € S, we have

)

T3 Pk(z) 7e((Xa i) og) Z T, (€) @n(a) TC((Xa 5, ) ooy
or equivalently
o 55,i-1—(1—n5,)/2 o
Tx,0yi ®k(w) (( unr(‘]ﬁ )(Xa:,v,z)w;}) © detLpT} )

i —1—(1=ng ) /2+e

ZE Mo pi Ok(x) ((unr(q; )(X;B,’g,i/)owoﬂ) o detLP17 ) (3.22)

Assume that x is generic, it is easy to see that p, 3 is potentially crystalline and generic for all
v € S) (see § 2.3), hence we have (here there is no need to take semi-simplification and restriction
to WF@)

Ty

25 2 @D (Toi One) rec((Xami)))- (3.23)
=1
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We obtain thus a Pj-filtration %5 on r, 5 (§ 2.3) given by
i
o T ,
Fil. P r, 5 = @ (rlﬂ@j O(x) rec((Xz@j);og)), ie€{0,...,r5}. (3.24)
j=1
Recall also that p, 7 is de Rham of Hodge-Tate weights

h, 7= (hegi)i<i<n = {hapir = A5 — 1+ 1} rex,; -
1<i<n
As in § 2.3, we associate to (p, 7, %) an element wy 2. € W, = # %5l (denoted by wz in loc.
cit.). Let A, 3 be the p-adic differential equation associated to r, 7 and A, 3 ; the p-adic differential
equation associated to r,z; (§ 2.2). We have Dyig(p,5)[1/t] = A, 5[1/t] and by (3.23):
T
Awﬁ = (Arﬁli ®Rk(ac>,F5 Rk(:r),Fg((meﬁ,i)owog))-
i=1
As discussed in § 2.3, the Py-filtration .%5 on r, 7 induces a Py-filtration on A, 7 which further
induces a Pj-filtration (still denoted) % on Dyig(p, ). Recall also that, if % is non-critical, then
gr‘i% Dyig(pz5) is de Rham of Hodge-Tate weights {h, 5.} rex, . Let

$5,i—1<J<S3,4

hy = (hg;)1<i<n = (g7 = Agir — 1+ 1) rex; (3.25)
1<i<n

and note that hy is strictly Ps;-dominant. Suppose that %5 is non-critical, we have then injections
fori € {1,...,75} (cf. (2.4)):

1

v

y’ﬂ' - —Hys;
gri Drlg(px;ﬁ) ®Rk(z),F§ Rk(x)vFﬂ ((X:L’,F'J,l)w z b ’ Z) — Aw,f)’,i‘

Lemma 3.2.14. Let v = (03, To.1p, Xa) € Eo A (UP) be a classical point. Assume

valg(wr, ; , (@5)) — valg(wr, ., (@5))

# > (Wt(Xa)sir — Wt(Xa)5ir,r) + [Fs : Qpl (54 — sz + €)
TEXG

for € = 0,1 and for all i # 7', then p, 3 is generic. If moreover (3.17) holds then (p,z, Fs) is
non-critical.

Proof. The first part of the lemma is straightforward to check. By the proof of Proposition 3.2.9,
if (3.17) holds, then for any 1 # wy € (Wnﬁz)@mﬂ‘, there exists z € Z,,, (F5)" such that

Oy (2)0p, (D), 1, (2) & Oko)-

By [13, Thm. 7.6], we deduce w, #, = wo r, (noting that the w8 of loc. cit. is Wy, 7, W0, F; i our
case). Hence (p, 3, %) is non-critical by definition (§ 2.3). O

We call a classical point x € Eq (UP) non-critical if (p, 7, #%) is non-critical for all v € S),. By

the same argument as in the proof of [17, Thm. 3.9] and using Proposition 3.2.9, Lemma 3.2.14,
we have the following strengthening of Theorem 3.2.11:
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Theorem 3.2.15. The set of wvery classical non-critical generic points is Zariski-dense in
Ea\(UP). Moreover, for any point x = (0, 7L, x) € Eax(UP) with x locally algebraic, and for any
admissible open U C Eq (UP) containing x, there exists an admissible open V' C U containing x
such that the set of very classical non-critical generic points in V is Zariski-dense in V.

The following theorem is an analogue of the statement “Galois representations on eigenvarieties
are trianguline”.
Theorem 3.2.16. Let x = (1), To,Lp, Xz) be a point of Eq x(UP). Then for v € Sy, Diig(pz5)
admits a Ps-filtration Fy = FilJ® Dyig(pz5) of saturated (p,I')-submodules of Dyig(pg5) such that
(gr’;ﬁ Drig(pxﬁ)) [1/t] = (A%ﬁi ®RW>’F5 Rk(w),Fg((X:{:,ﬁ,i)w;,)) [1/t]

Proof. Since Eq(UP)™? is nested, by [3, Lemma 7.2.9] and Theorem 3.2.15, there exists an
irreducible affinoid neighbourhood U of x in £q »(UP)™¢ such that the set C(U) of very classical
generic non-critical points in U is Zariski-dense in U. By pulling-back the universal character of
Zy over Zy via the composition

U— 8Q,A(Up)red — Eq A\ (UP) — (SpecZQ)rig X é\o — 2,'\07

we obtain a continuous character xu = Myes, K7y Xv5; : Z%P — O(U)*. Forve Syand 1 <i<
r5, by pulling-back the “universal” p-adic differential equation over (Spec Zgg,i)rig constructed in
§ 2.2 via the composition

U < Eq(UP) — (Spec Zq )8 x Zy — (Spec Zo)"8 ~ H H(Spec Zgg,i)rig — (Spec ng)rig,

vESp i=1
we obtain a (¢, I')-module A, over Ry,p;. We let
ST,i— —(1_"5,1')/2
Ayg = A/U,’ﬁ,i ®RE,F5 RE,F; ( unr(q’ﬁ ' ))

Thus for each point x in U, the evaluation 2*Ay 5 ; is isomorphic to A, 5 ;. Applying [3, Lemma
7.8.11], we obtain a rigid analytic space U with a finite dominant (surjective) morphism g : U—U
and a locally free O(U)-module pg of rank n equipped with a continuous Galy-action such that
g 1 (C(U)) is Zariski-dense in U and pgle = py(y) for all 2 € U. Applying Corollary A.1.2 and
Corollary A.1.3 (1) to (noting that, for x € Ured, Aile = Age)mi and 8z = Xg(2),5,6)

{X = Ured7M = Drig(pﬁred7§)7Ai = g*AU,G,i|[7red)5i = (g*XU,a,i)Zhg’S”fjred}a
the theorem follows. O
Proposition 3.2.17. Let © = (Ng, Ty 1p, X2) be a point of Eq A(UP). Then for v € Sy, and
T € Xy, the Sen T-weights of py 5 are given by {hj, + + Wt(Xz5i)r}  1<i<r

si—1+1<ji<s;

Proof. We use the notation in the proof of Theorem 3.2.16. The statement holds for very classical
non-critical generic points, hence for points in ¢~!'(C(U)) C U. Since the Sen 7-weights are
analytic functions on U (see for example [60, Def. 6.2.11]), we deduce the statement holds for any
point in U. The proposition follows. O
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Let p be a continuous representation of Galp of dimension n over kg such that p(c - c) =
7 ® Xeye! " (where Gal(F/F*) = {1,c}) and p is unramified outside S. To p, we associate a
maximal ideal m; of TS of residue field kg such that, denoting np: TS/ m; — kg the corresponding
morphism, the characteristic polynomial of p(Frobg) is given by (3.19) with 7. replaced by ns;
for all v ¢ S that splits in F'. The representation p is called UP-modular if the localization
S(UP,Op/wy)s = S(UP, Op/w@};)m, is non-zero (by e.g. [16, Lemma 6.5]) there exist only finitely
many p such that p is UP-modular). We define

S(UP, Op)p :=lim S(UP, Op/w}); and  S(UP, E); = S(UP,Op); @0, E.

We construct Eq »(UP, p) from §(UP,E)5 exactly as we construct £q »(U?). Since §(Up, E)sisa
direct summand of S(UP, E) (equivariant under the action of G(F ®g Q,) x T%), one easily sees
that all the previous results hold with g »(U?) replaced by £q A (U?, D).

3.2.5 Locally analytic socle and companion points

We recall the locally analytic socle conjecture of [13], [14] for generic potentially crystalline rep-
resentations and discuss its relation with companion points on Bernstein eigenvarieties.

To any n-dimensional continuous representation p of Galg over F we associate a maximal ideal
m,, of TS ®op E of residue field E such that, denoting 7, : TS — E the corresponding morphism,
the characteristic polynomial of p(Froby) is given by (3.19) with 7, replaced by 7, for all v ¢ S that
splits in F'. Let p be such a representation and assume that §(Up, E)m,] = SUP, E)[TS = 1)
is non-zero. For v € S, assume also that py is generic potentially crystalline (see § 2.3) of
Hodge-Tate weights (hy 1, > hyor > -+ > hypnr)rex,. Let F5 be a minimal parabolic filtration
of r(p3), and P; be the associated parabolic subgroup of GL, (cf. § 2.3). We use the notation
Ny, 75 and sy; of § 3.2.2. We let TLp, ‘= X7, 75, be the smooth irreducible representation of
Lp,(Fy) over E such that rec(ng ;) ((1—ng,)/2—s5,) = gr’i% r(p). Fort € ¥yand j =1,...,n, let
Xorj=hy r;+7—1,then Ay := (A\g1r,..., Ao n,r)rex; is a dominant weight of Res(gz GL,, (with

respect to Res&; B). For wy € ern o consider the following locally Q,-analytic representation
of GL,,(Fy) over E:

GLn FT; — —
C(wg, yg) = FP{(I(?;) ) (L (—wg . /\g), TLp, ) 5P51)
It is topologically irreducible by [74, Thm. (iv)]) (indeed, since py is generic, the smooth induc-
tion (IIldILD?((FI;T’))m Lo(Fy) TLp, ©F 5;;)00 is irreducible for any parabolic Q D P;). Note that we have
C(1,.%3) = m3 @ L(A\y) where 1y := (Indgi" TLp. QF 5;;)00 is the smooth irreducible represen-

tation of GL,,(Fy) such that rec(ry)(152) =~ r(py). As discussed in § 2.3, to the filtration %5, we

2
associate an element wz, € WHIEX o The following conjecture is a special case of [14, Conj. 5.3]:
Conjecture 3.2.18. Forv € S, let wy € Wnifl o Then @UespC(wg, Fz) is a subrepresentation

of §(Up, E)[m,] if and only if wy < wg wop, for allv € S,.
Conjecture 3.2.18 in the crystalline case has been proved in [19] under Taylor-Wiles hypothesis.

However, almost nothing (except for some very partial results in [38]) was known when py is not
trianguline. As already mentioned in § 1, one main motivation for this paper is to prove Conjecture
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3.2.18 for certain parabolic P; (under the Taylor-Wiles hypothesis 3.3.1) by using the Bernstein
eigenvarieties of § 3.2.2.

We now state a weaker version of Conjecture 3.2.18 which is formulated in terms of companion
points on Bernstein eigenvarieties.

For w = (wg)ves, € ¥,k

min

= Jloes, ”//Hifl . the weight w - A is P-dominant where A :=
(A3)ves,- Let Qz be the Bernstein component of 7, := &,GSPWLPE.

Conjecture 3.2.19. We have

(M Moes, Trp» 1) € Eagwr(UP) (3.26)

if and only if wy < wg wo p; for all v € S,.

Lemma 3.2.20. (1) Conjecture 3.2.18 implies Conjecture 3.2.19.
(2) The “only if” part of Conjecture 3.2.19 implies the “only if” part of Conjecture 53.2.18.

Proof. (1) Suppose Conjecture 3.2.18 holds. By (3.13), (3.26) is equivalent to
Homyp,(q,) (7L, ®5 L(w - A)p, Jp(S(UP, E)™)[m,]) # 0. (3.27)

If wy < wgz, wo p, for all v € Sp, then by assumption

FSP (L (—w - A), 71, @5 651) 2 Byes, Clws, F5) — S(UP, E)[m,).

By [14, Thm. 4.3], this implies (3.27). Conversely, suppose (3.27) holds. By [14, Thm. 4.3] and
[74, Thm.] (and the fact that the py are all generic), one deduces there exists w’ = (w}) with
wk > wy for all v € S}, such that one has an embedding

GP
For

(L™ (~w' - \), 7L, @p 6p') = Bues, C(wh, F5) — S(UP, E)[m,).
By Conjecture 3.2.18, this implies w% < w .z wo,F;, and hence wy < w.z, wo, F; -

(2) Suppose the “only if” part of Conjecture 3.2.19 holds. For w = (wy), if one has an
embedding @vESpC(wg, F) — S(UP, E)[m,], then as in the proof of (1), we deduce using [14,
Thm. 4.3] that (3.27) holds and hence (3.26) holds. This implies wy < w2, wo,F; - O

Remark 3.2.21. Suppose §(U”, E)alg[m ] #£ 0 (for py generic potentially crystalline with distinct
Hodge-Tate weights for all v € Sp). Then using [25], we have an embedding

gUESpTrE — §(Up7 E)lalg [mp]

To each minimal parabolic filtration . (that can be viewed as an analogue of a refinement in the
crystalline case), we can associate (using [14, Thm. 4.53]) a classical point

(np’ IEUESPTFLP’T)v 1) S 5Q97A(Up)

When wgz # wor = (wo,r;)ves,, Conjecture 3.2.19 then predicts the existence of some non-
classical points on the Bernstein eigenvarieties such that the associated Galois representation is
still isomorphic to p. Such points are referred to as companion points of the classical point.
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3.3 Patched Bernstein eigenvarieties

As in [17, § 3] for the “usual” eigenvarieties, we construct patched Bernstein eigenvarieties by
applying the formalism in § 3.1 to the patched p-adic automorphic representations of [26]. We give
some basic properties of patched Bernstein eigenvarieties, and show that they have a close relation
with certain (purely local) “paraboline” varieties (on the Galois side) that will be constructed in
§ 4.1.

Let p be a UP-modular continuous representation of Galp over kg (see the end of § 3.2.4). We
assume henceforth the following so-called Taylor-Wiles hypothesis (see [19, § 1]):

Hypothesis 3.3.1. (1) p > 2;

(2) the field F is unramified over F*, I does not contain a non trivial root ¥/1 of 1 and G is
quasi-split at all finite places of FT;

(8) U, is hyperspecial when the finite place v of FT is inert in F;
(4) p is absolutely irreducible and ﬁ(GalF( ?ﬁ)) is adequate.

The following functor
Deformations p4 of p over A }

Local artinian O pg-algebras ; ;
{ of rosidue ficld ko } - {Sets}, A= {such that p4 unrimlvﬁed ?EELSlde S
and pa(cc)=py ®Xeyc

is pro-representable by a complete local Noetherian Og-algebra of residue field kg, denoted by
Rp . For s € Z>1, and a compact open subgroup U, C Hvesp GL,(OF,), let T(UPU,, Og/w})s
be the image of T in the Op/w}-algebra of endomorphisms of S(UPU,, O /w})5 Put
T(U?)p := hm im T(UPUy, Op/@F)p,
s Up
which is a complete local Og-algebra. By [84, Prop. 6.7], there is a natural surjective morphism
of Og-algebras (hence T(U?); is also Noetherian)
Rs 5 — T(UP).
The rigid space g A (UP,p) is then a closed subspace of the rigid spaces

(Spf T(UP);)"8 x (Spec Z0)"® x Zy < (Spf Rp.5)"® x (Spec Zq)" x Z,.

~

Indeed Bq \(S(U?, E)g”_an)v gives rise to a coherent sheaf over (Spf R; s)™& x (Spec Zq)"8 x 2o,
whose Zariski-support is exactly £q \(UP,p).

We let R;_ be the maximal reduced and Zy-flat quotient of the framed local deformation ring

of py (which was denoted by Rﬁﬁa in [17]) and we put

R := @uesRp,, Rpr := Byes\s, Ry

Rp, = Gues, Rp,, Roo = R(lwr,. . a]], RE o= Rpllwr,...,z)),
where g > 1 is an integer which will be fixed below. We let Ss := Oglly1,...,y]] where
t=g+|[Ft: Q]@ +18|n? and a := (y1,...,%) C Seo. Shrinking UP (and S), we can and do

assume
G(F) N (RUPK,h™Y) = {1} for all h € G(A%})
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where Kp = [[,cg Ko = [l,es, igl(GLn((’)Fﬂ)). Then the action of R;s on :S’\(UP,E)E fac-
tors through a quotient R; g — I;s, where ;5 s denotes the universal deformation ring of the
deformation problem:

S=(F/F*,S,5,08,p, Xt 0+ { Rp, Yoes)-

By [17, Thm. 3.5] (generalizing [26]), there exist an integer g > 1 and

(1) a continuous R.-admissible unitary representation I, of G, over E together with a G-
stable and R.-stable unit ball Hgo C Iy

(2) a morphism of local Og-algebras So, — Rs such that My, := Home,, (1%, OF) is a finite
projective So[[Kp]]-module;

(3) a surjection Ry /aRs — Rjs and a compatible Gj-equivariant isomorphism Il[a] =

~

SU?, E),.

Denote by ITFe<~30 the subrepresentation of G, of locally Rs.-analytic vectors of Il (cf. [17,
§ 3.1]. Let Q, 0, A be as in § 3.2.2 and consider (with Jp(ITZ=—2"), defined as in (3.1)):

B (™™ i= By (L=~ = Homp, (0, Jp(IIE= ™" )\&pCH (2}, ).

By [17, Prop. 3.4] and an easy variation of the proof of Lemma 3.1.3, we see that Bg ) (IIZe=2m)V
is a coadmissible module over O((Spf Roo )8 x Z\z X é\o) which corresponds to a coherent sheaf
./\/l?]o/\0 over (Spf Roo)rig X Z\z X é\o. Taking into account the Zg-action, Mg/\o gives rise to a
coherent sheaf M, over (Spf Roo)'® x (Spec Zq)'e x Z,, such that

T ((Spf Roo)™™® x (Spec Zq)™8 x Zg, M) 22 B,y (Ike—2m)V. (3.28)

We let . . .
Ean(p) = (Spf R)™® X (Spec Zq)™® x Zy (3.29)
be the Zariski-closed support of ./\/15O y» and call 58‘3 (p) a patched Bernstein eigenvariety.

Let Wao = (Spf Soo)'8 x :?,’\0, and z € Zg be as in the discussion above Proposition 3.1.15.
As in (3.14) denote by k. the following composition
Kz 2 Ega(p) = (Spf Roo)™8 x (Spec Zq)™8 x Z,
— (Spf Suo)™® x (Spec E[Zg])"® x Zy — (Spf Soo)™i® x GHE x 252 Wao ¥ Gie

where the second and third maps come from E[Y,] — E[Z5| — Zq. Denote by w the composition:
W EZND) =2 Wao x GhE — Wi

By an easy generalization of Proposition 3.1.15 to the case ép =Gy XL,V = [TReo—an — [Sc—an
(adding the extra factor Zj everywhere in the proof), one can show that Bgq ,(IIf=—31)Y is a
coherent sheaf over Wy, x G,rn,ilg. We denote by Z,(p) — W X Gﬁbg its Zariski-closed support. We
have the following analogue of Proposition 3.2.4, which is proven by the same argument as in the
proofs of [17, Lemma 3.10] and [17, Prop. 3.11].
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Proposition 3.3.2. (1) The rigid variety Z,(p) is a Fredholm hypersurface in Weso X GHE. More-
over, there exists an admissible covering {U]} of Z,(p) by affinoids U] such that the morphism

G Z.(p) = Wao x GIE o W

induces a surjective finite morphism from U] to an affinoid open W; of W, and such that U] is a
connected component of g~ (W;). For each 1, F(UZ-’, (Iiz)*Mg/\) s a finitely generated projective
O, (W;)-module.

(2) There exists an admissible covering {U;} of E5°\(p) by affinoids U; such that

o there exists an affinoid open W; of Weo satisfying that w is a finite surjective morphism
from each irreducible component of U; to W;

* O\

projective Oy, (W;)-module.

y(Us) is isomorphic to an Oy, (W;)-algebra of endomorphisms of a finitely generated

We deduce the following analogue of Corollary 3.2.5 by the same arguments as in the proofs
of [17, Cor. 3.12], [17, Cor. 3.13] and [18, Lemma 3.8]:

Corollary 3.3.3. (1) The rigid analytic space £, (p) is equidimensional of dimension

g+ 152+ Y0 (15 @) (M 1)

vES)

and has no embedded component.

(2) The morphism k. is finite and the image of an irreducible component of 8&3(?) is an
irreducible component of Z.(p). The image of an irreducible component of E5°\(p) under w is a
Zariski-open of Weo.

(3) The coherent sheaf M) is Cohen-Macaulay over £ (p).

We say that a point z = (y, Tz, X2) € E55(p) < (Spf Rso)"8 x (Spec Zq)'e x Z, is classical
if (3.15) is satisfied with S(U?, E)8 replaced by (ITfee—amylals ang [TS = 5,] replaced by [m,],
where m, is the maximal ideal of ROO[%] associated to y. We say x is wery classical if the
conditions in Definition 3.2.7 (2) hold (these conditions only concern 7, 1, and x,). For v € S,

denote by p, 7 the Galp,-representation associated to x via the image of y € (Spf Ry)"e =
[Toes, (Spf R5_)"& x UY in (Spf R5_)"& where U denotes the open unit ball in A'. Let r, 5 be the

. . . . 1—ng,;
Weil-Deligne representation associated to p 7, Tz 5, = rec(me ) (—5= — 53,i-1), and (Xo,5,i) ey

be the smooth character of F* associated to x, 3 as in the discussion below (3.20). A classical
point x is called generic if (3.22) holds for e = 0,1 and i # 7'.

Proposition 3.3.4. Let (Y, 7z 15, Xz) € EN(P) be a generic classical point. For all v € Sy, py5
is potentially crystalline of Hodge-Tate weights {\%, —i+ 1} ;ex. . Moreover, we have

v7i7T .
1<i<n

Ty
~

Teo = (Tzﬁ,i RF rec((Xx,E,i);rog)) . (330)
i=1

46



Proof. The proposition follows from the results in [26, § 4] by similar arguments as in the proof of
[17, Prop. 3.16]. Since z is classical, we have a non-zero morphism (recall \* = A+(wt(x;)odetr,))

(maf” g, (Mazr @ (W)Z 0detr,) ©051)) ©p L) — (=) 8fm, | (3.31)

Since x is generic, the representation on the left hand side is absolutely irreducible and hence
(3.31) is injective. For v € S), let Gy := GL,(F}), and Qg, be the Bernstein component of

G5 o - >
T i= (IndPg(Fa) (M,LR7 OB ((Xa,5) oy 0 detr, ) ®p 5P;,1)>

(do not confuse Q¢ with the Bernstein component Qz of Lp, (Fy)). By [26, Thm. 3.7] and [26,
Cor. 3.12], there exists a smooth irreducible representation oy of Ky := GL,(OF,) such that
Endga(e—indf?5 o5) = ZQGE and 7, 5 = (c—indf{g 0'17) ®Zop, as E, where 0, 5 : ZQG5 — E denotes
the(:icharacter corresponding to m, 5. Let K, := Hvesp K3, 0k, := Nyes, 0k, Qa, = Hvesp Qa.,
an

~ .G (9]
Ty = gvespﬂ'mﬁ = (C'lndKI; UKP) ®ZQGP 0, B = (Ind ~(Qp) (7rgc Lp OF ((Xx) OdetLp) ®Edp ))

(where 0, : ZQGP — E denotes the character corresponding to 7). By Frobenius reciprocity, we
have

Hoo(UKp7 )\z) = HomKP (O'vanoo KSR L()\x)\/) = HOH]GP (C md UKP,HOO KRR L()\x)v)

By the injection (3.31), we deduce that Il (og,, A")[m,] # 0 and that there exists a non-zero
subspace of Il (0k,, A”)[m,] on which ZQGP acts via 6,. Let & be the inertial type associated
to o5, hi = (hg; )i=1,..n with AT, = AL, —i+1. By [26, Lemma 4.17 (1)], the action of

V4,7 4,7
TE Z~

®ves, Rp. on Il (ok,, A?) factors through ®v€SpRp°r(§U,hx). The first part of the proposition
follows. By [26, Thm. 4.1], there is a morphism Zq,_ — Rp™ (&, A)[1/p] that interpolates the
local Langlands correspondence (with the same normalization as in § 2.1). By [26, Lemma 4.17
(2)], the action of Zqo, on Ils(0k,, A") factors through Zo, — (®v€5pRpcr(§5, A))[1/p]. We
deduce r, 5 = rec(m, 3)((1 —n)/2), and the second part follows then from (3 21). O

For a generic classical point z € £, (p), we use (3.30) to define a Pp-filtration 75 on r, 7 as

n (3.24). We call x non-critical if (pm,, %) is non-critical for all v € S,,. Using Proposition 3.2.9,
Lemma 3.2.14, and by the same argument as in the proof of [17, Thm. 3.9], we have the following
analogue of Theorem 3.2.15:

Theorem 3.3.5. The set of very classical non-critical generic points is Zariski-dense in 58‘?)\(5).
Moreover, for any point x = (y, 71, x) € EX\(p) with x locally algebraic, and for any admissible
open U C 58?)\(5) containing x, there exists an admissible open V- C U containing x such that the

set of very classical non-critical generic points in V is Zariski-dense in V.

Proposition 3.3.6. The rigid space £\ (p) is reduced.

Proof. The proposition follows by an easy variation of the proof of [17, Cor. 3.20]. We briefly
indicate below the changes. We define verbatim the R.-module X of loc. cit. In [17], it was a finite
length T},-module on which T, ]f,] =L s, T (OF,) acts by the character ) of loc. cit. In our case, it

becomes a finite length Zg-module on which Zj =2 ng acts by an algebraic character. Similarly
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as in loc. cit., we are reduced to show that the R..-action and the Zg-action on X are both
semi-simple. To obtain an analogue of [17, (3.13)], we use Lemma 3.1.2 and [14, Thm. 4.3]. The
“H” in the proof of [17, Cor. 3.20] has to be replaced by a Bernstein component Q¢, = Xy,

of G, similarly as the one appearing in the proof of Proposition 3.3.4, and “indgi 17 is replaced
by C—ind[G(’; ok, Where ox, = ®,0% is the Kj-representation associated to {}g, as in the proof of

Proposition 3.3.4. Finally, “Rg’kfcr” has to be replaced by @vespR%fr(é’g, h%) (as in the proof of
P v
Proposition 3.3.4). O

Remark 3.3.7. Assume P = B, where B, is as in Remark 5.2.6. Using the isomorphism g ) in
Remark 3.1.10, we can view £ (p) as a (reduced) closed rigid analytic subspace of (Spf Rm)rigx@
(T, as in Remark 3.2.6), which is independent of the choice of (2, A) by Proposition 3.2.3 (trivially
generalized to the patched case). By construction, the rigid analytic space E°\(p) has the same
points as the patched eigenvariety X,(p) of [17]. Using Proposition 3.3.6 and 7/1 7, Cor. 3.20], we
actually obtain £\ (p) = X,(p).

Proposition 3.3.8. Let (Spf S )"8 — Spec E be the morphism corresponding to the quotient by
the ideal a. We have a natural morphism of rigid analytic spaces

Eax(UP,p) — EGA(P) X (spf 5.0 )ris Spec B

which is bijective on points.

Proof. By the same argument as in the proof of [17, Thm. 4.2], we have
Tp(T5e =) o] = Jp (1= —"a]) = Jp(S(UP, B)2").

Hence B (IT1Z~—2)[a] BQ’)\(S\(UP, E)3"). The proposition follows. O

For v € 5, let j7 denote the isomorphism

75 (Spec 2. )"® -~ (Spec Zq_ )"

1-ng ;

7 )odet for z = (z;) € (Spec Zqo,)"8. Let 7:= (J5)ves, :
(Spec Zq)'& — (Spec Zq)"8. Denote by 205 = Zrp (OF;), thus 2\0 & Hvesp Zy5. Consider the
composition:

such that ng(z)i = o, ®punr (q;a,ifl—

£\ (P) — (SpERE,)™8 x [ ((Spf Rj,)™® x (Spec Zo,)"™® x Z5)
vES)
L5 (Spf RE.)" x T ((Spf Rp,)"™ x (Spec Zo,)™ x Zy5) (3.32)
vESH

where the second map (still denoted by j) is the identity on the factors other than [],(Spec Zq_)"#
and is j on [],(Spec Zqo, )" = (Spec Zg)"8. Let h = (hg)yes, be associated to A as in (3.25).
In the next section (see § 4.2 below), we construct a reduced closed subspace Xq_n. (py) of

(Spf Rpi)rig X (Spec ZQg)rig X Z()’;. We let XQJ«l(ﬁp) = HUGSp Xthg(ﬁg).

Theorem 3.3.9. The composition in (3.52) factors through (Spf R5)" x Xq n(p,), and induces
an isomorphism between E\(p) and a union of irreducible components of (Spf RE.)™8 x X (p,)
equipped with the reduced closed rigid subspace structure.
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Proof. By Proposition 3.3.4, and the construction of {Xq_ n,(p5)} in § 4.2, one sees that all the
generic classical points of £, (p) are sent to

(Spf RE,)™® x H Uan(py) = (Spf RE,)™ x Xan(p,)
vES)
where we refer to the discussion above Proposition 4.2.2 for the rigid analytic space Uqn(py)-
The first part then follows from the density of generic classical points (Theorem 3.3.5). The
second part follows from Proposition 3.3.6, from the fact 5807/\ (p) is closed in the right hand side
of (3.32), hence in (Spf R%)"8 x Xqn(p,), and from the fact that both rigid spaces Egn(p) and
(Spf R5,)"¢ x X n(p,) have the same dimension (by Corollary 3.3.3 for the first and Proposition
4.2.5 (1) for Xq_ n.(py) together with dim(Spf R5 )" = g+ >ves\s, dim(Spf R;.)"8 = g+n?|S\
Sul)- m

Remark 3.3.10. Let XP be an drreducible component of (Spf Rb.)"8. Call an irreducible compo-
nent X, of Xon(p,) XP-automorphic if XP x X, is contained in the image of (3.32). One may
expect that X, is XP-automorphic if and only if X,, contains a generic potentially crystalline point
with distinct Hodge-Tate weights. We refer to [17, § 3.6] for related discussions in the trianguline
case.

We finally discuss the problem of companion constituents and companion points in the patched
setting. Let m be a maximal ideal of R [1/p] such that IIoc[m] # 0. For v € S, we assume that
the Galp -representation p; associated to m (as above Proposition 3.3.4) is generic potentially
crystalline with distinct Hodge-Tate weights. We use the notation in § 3.2.5.

Conjecture 3.3.11. Forv € S,, let w = (wg) € #,L = [Les, Wrﬁn P

(1) The representation @vespC(wg, F5) is a subrepresentation of == [m| if and only if
wy < wg,wo for allv € 5.

(2) The point (m,NWyes, 7L, ;1) € (Spf Rso)"8 x (Spec Zq)'s x Z, lies in EGwa(P) if and only
if wy < wg,wo for allv € 5.
Remark 3.3.12. The point (m,Nyes, 7L, ;1) € £\ (p) of Conjecture 3.3.11 (2) may be referred
to as “a companion point of x = (m, @vegpﬂLPT}, 1) seen in SS%?A@) 7. In the case of the patched

eigenvariety X,(p) of [19], there is a canonical embedding X,(p) — (Spf Roo)™® X ﬁ and the
companion points are the distinct points that lie above a same point y € (Spf Roo)™8. In our case
however, as there are different rigid spaces depending on (2, \), it seems more convenient to fix
the point x € (Spf Rso)™8 x (Spec Zq)'8 x 2\0 and let the Bernstein patched eigenvarieties (together
with the embedding into (Spf Rso)™™® x (Spec Zg)'s x é\o) vary. See also Remark /.5.10.

By the same argument, we have as in Lemma 3.2.20:
Lemma 3.3.13. (1) Conjecture 3.3.11 (1) implies Conjecture 3.3.11 (2).

(2) The “only if” part of Conjecture 3.5.11 (2) implies the “only if” part of Conjecture 3.3.11
(1).

Finally, using the isomorphism I [a] & S (UP, E)5 (resp. using Proposition 3.3.8), one easily
deduces:

Lemma 3.3.14. Conjecture 3.3.11 (1) (resp. Conjecture 3.3.11 (2)) implies Conjecture 3.2.18
(resp. Conjecture 3.2.19).
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4 Bernstein paraboline varieties

We now move to the Galois side. In § 4.1, we study certain paraboline deformations of (¢, I')-
modules which admit an Q-filtration (where Q is a cuspidal Bernstein component as in § 3.1.1).
In § 4.2, we construct and study what we call Bernstein paraboline varieties (analogous to the
trianguline variety of [17, § 2.2] when P = B). Finally in § 4.3, we study the relation between
Bernstein paraboline varieties and potentially crystalline deformation spaces, and show the exis-
tence of local companion points. We frequently denote a point in a Bernstein component by its
associated Weil-Deligne representation.

4.1 Deformations of (¢, [')-modules

We prove various results on deformations of (¢, I')-modules D that admit an Q-filtration (where
Q is a cuspidal Bernstein component as in § 3.1.1). We first study in § 4.1.1 deformations of
irreducible constituents of D. By combining the results in § 4.1.1 with results of Chenevier on
paraboline deformations, we study deformations of type € in § 4.1.2 (which are special cases of
paraboline deformations).

4.1.1 Deformations of certain irreducible (p,I')-modules

We study deformations of certain irreducible (¢, I')-modules which are de Rham up to twist. The
results in this section will be used in our study of deformations of type €2 in § 4.1.2.

We let L be a finite extension of @, and we use the notation in § 2.1. We begin with some
useful facts on extensions of p-adic differential equations. Let A be an irreducible (¢, I')-module
of rank £ over Rg 1, de Rham of constant Hodge-Tate weight 0.

Lemma 4.1.1. (1) Let M be a (¢,I")-module over Rg. 1. Assume that M admits an increasing
filtration File M by (p,T)-submodules such that the graded pieces are all isomorphic to A. Let
N be a saturated (@,T')-submodule of M. Then both N and M /N admit a filtration by (p,T')-
submodules such that the graded pieces are all isomorphic to A.

(2) Let My, My be (¢,I')-modules over R which both admit an increasing filtration by
(¢, T')-submodules such that the graded pieces are all isomorphic to A. Let f : My — My be a
morphism of (p,T')-modules, then Im(f) is saturated in M.

(8) Let M be as in (1), and N1, Ny be two saturated (p,I")-submodules of M. Then Ny + N
is also saturated in M.

Proof. (1) We endow N with the induced filtration from M and M /N with the quotient filtration,
and want to prove that all graded pieces are A. By induction on the rank of M, we only
need to show the statement in the case N is irreducible. By dévissage on Filg M, we have
Hom(, 1y (N, A) # 0. Hence we have an injection N < A, and so N is de Rham. By considering
the Sen weights and using the fact N is saturated, we see that N is of constant Hodge-Tate
weights 0. We deduce that IV is actually isomorphic to A. Let i € Z such that the injection
j : N — M has image contained in Fil; M but not in Fil;_1 M. The non-zero composition
N L Fil; M — gr; M = A has to be an isomorphism, and gives a splitting Fil; M = N&Fil;_; M.
The filtration Fils then induces a filtration on M /N such that all the graded pieces are isomorphic
to A.
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(2) Using (1), we are reduced to the case where f is injective. Then by induction on the rank
of Mo, we are reduced to the case where M; =2 A. But in this case, by the argument at the end
of (1), there exists i such that Fil; My = Im(f) @ Fil;_y Ms. In particular Im(f) is saturated.

(3) We have that N; N Ny is saturated in M. By (1) and (2), we see that the image of the
composition

(Nl +N2)/(N1 ﬂNg) = Nl/(Nl ﬂNQ) EBNQ/(Nl ﬂNg) — N/(Nl ﬂNg)

is saturated. (3) follows. O

We let Art(E) denote the category of local artinian E-algebras of residue field E. Let D
be a (p,I')-module of rank k over Rp . Denote by Fp the functor of deformations of D on
A € Art(FE). Suppose that there exist a continuous character 6 : L* — E* such that one has an
embedding of (¢, ')-modules

D ORe.1 REyL((;*l) — A

(which implies that D is irreducible). We consider the following functor
FY : Art(E) — {sets}, Ar— {(Da,ma,64)}/ ~

where D4 is a (p,T')-module over R, ma1: Da®aE — D, 4 : Of — A* such that 64 =6
(mod my) (my is the maximal ideal of A), and there is an injection of (¢, I')-module over R4 r:

DA‘—>A®RE,L Rar(04). (4.1)

For 7 € ¥, let hy; be the maximal 7-Hodge-Tate weight of D @z | RE,L((S_l) (thus hy, >
0), and put hy := (h1s);ex,. By comparing the Hodge-Tate weights of A ®r,, Ra and
Da®ry, RA7L(521), and using [6, Thm. A], we see that the existence of the injection (4.1) is
equivalent to the existence of an injection

A ®REp.L RAL(Zhl(SA) —— Dy. (4.2)

Indeed, both are equivalent to the existence of an isomorphism of (¢, I")-modules over R4, 1[1/t]:
Da[1/t] = A @ry , Ra,L(64)[1/t].

Lemma 4.1.2. F} is a subfunctor of Fp.

Proof. Let A € Art(E), and (Da,7a,84) € F%(A). It is enough to show that §4 is uniquely
determined by Dj4. Suppose we have another ¢’ such that ¢/, = 04 (mod my) and Dy —
A @Ry Ra,r(dy). This map, together with (4.2), induce

A ORp.1 'R,A,L(ZhlcsA) — Dy — A OREp.1L RA,L((S;‘).

Hence we have A @r, ; Rar = A®ry RAyL(égéglz_hl). Since A @rp ; Ra,r is de Rham, so
is A®rp . Ra(8,6, 27 B1) (using that both have the same rank over Rp ). By looking at the
Sen weights and using ¢’y = 04 (mod my4), we deduce that 5;1521 is smooth. Then by comparing
the Hodge-Tate weights (and using [6, Thm. A]), we obtain an isomorphism

A®ry,, Rar = A®r,, Ran(6465"). (4.3)
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Let (A QR p,L AV)O = (A QRp,L Av)/'REL, then A QRp,L AV = (A QR p,L A\/)O ® REe,r and

ng F)((A @Ry AY)?) = 0. We have isomorphisms

H?SD,F)(AV ORp. L A QRp.L RAvL(CS;l(SZI))
= HY, 0 (Ran(03630) @ H, ) (A7 @y A)° By, R r(8205)
= H,ry(Ran(648,"))  (44)

where the second isomorphism follows from H (O%F) (AV®Rrp, A)?) = 0 and an easy dévissage using

863" =1 (mod my). From (4.3) and (4.4), we deduce an embedding A — H(O%F)(RA’L((SA(SZI)),

hence an injection R4 1, — ’R,A’L((s;lé;l) that has to be an isomorphism by comparing the Hodge-
Tate weights (recall 614521 is smooth). By [3, Prop. 2.3.1], we obtain (5;,521 = 1, which concludes
the proof. O

Proposition 4.1.3. The functor Fg 1s relatively representable over Fp.

Proof. As in [3, Prop. 2.3.9], the proposition follows from the following three properties that we
will prove.

(1) If A — A’ is a morphism in Art(E) and (D4, 74,84) € FR(A), then (Da®a A, ma04A") €
FR(A).

(2) Let A < A’ be an injection in Art(E), (Da,ma) € Fp(A), and assume (Dg ®4 A", 74 ®4
A') € FY(A") — Fp(4') (Lemma 4.1.2), then (Da,m4) € FR(A).

(3) For A and A’ in Art(E), if (Da,ma,04) € F3(A) and (Dar,mar,64) € F(A’), then for
B=AxpgA" wehave (Dg := DaXpDa,mp:=ma0pr =7 opr') € FO(B) where pr: B — A,
pr': B — A

The properties (1) and (3) are straightforward to verify. We prove (2). By (the proof of)
Lemma 4.1.2, there is a unique continuous character 04 : L* — (A’)* such that Dy ®4 A" —
A ®Rrp Rarp(6a) and 64 =6 (mod my). Let M be the saturated closure of Dy in A ®ry
Rarp(0ar) (see [3, § 2.2.3]). Since A ®ry, Rar,r(64) admits a filtration with graded pieces
all isomorphic to A ®g, , RE,1(0), so does M by Lemma 4.1.1 (1) (twisting by Rg,1(0)). For
x € my, consider the morphism x : M — M given by multiplying by x. By Lemma 4.1.1 (2),
we know xM is saturated in M and hence by induction m4M is saturated in M. We deduce
M®a E=M/maM is a (¢,I')-module over Rg 1, (in particular is free of finite type over Rg ).
Using the isomorphism D4[1/t] = M[1/t], and Dy[1/t]®4 E = DI[1/t], we see M ® 4 E is of rank
k over R, 1. From Lemma 4.1.1 (1), we deduce M @4 E = A ®r, , RE,L(6).

Consider the following (¢, I')-module over Rg 1

Q A®RE,L AY =RerL® (A QRp.1 AV)O
Qa = (Av ®RE,L RE,L((s_l)) ®RE,L M
Qu = (Av ®RE,L RE,L((s_l)) ®RE,L (A ®RE,L ,RA’,L((SA’))
=~ Rap(0ad)® (A®ry, AY) ®ry, Rarn(04071)).

We have Q4 — Q4 and both @ 4/, Q) 4 are isomorphic to a successive extension of (). We apply the
functor F' defined right above [3, Lemma 2.3.8]. By [3, Lemma 2.3.8] and Hom(,, 1) (REg.1, (A®Rp
AV)?) =0, we see F(Q) = E and

F(Qa) = F(Rar (646 ")) = A", (4.5)
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By the left exactness of the functor F' and an obvious dévissage, we deduce
Consider the exact sequence

0— F(Qa) = F(Qa) — F(Qa/Qa).

We have
Qu/Qa= (AY ®ry, ReL(07))) Ory ((A BRp.1 RA/,L(5A'))/M)

which, by Lemma 4.1.1 (1) applied to (A ORp.L RA/L((SA/))/M, is also isomorphic to a successive
extension of ). By dévissage, we deduce dimg F(Qa//Q4) < dimp(A’/A) over E. This, together
with (4.5), (4.6) and an easy dimension counting, imply (4.6) is in fact an equality. Consider now

0= F(maQa) — F(Qa) = F(Q). (4.7)

By dévissage, we have again dimgp F(maQ4) < dimgmy. Using dimg F(Q4) = dimg A4, we
deduce that the right morphism is surjective (and dimp F(m4Q 4) = dimg my). Noting that (4.7)
is a sequence of A-modules (with m4 acting by 0 on F(Q)) and considering the A-submodule of
F(Qa) generated by a lifting of a generator of F(Q) = E, we easily deduce A = F(Q ).

Consider the (¢, I')-submodule QY of @ 4 generated by F(Q4). We claim it is a rank one (i, I')-
module over R4, 1. Let Q%, be the (¢, I')-submodule of @ 4 generated by F(Q /). Since we have
F(Rar(64:671) = F(Qar), we see Q¥ is also the (¢, I')-submodule of R 47 1,(04:6 ') generated
by F(Qas). Since Rar 1,(64:071) has a filtration with all graded pieces isomorphic to Rg 1, by
dévissage and [3, Lemma 2.3.8 (ii)] any strict (saturated) (o, T')-submodule C' of R4/ 1 (6467 1)
is such that dimg F(C) < dimg A’. As dimg F(Q%,) = dimg F(Qa/) = dimg A’ by (4.5), we
deduce Q%, = RA/7L(5A/6_1). We also see that the natural morphism Ra/;, @4 F(Qar) — Q%,
is an isomorphism. Now consider

RaL®aF(Qa) > Rar®aF(Qa) 2 Rar ®a F(Qa) = Q% — Qur.
The composition is injective and factors through Q4. We deduce then R ®4 F(Qa) — Q%

and hence the latter is a (¢, I')-module of rank 1 over R 1, as A= F(Qa).

Let €4 : L* — A* be the continuous character such that Q% = Ra,r(ca). By [3, Lemma 2.3.8
(1)] and the fact QY is generated by F(Q9), it is not difficult to see 4 =1 (mod m,). Twisting
by A on both sides, the injection R4 (e4) — Q4 induces a morphism

L A ®RE,L RA,L(aA) — M ®RE,L RE,L((sfl).

We prove that ¢ is an isomorphism. It is sufficient to show it is surjective since both source and
target have the same rank over Rp . One easily checks that the morphism R4 r(ea) — Qa
factors as

Rar(ea) = AV Ory, A®Ory, Rarlea) > AY @ry, M ®r,, Ren(67') 2 Qa

where the second map is induced by ¢ tensored with AY. In particular, R4 1(c4) < Qa4 factors
through Rar(e4) — AY ®r,, Im(e). Since Im(1) = (A @y, Ra,r(ea))/Ker(r), by Lemma
4.1.1 (1) it admits a filtration with graded pieces all isomorphic to A. If ¢ is not surjective, the
multiplicity of A in this filtration on Im(:) is strictly smaller than the multiplicity of A in the
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filtration of M ®ry , REL((S_I), which is dimg A using the above equality of ranks over Rg ..
Applying the functor I’ and using again a dévissage, we have in that case dimpg F'(Im(t) ®r,
AY) < dimg A = dimg F(Ra,.(e4)), which contradicts Ra,z(e4) < Im(1) ®r, , AY. We deduce
thus M = A ®@r, , Ra,r(dea). Since Dy — M = A®p,, Rar(dca), we have Dy € Fg(A).
This finishes the proof. O

Now suppose moreover D has distinct Sen weights, hence D Qg RE7L(6_1) has distinct
Hodge-Tate weights. Twisting 6 by some algebraic character of L*, we can and do assume that
the Hodge-Tate weights of D ®g, , ’RE,L((S_l) are given by h = (hyr > hor -+ > hypr = 0)rex, .

Proposition 4.1.4. The functor FY is formally smooth of dimension 1+ [L : Q,)(1 + @)

Proof. Let A — A/I be as surjection in Art(E) with I? = 0. We show the natural map F(A) —
FY(A/I) is surjective. Let (Dayrsmayr,dayr) € FO(A/I). Let 64 : L* — A* be a continuous
character such that 64 = 64,7 (mod I). We have by definition an embedding

Dajr®ry,, . RA/I,L@Z}[) > AQry, Rayir-

We choose a basis e of Dqr(A ®@ry, Ra,L) over L ®q, A (note that the latter is a free L ®q, A-
module), and denote by e4,; the image of e in Dar(A®gy, ;, Ra/r,1). In the basis e 4,7, the Hodge
filtration on DdR(DA/I QR a1 RA/I,L(st/lI)) = D4r(A @Ry, Rayrr) induces an increasing
filtration by free L ®q, A/I-submodules:

0 7& Fﬂ,hk DdR(A ®RE,L RA/I,L) ,C,_
-+ C Fil_n, Dar (A ®Rrp, Rajrr) = Dar(A ®rp, Rajrp) (4.8)

which then corresponds to an element vy, € (Res@p(GLk /B))(A/I). Since the flag variety is
smooth (hence formally smooth), we can choose a lifting v4 € (Resép(GLk /B))(A) of v4/;. Then
v4 gives an increasing filtration by free L ®q, A-submodules in Dyr (A ®ry  Ra L), to which we
associate the Hodge filtration (still denoted by v4) on Dyr(A ®%y , Ra,r) defined by (4.8) with
A/I replaced by A. By [6, Thm. A], the filtered Deligne-Fontaine module (Dpst(A®®  Ra,L), VA)
corresponds to a (p,')-submodule M4 of A ®g,, Ra,r. Then we see that Dy := My ®r, ,
Ra,(04) satisfies Dy = Dyyr (mod I) and Dsy — A ®ry, Ra,r(da). Hence FIO3 is formally
smooth.

We next compute the dimension of the E-vector space F(E[e/€?]). Recall that FP (E[e/e%]) <

Fp(Ele/e?]) and that Fp(E[e/e?]) is identified with Exté%r) (D,D) = Exté%r) (Do, Dg), where we

put Do := D Qg RE,L(5_1) — A. Consider the following morphisms
EXt%%F) (DO’ DO) - EXt%go,F) (D07 A)a (49)

EXt%‘Pvr) (A’ A) - EXt%cp,F) (DO, A) (410)

For a (¢,T)-module D’ over Rg 1, denote by Wyp+(D') the Bj ®q, E-representation of Galy,
associated to D’ (see for example [5, Prop. 2.2.6(2)]). For 7 € X1, let Bg‘RTE = B(‘fR ®rrE. We
have

k
W;R<A ®RE,L D(\)/)/W;R(A ®RE,L Av) = @ @(tih“—B;_R,T,E/B;R,T,E)eak'

TeX =1
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Using [15, Lemma 5.1.1] (which easily generalizes to finite extensions of Q,), we get

Hi, 1) (A @R, DY)/ (A Omp, AY)) =0
and we deduce that the morphism (4.10) is injective. Consider then
Hom(L*, E) — Ext(, 1 (A, A) < Ext(, (Do, A)

where the first map sends ¢ € Hom(L*, E) to A ®@rp ; Rp/2(1 + 1e). We denote by V' the
image of the composition and by [Dy] the element in V associated to 1. Then it is not difficult
to see that [D ®rp , Rp/e2 (671 (1+1e))] is sent to [Dy] via (4.9) (up to non-zero scalars). This
implies V' is contained in the image of (4.9). By definition, [Dp.2] € F}(E[e]/€?) if and only if
[DE)/e2 ORp L Rp.(671)] lies in the preimage of V via (4.9). We compute the dimension of the
kernel of (4.9). We have

k k

>~ —hi - hir—h;

W e DD D)= ) DD Bl 7
T€X =1 j=1

By [15, Lemma 5.1.1], we deduce then
dimp H{j, 1) (A ®r ., D)/ (Do @, DY)
= dimp H°( Gal, Wi (A ®ry, Dy)/Wik(Do ®ry., Dy))

Y Y ey k:(k2—1) _k(k2—1)[L:Qp]_

TEXL hjr>hir TEXL

Using Ext?@’r) (Do, Dy) = Ext?%m(Do, A), we see that the kernel of (4.9) is isomorphic to the

above vector space and hence has dimension @[L :Qp) over E. As dimgV = [L : Q] + 1,

the proposition follows. O

At last, we discuss some relations between Fg and de Rham deformations. Denote by FBW’dR
the functor Art(E) — {sets} sending A to the isomorphism class of (D, 74, x4) where (D4, 74) €
Fp(A), xa: Of — A* such that x4 =1 (mod my) and Dy ORp.1 RA,L((S*lXA,wL) is de Rham.
As D is irreducible and de Rham, D = Dyi(V) ®ry, RE,(¥) for a certain de Rham Galy-
representation V' and a smooth character ¥ of L*. Let RdDR be the universal deformation ring
of de Rham deformations of D on Art(E), and R the universal deformation ring of de Rham
deformations of V on Art(E). Recall that R{® is isomorphic to the completion at V of the
generic fibre of the universal potentially semi-stable deformation ring of the modulo p reduction
of (alattice in) V, cf. [62, § 2.3]. The functor Dyig(—)®r  RE,1(¥) induces then an isomorphism

— —

R?/R = RdDR. Let (O] )1 be the completion of OF at the trivial character. One directly checks
that the E-formal scheme RIF&g(OF )1 (pro-)represents the functor FEW’dR. In particular, using

[63, Thm. 3.3.8], we see that I*ﬁlt)w’dR is formally smooth of dimension 1+ [L : Q,](1 + k(k’;l)).

When (Da,m4,64) € FJ(A), we have that Dy ®r, Rar(64") is de Rham, and thus
(Dama, xa) € Fp"(A) where x4 := (55"6)| o -

Lemma 4.1.5. The morphism FY — FBW’dR, (Da,ma,04) — (Da,ma,xA) i an isomorphism.

Proof. As both functors are formally smooth of dimension 1 + [L : Qp](1 + k(k; 1)), we only need
to show F9(E[e]/e?) — FEW’dR(E[e]/sz) is injective. But this is clear. O
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4.1.2 Deformations of type (2

In this section, we study the universal deformation functor for certain paraboline deformations
of (¢,I')-modules which admit an Q-filtration (where € is a cuspidal Bernstein component as
in § 3.1.1). In particular, we show that, under a genericness assumption, this functor is pro-
representable and formally smooth.

Let r € Z>1. For 1 <i¢ <r,let n; € Z>1 with Zzzl n; =n. For 1 <i <r,let ; be a cuspidal
type for GL,, (L) and Zq, the associated Bernstein centre over E. Recall that for each E-point
x; of Spec Zq,, we have a smooth irreducible cuspidal representation m,, of GL,,(L) over E, an
F-semi-simple Weil-Deligne representation r,, := rec(ms,), and a (¢,I')-module A, of rank n;
over R 1, de Rham of constant Hodge-Tate weight 0 (see § 2.1). Let P C GL,, be the parabolic
subgroup as in (2.2). We let Q := (Q;)i=1,.., and Zq = ®]_,Zq,. We let Zy 1, = Z1,(Or) (to
be consistent with the notation in § 3).

In this paragraph we fix a (¢,I')-module D of rank n over R .

Definition 4.1.6. (1) We say that D admits an Q-filtration F if D admits an increasing filtration
by (¢, I')-submodules 0 = Filg D C Fily D C --- C Fil, D = D such that, fori=1,...,r:

e gr; D is a (¢, I')-module of rank n;;

e there exist an E-point x; € Spec Zg, and a continuous character 6; : L* — E* such that
one has an embedding gr; D QRp.1 RE,L(di_l) — Ag,.

(2) Let &, x = (x;), 0 = WI_,8; be as in (1), we call the corresponding point (x,0) in
(Spec Zq)"8 x Z,,,(L) a parameter of the Q-filtration F if, for each 7 € X1, 0 is a T-Hodge-Tate
weight (hence is the minimal 7-Hodge-Tate weight) of gr; D @Ry, | RE,L(dL-_l).

(3) Let F be as in (1). We call (z,x = K'_;x;) € (Spec Zq)"& x Z/OTL a parameter of the Q-

1=

filtration F in (Spec Zq)"8 x Z/’(ﬁ if (2, Xwy, = WI_1Xiw,,) 18 a parameter of F in (Spec Zq)"& x

—

Zrp(L).

Remark 4.1.7. (1) Let %, z, 6 be as in Definition 4.1.6 (1). We can twist each 0; by a certain
algebraic character of L so that (z,0) is parameter of F.

(2) For convenience, we may use these two kinds of parameters depending on the situation.
Note that the parameters of F (either in (Spec Zq)"8 x Zr1,,(L) or in (Spec Zo)'e x Zo,L) are in
general not unique (see Lemma /.1.9 below).

Example 4.1.8. (1) By Theorem 3.2.16 (using the notation there), for any point x € Eq \(UP),
Diig(pz5) admits an Q-filtration.  This is our main motivation to study (p,I')-modules with
Q-filtrations.

(2) Let p be as in § 2.3 and use the notation of loc. cit. Let x € (Spec Zq)"8 be the point such
that Ay, = gr?A fori=1,....r. Then by (2.4) (and comparing the Hodge-Tate weights), we see
that F in (2.3) is an Q-filtration of parameter (z,0 = X]_,J; := &lew?(h)%) € (Spec Zq)"8 x

ZL/pE)- Let 2’ = (x7) be such that A, = Ay, ®RE’LRE,L(unr(wzu‘g(h)si)), then (z/,6° =8|z, ,) €

(Spec Zq)™i& x 2701 is a parameter of F.

Lemma 4.1.9. Let .F be an Q-filtration of D.
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(1) Let (z,0) € (Spec Zq)'e x Zm) be a parameter of .F, then all parameters of F in

(Spec Zq)"8 x Z1,,(L) are of the form (2',8') such that, for i =1,---,r, ry = r,, @p unr(q;)
and 0} = ¢; unr(ai_l)m for some «; € E” and i € B, -

(2) Let (z,x) € (SpecZq)"8 x Z/’(:L be a parameter of F, then all parameters of F in

—

(Spec Zq)"'8 x Zo 1, are of the form (2/,x’) such that, fori=1,---,r, Ty = 1o, @p unr(ni(wr))
and X = Xmi’of for some n; € ug, .

Proof. (2) is an easy consequence of (1). We prove (1). Let (2/,8') € (Spec Zq)"8 x Z/O\,L be
another parameter of .#. By definition, we have injections

gr; D ®r,, Ren(6;) — Ay, (4.11)
gr; D Ory, Reo((0)™) = Ay = Ay Orp, Re(unr(a;)). (4.12)

From (4.12), we deduce
gt; DORy,  Rip,((6;) "' unr(eq)) = gr; DORy, , RE,L(6; ) Orp R, (3:(5) " unr(a; ) — Ay,

Since both gr; D ®r,, Re,(6; ") and gr; D ®r,, Re,r((6) " unr(a;)) are de Rham and have
0 as the minimal 7-Hodge-Tate weight for all 7 € X1, we deduce §;(07)~! is smooth. Using (4.2)
(applied to (4.11) and (4.12)), we see that there exists N € Z>¢ sufficiently large such that

Ay, — =N gr; D ORE L RE,L(éi_l) — tiNAz,L. ORpe.1L RE7L(5»_151/- unr(a;)).

]

Using [6, Thm. A] and comparing the Hodge-Tate weights, we deduce Ay, = A ®ry

R (6; *6lunr(e;)), hence r,, = r,, ®@p (J; 10/ unr(ay)), implying &; '¢/unr(e;) € pg,. This

concludes the proof. O
Remark 4.1.10. In particular, F only has finitely many parameters in Spec Zq X 2/07;.
Let (z,0) € Spec Zq X Zm) be a parameter of the Q-filtration .%. We call .Z# generic if the

following condition is satisfied:

for i # j, if r; & r,;, ®g n for some smooth character n of L™,

4.13
then 51-6;177 # 27 % and 5i6;17} % unr(qzl)zk for any k € Z'ZEOL‘. (4.13)
By Lemma 4.1.9, this definition is independent of the choice of the parameter of .%#.

Example 4.1.11. Let D be as in Example 4.1.8 (2), one directly checks that the Q-filtration F
1s generic if p is generic in the sense of § 2.5.

Lemma 4.1.12. Assume that the Q-filtration F# on D is generic, then we have
Hom, (gr' D, g’ D) = Ext%%r) (gr" D,gr’ D) =0 (4.14)

fori#j,i4,5€{1,...,r}.

Proof. We prove the statement for Hom, the proof for Ext? being similar using

Ext?, (g1’ D, gt/ D) = H{, 1 ((gr' D)Y ®ry,, g’ D) and Tate duality ([66, Thm. 1.2 (2)]). We
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let (x,68) € (Spec Zq)™8 x ZZ,-(\L) be a parameter of .#. Suppose we have a non-zero morphism
f:gr'D — g/ D for i # j. Let N € Z> be sufficiently large, then f induces a non-zero hence
injective morphism (see (4.2))

tNA ; gr 'D ®REL Rg L((S ) — grj D ®REL RE L((S ) — Ax] ®REL RE L(d (5 ) (4.15)

Consider the induced injective morphism A, — Ay, ®@ry,  Re,L(d; 16 2~N) where N := (N),ex, -
Since both the source and target are 1rreduc1ble the morphlsm (and hence (4.15)) becomes an
isomorphism inverting ¢. Since the left hand side of (4.15) is de Rham, so is Ay, ®@r, , RE,L(0; 15,).

This implies (e.g. by considering the Sen weights) that o, 16 is locally algebralc, say of the form
nz¥ for a smooth character  of L* and some k € Z*zl. By using [6, Thm. A] and comparing the
Hodge-Tate weights, we see that (4.15) induces A,, — Az, ORp REL(M) (50 10y E 10, @E 7).

We next show k € Z‘EL| By definition, 0 is the minimal 7-Hodge-Tate weight of gr D ORp.1L
R, (6; 1) for all 7, while wt(6; 1), is the minimal 7-Hodge-Tate weight of

gt! D ®ry,, REL(0;) 2 gt! DOry, ReL(0;") Orp, Re(8;6,7).
The second (1nJectlve) morphism in (4.15) then implies wt(J; 'd;), < 0 for all 7, hence k € Z'SZOL‘.
But §; ';n7! = X with k € Z‘EL| contradicts the genericity (4.13) of .Z. O
Corollary 4.1.13. Assume that D admits a generic Q-filtration %, and let (z,9) € Spec Zq X

ZLP( ) be a parameter of #. Then D has a unique Q-filtration of parameter (z,0).

Proof. Suppose D has two Q-filtrations Fil,, Fil, of parameter (z,9). By Lemma 4.1.12 and
a standard dévissage, we easily deduce Hom,, )(Fllr 1D, grl. D) = 0 and hence the injection

Fil,_1 D — D induces an isomorphism Fil,_; D = Fllr_l D. We go on replacing D by Fil,_1 D =
Fil._; D, and we see that Fil; D < D induces an isomorphism Fil; D = Fil; D fori = 1,...,r. O

Assume that D admits a (uniquely determined) generic Q-filtration .%# and let Fp # denote
the functor Art(E) — {Sets} which sends A € Art(FE) to the set of isomorphism classes

Fp#(A) ={(Da,ma, Fa)}/ ~

where (the isomorphisms being defined in an obvious way)

(1) D4 is a (¢,I')-module of rank n over R with m4: Dy ®4 E = D

(2) F4 = File D4 is an increasing filtration by (¢,I')-submodules over R4, on D4 such that
Fil; Dy, i € {0,...,r}isadirect summand of D 4 as R 4 ;-modules and w4 (Fil; D4) = Fil; D.

Lemma 4.1.14. Assume Hom,, )(gr D, gr; D) =0 fori # j. Then Fp # is a subfunctor of
Fp.

Proof. By the assumption and a dévissage similar to the one for Lemma 4.1.13, we easily deduce
that, if File D4 and Fil, D4 are two filtrations on (D4, 74) € Fp(A), then they have to be equal.
The lemma follows. O

Denote by End #(D) := {f € Endgr, (D) | f(Fil; D) C Fil; D, Vi}, which is equipped with a
natural (o, I")-action as in the discussion below [29, Rem. 3.5]. Recall the following result:
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Proposition 4.1.15 ([29, Prop 3.6 (2), (3)]). (1) There is a natural isomorphism of E-vector
spaces Fp z(E[e/€?]) = H ((p F)(End, 7(D)) and

dimp Fp 7 (Ele/e%]) = dimp H{, 1(End»(D)) + dimp H, 1y (End (D)) + [L : @] >_ nin;.
1<J
(2) Assume H(%p F)(Emdt,@(D)) = 0, then the functor Fp g is formally smooth of dimension
dimpg H(O%F) (Endz(D)) + [L: Qp] >, < niny-

We have a natural morphism
FD,ﬁ — H Fgri D
sending (Da,ma,-#4) to (gr; Da, Talgr, Dy )i=1,....r-

Proposition 4.1.16 ([29, Prop. 3.7]). Assume H(2 S (Homp , (D/Fil; D,gr; D)) = 0 for all 4,

then the morphism Fp 7 — []; Fgr, p is formally smooth.

Let (z,6) € Spec Zq X ZLP( ) be a parameter of .#, and let FO be the functor Art(E) —
{Sets} sending A € Art(F) to the set of isomorphism classes

Fp #(A) ={(Da,ma, Fa,04)}/ ~
where (the isomorphisms being again defined in an obvious way)
(1) (Da,ma, Za) € Fp 7(A);

(2) 04 = (d4,4)i=1,..r where d4; : L* — A is a continuous character such that d4,;, = J;
(mod my) and there exists an injection of (¢, I')-modules over R4 1

gr; Da — A @ry, Ran(0a)

By definition, we have ng = Fp,7 x[q, Far, 1 IL Fgri D

Proposition 4.1.17. (1) Assume Hom, ry(gr; D, gr; D) = 0 for i # j, then the functor FO
a subfunctor of Fp.

(2) Assume H(Q@ F)(HOHQREJ.J(D/ Fil; D,gr; D)) = 0 and gr; D @R, , Re L(6; Y has distinct
Hodge-Tate weights for i =1,...,r. Then Flo) z 18 formally smooth of dimension

dimg H{, ry(End#(D)) + dimp H,  (End #(D)) + [L : Q] (”(”2_‘” +7).

Proof. (1) By Lemma 4.1.2 FP - is a subfunctor of Fp #, and by Lemma 4.1.14 Fp 7 is a
subfunctor of Flp.
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(2) From Proposition 4.1.16, we deduce that F?,  is formally smooth over [], F, gor_ p and hence
is formally smooth by Proposition 4.1.4. We have then

dimp F}, 7 (Ele/%)
=dimg Fp 7 (Ele/%]) — Z dimp Fyy, p(E[e/e?]) + Z dimp Fy, p(E[e/€])

=dimp H), 1 (End (D)) + dimp H, ) (End (D)) + [L : Q) ( 3 iy
1<J

PY D L)

n(n—1)

=dimg H{), p(End #(D)) + dimg H{, p(End 7 (D)) + [L : Q) ( 5

+r),

where the second equality follows from Proposition 4.1.15 (1), Proposition 4.1.4 and the standard
fact that dimp Fy, p(Ele/e?]) = 1 + [L : Qp]n? (noting that gr; D is irreducible). O

Let p : Galp, — GL,,(FE) be a continuous group morphism and V' the associated representation
of Galy, over E. We let F, (resp. Fy) denote the deformation functor of p (resp. V') over Art(E).
So F), can be viewed as the framed deformation functor of V' over Art(£). Assume D =2 Dyg(V),
then we have Fp = Fy. Let F’?’y = Fjojj X, F,. Recall that F), is pro-representable and is

formally smooth over Fy of relative dimension n? — dimg H (O(p F)(EndRE (D).

Corollary 4.1.18. (1) Assume Hom, r)(gr; D,gr; D) = 0 for i # j, then F/?j is a subfunctor
of F,, and is pro-representable.

(2) Assume Hao F)(HOII]REL (D/Fil; D,gr; D)) = 0 and gr; D ®ry Re.r(6; 1) has distinct

Hodge-Tate weights fori=1,...,r. Then Frg),ff is formally smooth of dimension

dimg H?, 1 (End #(D)) + dimg H{), 1y (End #(D)) — dimg H, r (Endg,, , (D))
n(n—1)

+n2+[L:Qp]( 5

+r). (4.16)

Proof. By Proposition 4.1.17 (1), F,?gz is a subfunctor of F,. By Lemma 4.1.14, F, #z := Fp z X,
F, is a subfunctor of (the pro-representable functor) F,. Together with [29, Prop. 3.4], we can
deduce that F, # is pro-representable (noting that we only need to show that

Fmgz(A, XA AH) — me(A/) Xprg(A) pry(AH)

is surjective whenever A” — A is surjective). It then follows from Proposition 4.1.3 that FS(@
is pro-representable. By base change, Fg(g is formally smooth over FB # of relative dimension

n? —dimg H&F) (Endg,, , (D)). Together with Proposition 4.1.17 (2), (2) follows. O

Remark 4.1.19. Assume that (D,.7) satisfies the properties in ({.1{) and that gr; D ®ry
RE,L((SZ-_I) has distinct Hodge-Tate weights for i = 1,...,r. Then using a dévissage, one easily
deduces that the assumptions in Corollary 4.1.18 (1) and (2) are satisfied, and that the terms in
the first line of (4.16) are all zero. So in this case ngﬁ is (pro-representable) formally smooth of

dimension n? + [L: Qp](@ +7).
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4.2 Bernstein paraboline varieties

By generalizing results in [17, § 2.2] on the trianguline variety, we construct and study a certain
local Galois deformation space of a modulo p Galois representation which consists of Galois
representations admitting an Q-filtration.

The following lemma follows easily from [60, Thm.]. We formulate it here since we will
frequently use it.

Lemma 4.2.1. Let X be a reduced rigid analytic space over E and D a (p,I')-module over Rx p,.
Assume that, fori=0,1,2, there exists d; € Z>o such that for all x € X, dimy,, H&O r) (D) = d;
where D, := x*D. Then H("SO r) (D) is a locally free sheaf of rank d; over X and for any morphism

f:Y — X of rigid spaces, we have HZ%F)(f*D) o HE'%F)(D)®(9X Oy.

Proof. By [60, Thm. 4.4.5 (1)] and [60, Thm.], H(i@ F)(D) is a coherent sheaf over X, and there

exists a complex [C°? £> ct i> C?] of locally free sheaves of finite type over X such that, for
Y= X H (i(p F)( f*D) is isomorphic to the i-th cohomology of the complex

(%20, Oy — C'®o, 0y — C?®0, Oy].

In particular, we have H(ng r) (D)®0, Oy = H(QQO r) (f*D). Applying this to points of X, we deduce

that Haa r) (D)®o, k(z) = H(Q@ r) (D) has constant dimension ds for all x € X. Since X is reduced

(and H (2¢ F)(D) is coherent), this implies that H (QW r) (D) is locally free of rank dy. We deduce that

Ker(d') is also locally free of finite type (as the kernel of a surjection between two locally free O x-

modules of finite type is locally free of finite type), and thus H(lw r)(D)®0y Oy = H(lw (/D).
Repeating the above argument, we obtain that H (lso r) (D) is locally free of rank dy, that Im(d)

is locally free, and then again that H&) r) (D) is locally free of rank dy and H& r)(D)®Ox Oy =

HY, 1 (f*D). O

We keep the setting of the beginning of § 4.1.2 and fix h = (h;)=1,_n = (hir)iz1,..n € ZE">1]
TEEL
strictly P-dominant. Let (r;) € (Spec Zq)*", we say that a character 0 of Zy,,(L) is generic for

(€, h) if the following condition is satisfied:

if there exist i # j such that r; = r; ®g n) for some smooth character n of L™ (noting there
are finitely many choices of ), then 6i5;1nzh5i_hsi # 27X and (5i(5j_177zh5i_h51 #* unr(qgl)zk
for all k = (ko )ges, € Z2E,

The set of such points is Zariski open and Zariski dense in Z1,,(L). For each r;, we have a natural
finite morphism G,, — Spec Zq,, @ — 1; ®p unr(a) (note that 2o, = E[z,r "% ). We have
and fix an isomorphism (depending on the choice of @) Ghe x OF = L%, (a,x) — unr(a)Xw, -
We define . -

Z = (Spec Zq)"® x Zy 1,

p—

r, as the composition ¢y, : L =5 GU¥ x OF — (Spec Zq,)"8 x OF, and iy as the composition:
S T P T o (L ) T o
te: Zrp(L) = [ 2% = [ (G x 0f) =5 ] ((Spec 2o,)"® x OF ) = 2.
i=1 i=1 i=1
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A point of Z is called generic if its preimage in Zr,, (L) is generic for (€2, h). One can check that
this notion is independent of the choice of {r;}. Denote by 278" C % the set of points that are
generic. One can also check that if (z, x) € 28" then (z, xw, ) satisfies the condition in (4.13).
Any affinoid open in £ can only have finitely many points that are not generic (since the same

holds for ZTPE)). Hence Z°#°" is Zariski-open and Zariski-dense in 2.

Let p : Galy — GL,(kg) be a continuous group morphism. Let Ugn(p) be the subset of
(Spf Rz)"'8 x 2 of the points (p,z, x) such that

(1) (z,x) € 25
(2) Drig(p) admits an Q-filtration .# = {Fil; Dyig(p)} such that

gr; Drig(p) ®Rk(z),L ,Rk(a:),L(Xi_,qlﬂL) — Ay, ®Rk(z),L Rk(x),L(ZhSi) (4.17)

and the image has Hodge-Tate weights (hs, ,41,...,hs,).

We define Xq pn(p) to be the Zariski-closure of Ug n(p) in (Spf Ry)"8 x 2. By definition Xq ()
is reduced and we have a natural morphism

w: XQ7h(ﬁ) — Z.

We define an action of pug = {1 = (¢s) : Zp,(L) = E* | ¢; € pg,} on 2 such that ¢ = (¢;) € ug
sends ((x7), (xi)) to ((r; ®punr(¢;(w@r))), (x;¥?)). It induces an action of o on (Spf R5)"8 x 2
by acting trivially on (Spf R;)"8. By Lemma 4.1.9 (2), Uqn(p) is preserved by the action of juq.
We then deduce that Xqn(p) is also preserved by pn:

Proposition 4.2.2. A pomt (p, (n), (xi) € (Spr )& x & lies in Xon(p) if and only if the
point (p, (r @p unr(ys(w1))), (xit?)) lies in X a(p) for all Y = (1) € po.

Let ¢ = (1) be a smooth character of Z,,(L), and  be the Bernstein component {7 ®p
Y}req. Let h' = (hf)i=y = (h;,r)%ﬁl,.-.,n e 79"%Ll be strictly P-dominant such that h' —h =

TEXT]

dodety, for a weight @ = (9;)i=1,.» of 31,,2- The condition (4.17) is then equivalent to
8% Diig(p) @Ry 1. Riv(w) L (X, 000, Voo )
> Ay, Oy, Ria) L (W, wr(05, (@0)) @Ry, Rty 2 (2™5)-
The isomorphism
(Spf Rp) x Z = (Spf Rp) x 2, (p, (xs), (xi) = (b, (ri @5 (¥, (3515,) 1), (xa(0,48) 7))
sends bijectively Ugn(p) to Ug (p). We then deduce (compare with Proposition 3.2.3):

Proposition 4.2.3. We have an isomorphism:

Xan(p) = Xorw (@), (p,(ri), (i) — (o, (11 ® (U)o, (075,) 1), (xa(80,47) 7).

Remark 4.2.4. (1) Assume P = B, hence Lp = Zr,, = T. Using the isomorphism (where
XI_ 7y, is the smooth character of T(L) = Lp(L) associated to x):

L h - = T(L)7 (@7 X) = (&gzlﬂfﬂi)xzh?
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we view Xq p(p) as a closed rigid subspace of (Spf R5)"'8 x T(L) via the following morphism, that
we still denote by 1o p:

id XLk

ton: Xan(p) — (Spf By)"8 x & (Spf Ry)"& x T(L).

Such a closed rigid subspace is in fact independent of the choice of (2, h) by Proposition /.2.3. By
assumption, the injection in (4.17) is actually an isomorphism. We then deduce that Uq p(p) C
(Spf Ry)™8 x T(L) coincides with ULL(T)™8 in [17, § 2.2], hence Xq n(p) coincides with the trian-

tri
guline variety XC\(F) of loc. cit.

(2) By definition, for (p,z,x) € U n(P), (2, K0, (Ximy 2")) € (Spec Zo)& x Z1,(L) is a
(generic) parameter of the Q-filtration F on Dyig(p). We will show in Corollary 4.2.6 below that,
for any point (p,z,x) € Xa.n(p), Drig(p) is naturally equipped with an Q-filtration #. Howewver,
(z, (Ximwp,2")) is not forcedly in general a parameter of F. This phenomenon is closely related
to the problem of (local) companion points (see Remark 4.3.10 and Example 4.1.8).

The following theorem, generalizing [17, Thm. 2.6], is the main result of this section.

Theorem 4.2.5. (1) The rigid analytic space Xq n(p) is equidimensional of dimension

n2+[L:Qp](n(n2_1)+r).

(2) The set Uq p(p) is Zariski-open and Zariski-dense in Xq p(p).

(3) The rigid space Uq n(p) is smooth over E, and the morphism wly,, ) : Uan(p) = Z is
smooth.

By Theorem 4.2.5, Corollary A.1.2 and Corollary A.1.3 (1) (applied to X = Xqn(p)), we get:

Corollary 4.2.6. Let = = (p,z,x) € Xaon(p), then Dig(p) admits an Q-filtration F =
{Fil; Dyig(p)} such that, for alli=1,...,r,

1

gr; Drig(ﬂ) ®Rk(x),L Rk(w),L (X;zlﬂL) |:¥i|

12

o 1)

In the rest of this section, we prove Theorem 4.2.5 by generalizing the proof of [17, Thm. 2.6].
One difference is that, instead of having a smooth rigid space (the S(7) of loc. cit.) mapping onto
the whole Uq n(p) (Uwi(T)™® of loc. cit.), we only have smooth rigid spaces mapping onto certain
open subspaces of Uq n(p) that cover Ug n(p).

We start with the construction of some auxiliary smooth rigid analytic spaces. For a reduced
rigid space X, we denote by (’)} the subsheaf of Ox of functions of norm less than 1. For
i=1,...,7,let a; € E*, p; : Gal, — GL,,(kg) be a continuous representation and let & be the
(cuspidal) inertial type associated to £2;. We consider the following functor:

X — {px,0i,x,Xi,x, File,vi } | ~ (4.18)

where (the isomorphisms being defined in an obvious way)

(1) X is a reduced rigid analytic space over E;
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(2) px : Galp, — GL,(0%) (resp. 0;x : Gal, — GL,,(O%) for i = 1,...,r) is a continuous
morphism such that, for all x € X, the reduction modulo the maximal ideal of O, of
Pz = PX Qpt Ok (z) (resp. of 0; 4z := 0i x ®ot Ok(z)) is equal to p (resp. 9;);

(3) 0ix is de Rham of Hodge-Tate weights h' = (hs,_,41,...,hs,) and of type & for all z € X

(4) xi,x : OF — O% is a continuous morphism such that, for all points z € X, ({r(eiz) ®&
unr(oy) b, {xiz}) € 278" where x;, = 2*x; x and r(g; ;) is the Weil-Deligne representation
associated to g; z;

(5) File Diig(px) = (0 = Filg Dyig(px) & Fili Drig(px) & -+ & Fils Drig(px) = Drig(px)) is an
increasing filtration on Dyig(px) by (¢, I')-submodules over R x, 1, which are direct summands
of Dyig(px) as Rx,r-modules;

(6) v; : gr; Drig(px) — Drig(0i,x) ®Rrx. Rx,L((Xi,X)w, unr(a;)) is an isomorphism of (¢, T')-
modules over Ry .

Proposition 4.2.7. The functor in (4.18) is representable by a smooth reduced rigid analytic space
over E of dimension (3.i_;n? +n?) + [L: Qp](n(”Q_l) +7), that we denote by Sp(2, h, a, {0;}).

Proof. For i =1,...,r, consider

(Spf Ry (&, h%))"8 — (Spec Zq, )" e, (Spec Zq,)"8 (4.19)

where the first morphism is induced by the morphism in [26, Thm. 4.1] (see also [26, Prop. 4.3]),
and the second morphism sends r; to r; ® g unr(e;). The morphism (4.19) is given pointwise by
0i — r(0;) @ unr(«;). Taking their product (with the identity map on 2y 1), we define

Moz * | [(Spf RE (&, 07)™ x 241, — (Spec Z0)"™ x 2, = Z. (4.20)

=1

Let U := 77;}{@}(% gen) which is Zariski-open and Zariski-dense in [[;_, (Spf Rg:r(fi, h'))rie x Z/O\,L.
Indeed, the Zariski-density follows from the fact that any affinoid open in the left hand side of
(4.20) contains points with Z/O\L—entry x = Ky; satisfying wt(x;(x;)™)- ¢ Z for all i # j and
7 € ¥, and such points are sent to generic points via 7, 5,3 Let of™" be the universal Galois
deformation over (Spf Rgicr(&, h"))"& and g?ﬂ" be its pull-back over U via the composition

U < [ (Spf RE™ (&, 1)) x Zo.1 — (Spf R (&, )",
=1

Likewise, let X;‘?}V be the pull-back over U of the universal character over O} via the composition

U — [](Spf RE" (&, )™ x 29, > 2o = (OF) 25 OF.
i=1

Put
Diu = Drig(0i3i") @Ry, Ruu,r. (061 )y, unr(i))
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and D; , := 2*D;y for each z € U. Since §; is a cuspidal inertial type, D; . is irreducible for all z.
Using the fact that 7, (5.3(2) € 2", one can calculate:

1 s=0
dlmk(z) H(S%F) (Di,z ®Rk(z),L lDz\fz) = n?[L : Qp] +1 s=
0 §=2
and by Lemma 4.1.12, for ¢ # j:
0 s§=0
dlmk(z) H(S%F) (Dz,z ®Rk(z),L D;/,z) = § iy [L : QP] s=1
0 s =2.

We deduce by Lemma 4.2.1 that for any rigid analytic space U’ over U, all H ao r) (Diyr @Ry, , D;‘/,u')

are locally free over U’, where D denotes the base change of Dy gy over U'.

Now we let Uy = U, Ciyy = Diy, and v1 : Ciyy = D1y, be an isomorphism. Let
Uy — Uy be the vector bundle of rank nins[L : Q] associated to the locally free Op,-module
Ext%%r) (D244, Cr4,) (see also the proof of [30, Thm. 3.3] and [52, Thm. 2.4]). We have a univer-
sal extension of (¢, I')-modules over Ry, .

0— Cru, — Cozty = Doy, — 0.

By similar arguments as in the previous paragraph and a dévissage, we prove that the O,-module
H(I%F) (Cotty ORyy, 1, D3utp) 1 locally free of rank [L : Qpl(n1+n2)ns. We let Us — Us be the vector

bundle associated to H (l%r) (Cotty ARy 1, Dy,,,)- By induction, we finally obtain a sequence of
rigid analytic spaces
V=U—>U_1— --—U =U

such that

(1) for i > 2, U; is a vector bundle of rank [L : @p](Z;;ll nj)n; over Ui_1;

(2) there is a (universal) (¢,I")-module C;yy, over Ry, 1, equipped with an increasing filtration
(0 ="Filp C Fil; € --- C Fil; = Cjy,) given by (¢, I')-submodules over Ry, , which are direct
summands of C; 1, as Ry, r-modules;

R - . : . : . . . ~ . . y S "
(3) there are isomorphisms of (¢, I')-modules over Ry, 1. vj : gr; Ciyt, — Dju,; for j <i

By construction and [63, Thm. 3.3.8], V is smooth of dimension (recall np is the Lie algebra over
E of the nilpotent radical Np of P)

T

dimtf + [L: Q) dimpnp = > (n? +[L: Q)

i=1

ni(n; — 1 .

2(22)) +[L:Qplr+[L:Qpdimgnp.
Now we apply the same argument as in the proof of [17, Thm. 2.6] for the representability of S . (7)
of loc. cit. Let V2™ be the maximal adic open of V such that there exist a vector bundle M over
Vadm and a continuous morphism pyadm : Galy, — Auto, g, (M) satistying Drig(pyeam) = Dyaam
(cf. [51, Thm. 1.3]). Note that V*I™ is also a rigid space by [56, (1.1.11)]. Let V2™ he the
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GL,,-torsor of the trivialization of the vector bundle M . Let Vadm H ¢ yadmO he the admissible
open of points such that PypdmD = pvadm,D|ngm,D has image in F(ngm’m, O;gdmﬂ). Finally let

Sg(Q, h,a, {g;}) be the admissible open of ngm,m such that the reduction modulo the maximal
ideal of Oj(y) of pyaamn ®p+ . Ok(z) is equal to p for x € Sg(Q,h,g, {o;}). We see that
0

adm,
Yo

Sg(Q, h, a, {g;}) is smooth of dimension

Z (nz2 +[L: Qp]nl(n;_l)) +[L:Qplr + [L: Qp)dimgnp + n?

i=1

(Zn +n) 1 Q) n(n 1)+[L:Qp]r.

It is then formal to check that Sg(Q, h, a, {g;}) represents the functor (4.18). O

We write Sg = Sg(Q, h, a, {g,;}) for simplicity. Consider the composition:

- cr i\\ri 7 = ede ri 7~
89— ( [](Spf B2 (¢;, b)) g) x Zoz —2C, (Spec Zo)E x Zop = Z.
=1

where the first map follows from the construction of SO (note that this map is smooth). Let Ag,
be the universal p-adic differential equatlon over (Spec Zq,)" & constructed in § 2.2 and x™V be

the universal character of O} over (’) . We let X“g{‘{  Ag,. K be the pull-back of Y1V, Aq. over 8%.

Let p“m" be the universal Galy-representation over Sg. Similarly as in the proof of Proposition
4.2.9 below (using Lemma 4.2.1 and a direct computation of the cohomology of (¢, I')-modules
over Robba rings with coefficients in finite extensions of E'), we can show that

Hom,y, 1y (gf Drlg(P?g%W) BRg ng,L((x;‘?(Y)wL) Aq, 50 @rp . RE L(z hsi)) (4.21)
P

is locally free of rank 1 over Sg for any i = 1,...,r. We let S5(€2, h, o, {«9;}) be the fibre product
over Sg for all i of the GLE-torsors trivializing the invertible modules in (4.21), which is hence a

((Gi,ilg)r—torsor over Sg and a reduced rigid analytic space over E of dimension

(r—i—Zn +n ) Qp]((n2_1)+7’>. (4.22)

We have a natural commutative diagram
S5 h,a,{B}) —— (Spf Rp)™ x ([Ti, (Spf RE(&, 1)) x Zo 1,
’{gﬁ{m}l l (4'23)
Xon(p)  — (Spf )78 x Z.

The existence of the upper horizontal morphism follows from the construction of S5(€2, h, o, {2;}),
and it is also clear that the composition of the upper horizontal with the right vertical morphism
has image included in Xq n(p), from which we obtain the left vertical morphism xq (5,
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Let p"" be the universal framed Galois deformation of 5 over (Spf Rz)"8. And we let p}lgli"h )
Ag, Xqn() X;H;?;Z () be the pull-back of p™V, Aq., x¥™V over Xo n(p). Applying Corollary A.1.2

in the Appendix, we see that there exist a projective birational morphism

f 1 Xon(@) — Xond),

a Zariski closed subset Z C )A(:QJI(*) disjoint from f~!1(Ugn(p)) and line bundles £; over % :=
Xan(p)\ Z such that Dy := f*Drig(puXrg"h(p))\og/ admits an increasing filtration Filg Dy by (¢, T)-
submodules over Ry 1, such that

(1) Fil; Dy are direct summands of Dy as Ry -modules;

(2) one has embeddings gr; Dy ® L; — Aq, % Or4, , R L(Xi# )wy, 2Bsi) where Ao, Xiw
univ

i Xon(p) OVer U respectively;

are the pull-backs of AQi,XQ,h(ﬁ)’ X

(3) for all x € %, the above embedding restrict to injections (gr; Do)z = Ag, f(z) Ry
Rk(x)’L(Xi’f(m)’szhsi) and (gr; Dy )z ORipa) .1 Rk(z)’L(X;}(x)va) is de Rham of Hodge-Tate
weights h’ = (hg,_,41,...,hs,).

Note that, by the proof of Theorem A.1.1, we can and do assume that f factors through a
surjective birational morphism Xon(p) - Xon(p)” where Xq n(p)" denotes the normalization of

Xaon(p).

Let % be the preimage of Z°8°" via the natural composition
v —)XQJ]( )—)XQh( )——)Qp

Note that % is Zariski-open in % hence also in Xq n(p). It is also clear that f~Y(Uqn(p)) C %
(in fact Ug n(p) is equal to the set of rigid analytic points of f(%)). Let % be the fibre product
over % for all ¢ of the Gmg—torsors trivializing the line bundle £;. Let © € %, and o; € E*
(enlarging E' if necessary) for ¢+ = 1,...,7 such that gr;(Dy ). ®ry , RE,L(X;,}(:{:),@L unr(e; 1))
is étale. Let 24 (g)adm be the maximal adic open subset of %4 such that there exist a vector
bundle g; 7, (q)eam Over 24 (@)®™ and a continuous morphism Gal; — Auto%1 e am (05,27 (a)dm)
satisfying (cf. [51, Thm. 1.3]):

Drjg(Qi7%1(g)adm) = (grl D%l ®R%1,L R@/17L(X;;/17WL unr(a;l))) ’@/1(g)adm.

Since f is projective and Xq n(p) is quasi-separated, XQ h(p) is quasi-separated. We then deduce
that both 24 and %4 ()™ are also quasi-separated, and hence that %4 (a)*™ is a rigid analytic
space by [56, (1.1.11)]. It is also clear that any preimage of x lies in %4 (a)®™. Let %4 ()™M
be the fibre product over %4 ()™ for all i of the GL,, -torsors of the trivialization of 0 7 ()i
as Oy, (q)aam-module. Let % ()25 c 24 ()™ be the admissible open subset of points such
that

0s. (ayecm0)  Gal, — GLp, (T(% (0)*"™", 0y, (gyaam))

has image in T'(% (a)2d™5, (9;; (a)adml:l)

and let % (a,{2,})*™ 5 C % (a)*™" be the open locus such that, for z € % (a, {g;})*™",

Finally, fix some continuous g; : Galp, — GL,,(kg)
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0i % (a,{5,})2am0 @ Op(z) has reduction (modulo the maximal ideal of Oy.) equal to g; for all i.
From the universal property of S5(€2, h, o, {9;}), we obtain a natural morphism

U (o, {0:})""™" — S5(Qh,a, {2;}).

Moreover, using the universal property of (Spf Rﬁ)rig X Z/()\,L and the “universal” property of
(Spec Zq)™® as in [26, Prop. 4.3], we see that the following diagram commutes

%(Qv {Ei})adm,lj I SF(Q7 haga {@z})

! !

XQJ—I(p) E— (Spf Rﬁ)rig x Z.

By (4.23) and the fact that Xqn(p) is a reduced closed subspace of (Spf Rz)"¢ x 2, we deduce
a commutative diagram:

K4 (Qa {@i})adm’u - 85(97 h, o, {@z})

\fii,{@i}l (4.24)

Xon(p).

By Corollary A.1.2, there exists a Zariski-open and Zariski-dense subset *" C Xqn(p) disjoint
from f(Z) such that the morphism f induces an isomorphism f~!(%) = #. Consider

V(e o)™ = ) % U (e, {2,

Note that ¥ (a, {g;})*¥™5 can also be constructed from f~1(%) in the same way % (o, {g;})*™
was constructed from Y. Using the same argument as in the first paragraph on page 1598 of [17],
one can prove an isomorphism

— dm,[] -1
V(e (@) 0 =5kt ()
hence by (4.22), ¥ (a, {2;})*™! is smooth of dimension (r +>_/_, n? +n?)+[L Qp](n —i—r)
By [59, Thm. 0.2], for any = € ¥, there exist an admissible open neighbourhood ¥ of zin ¥
and o, 9; such that ¥, is contained in the image of ¥ (a, {g;})*¥™" — ¥ (for the corresponding
a, {2;}). As the morphism 7 (o, {g,;})*¥™" — ¥ is smooth of relative dimension r + Y_i_, n?,

we deduce that ¥ is equidimensional of dimension n? + [L Qp](” ) 4 ). Since ¥ is Zariski
dense in X n(p), (1) of Theorem 4.2.5 follows.

Proposition 4.2.8. The morphism kg (0,1 * Sp(2, b, @, {0;}) = Xo,n(p) is smooth.

Proof. Let x € Sp(€%h, o, {0;}), y := £a (5,3 (%), B := Os (9 ha(5:}) A= Oxqun@)y Let N =
S n?+r, it is enough to show that there exist z1,...,zy € B such that B 2 A[[z1,...,2n]].
Let p; : Galp, — GL,(k(x)) be the image of = in (Spf R5)"'¢. Recall we have a natural isomorphism
@(Spf Ry)iep, = Rp, where R, is the universal framed deformation ring of p,. Let Z be the
associated filtration on Dyig(p5) (asin (4.18)), and denote by R,(o)z,ﬂ the local complete k(x)-algebra

which (pro-)represents the functor F), 0 ~ (see Corollary 4.1.18 (1)). By Corollary 4.1.18 and
Remark 4.1.19 (note that, as x is sent to ff 8" the hypothesis there are satisfied for .# by Lemma
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4.1.12), Rgm, 7 is a quotient of R, and is formally smooth of dimension n?+ [L Qp](" ) 4 r).
We have a natural morphism
R) > — B. (4.25)

Indeed, for an ideal I C mp (the maximal ideal of B) with dimy,) B/I < oo, by the construc-
tion of S5(€2,h,a, 0) and by Lemma 4.1.5, we have a deformatlon of (pz, F) over B/I lying in
FST“C}(B/I). By the universal property of Rgm,ﬁ“ this gives a natural morphism Rgm,ﬁ? — B/I.
Taking the projective limit over all ideals I, we obtain (4.25). Let g;, be the image of z in
(Spf Rgicr(ﬁi,hl))“g. Using the fact that O(Spr%:r(gi’hi))rig’gi’z
framed de Rham deformations of g;, and using Lemma 4.1.5, one can show that the tangent
map (mp/m%)¥ — ng 7 (k(z)[e]/e?) of (4.25) is surjective (we leave the details to the reader).
Together with the fact that both B and Rgz # are formally smooth, we deduce that (4.25) is
formally smooth of relative dimension N. There exist thus x1,...,xny € B, such that

(pro-)represents the functor of

B= Rgx,,g[[xlv B 7xNH

Since Rgz, # is a quotient of R, , we deduce from the above isomorphism a surjective morphism
R, [[x1,...,2N]] = B. The morphism Xon(p) — (Spf R;)"® induces a morphism R, — A.
Using the commutative diagram (4.23), we see that the morphism R, — B factors through A.
To sum up, we have obtained a surjective morphism

Allz1,...,zN]] — B.

Since dim A = dim B — N and B is formally smooth, the above morphism is an isomorphism
if A is integral. But this follows from exactly the same argument as in the first paragraph on
page 1599 of [17] with XL.(7), UY, SZ(¥) of loc. cit. replaced by Xqn(p), % (o, {2:})*™" and

S5(2,h, a, {v;}) respectively. O

We use Proposition 4.2.8 to prove (2) of Theorem 4.2.5 (following the strategy in the proof
of [17, Thm. 2.6]). We also need to use adic spaces. By [56, Prop. 1.7.8], Im(kq (5,}) is an
adic open subset of (the adic space associated to) Xqn(p) with rigid analytic points contained
in Ugn(p). Letting o, {g;} vary, the union of the Im(k, (5,}) is also an adic open subset U of
Xon(p). But it is easy to see that any point of the rigid space Ugn(p) lies in Im(rq, (5,)) for
some o and {g;}, hence Uqn(p) coincides with the rigid analytic points of the adic open subset
U of Xon(p). We show that U is a Zariski-constructible subset (see [17, Lemma 2.13]). Since
Uy is Zariski-open in Xg h(p) and f is projective, we see by [52, Lemma 2.14] that the set f(%)
is Zariski-constructible in (the adic space associated to) Xqn(p). We claim U = f(%). Indeed,
both sets have the same rigid analytlc points, i.e. those in Ugn(p). Using [52, Lemma 2.15],
the inclusion of adic spaces k_ {Q }( [(%)) C S5(2,h, a,{9;}) is an isomorphism, which implies
Im(kg,15,)) € f(%) (as subsets of the adic space associated to Xq (7)) and hence U C f(%).
On the other hand, using (4.24) and the fact that the image of % (a, {g;})*¥™" in % forms an
adic open covering of % when «, {g;} vary, we can deduce f(%) C U. Hence we see that the
adic open subset U of Xq n(p) is Zariski-constructible. It then follows from [52, Lemma 2.13] that
U is Zariski-open in the adic space associated to Xq n(p), hence a fortiori Ug h( ) is Zariski-open
in the rigid space Xq n(p). This concludes the proof of (2) of Theorem 4.2.5

Finally, by [17, Lemma 5.8] (applied to S;(2,h, o, {9;}) = Uan(p) = Z), to show (3) of
Theorem 4.2.5, i.e. the smoothness of the morphism w : Ug n(p) — £, it is sufficient to show that
the morphism S5(2,h, a, {g;}) — £ is smooth. From the construction of S;(Q2, h,a, {g;}), this
is a consequence of the following proposition.
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Proposition 4.2.9. The morphism 1 : (Spf Rb™ (&, b)) — (Spec Zq,)" of [26, Prop. 4.3]
which sends a deformation o; to r(g;) is smooth.

Proof. Since both source and target of n are smooth, we only need to show that the tangent
map dny : T(Spr%;Zr(gwhi))rig’x — Tispec 2q, )iz n(z) 18 surjective for any = € (Spf Rgfr(fi,hi))rig,
where Ty . denotes the tangent space of ¥ at z for a point z of a rigid space Y. For z €
(Spf Rgfr(&, h'))"& let g; . be the associated Gal-representation and A; (@) be the p-adic differ-
ential equation associated to n(z). For a (¢,I')-module D, we put D(hy,) :== D®g,, , R (20).
One easily computes for any point x

1 i =
dlmk(a}) HE;%F) (Drig(gi,w)v ®Rk(z),L Ai,n(x) (hsl)) = ?’LZQ [L : Qp] +1 21=1
0 1= 2.

By Lemma 4.2.1, we deduce in particular that Hom, r) (Drig(0M™Y), n*Ag, (hy,;)) is an invertible
sheaf over (Spf Rp™ (&, h?))"e. Now fix = € (Spf R (&i, h?))"e and let

1 € Speck(x)[e]/e? — (Spec Zq,)"8

be an element in Tispec 2, )iz m(x)- Let Ay = Y*Aq,. By the proof of Proposition 4.1.4, there
exists a deformation g; , of g; » over k(x)[e]/? such that one has an embedding of (¢, T")-modules
over Rgpec k(z)[e]/2,L:

7 Drig(0i,2) = Ay(hy,).
As Ay is de Rham, so is g; , (recall they have the same rank over Ry, ,y,,). Thus g; , corresponds
to an element

Y : Spec k(x)[e]/e? — (Spf RE™ (&, )8

in the tangent space at x. Let us prove that dn, maps 1)’ to 1, or equivalently n o ) = 4.
Consider Aoy := (n09')*Ag, (hy,). Using Lemma 4.2.1, a local generator of the invertible sheaf
Hom,, 1) (Drig (0/™"), n* Ag, (hs,)) induces by pull-back via ¢ a morphism

vt Drig(0i0) — (n0¢)"Aq, (hs,)

which is a generator of the k(z)[e]/e*-module Hom, r)(Diig(8ie), Ayoyr).  Since Diig(0iz) is
irreducible, it is not difficult to see that ¢ has to be injective. From the two injections 3, ¢, by
comparing the Hodge-Tate weights and using [6, Thm. A], we can deduce Aoy = Ay. By the
discussion in § 2.2, we see that there exists a bijection Tigpec 2, )iz y(a) = k(x), f — af such
that f*Aq, = Ajyw) @Ry Ri(e)e/e2,L(unr(l + age)). Hence, for x € {1p,n o'}, there is
ax € k(z) such that A, = A; ) @R, () 1 Rika)[e]/e2, (unr(1+ax€)). By the proof of Lemma 4.1.2,
Ay = Ayoyy implies unr(1 + aye) = unr(l 4 ayope), which further implies a, = ;07 and hence
n o1’ = 1. The proposition follows. O

We end this paragraph by the following proposition on Sen weights which will be used in § 6.4.

Proposition 4.2.10. Let x = (p,z, x) € Xon(p). Then for 7 € X, the set {wt(xi)r+hj,» | i =
1,...,r Ji=si—1+1,...,8;} is the set of the Sen T-weights of p.
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Proof. Since Uqn(p) is Zariski-open and Zariski-dense in Xqn(p) and the Sen 7-weights are
analytic functions on X n(p) (cf. [60, Def. 6.2.11]), we only need to prove the statement for points
in Ugn(p). Since any point of Ug n(p) lies in the image of k(a, {g;}) for certain ¢, {g;}, using the
commutative diagram (4.23) we are reduced to prove the statement for points in S5(€2, h, o, {9;}).
For such a point 2 = (p, 0, x, Fils, ), by definition, the filtration Fil, D,ig(p) satisfies gr; Drig(p) =
Drig(0i,2) ORie) 1 Rig(z),r(xi unr(a;)). We see that {wt(x;)r + hjr}j=s,_1+1,...s; is the set of Sen
T-weight of gr; Diyig(p). The proposition follows. O

4.3 Potentially crystalline deformation spaces

We study a variant of potentially crystalline deformation spaces, and we show it admits a cell
decomposition with respect to Schubert cells of GL,, /P. By studying the embeddings of the cells
into our (various) Bernstein paraboline varieties, we prove the existence of local companion points
on the Bernstein paraboline varieties for generic potentially crystalline representations.

We first recall some facts on inertial types. Let d € Z>1, € : I, — GLg(E) a cuspidal inertial
type and ry an absolutely irreducible Weil-Deligne representation over E such that rq|;, = &.
Assume F contains all d-th roots of unity pg. Let L’ be a finite extension of L such that the action
of I, on ¢ factors through the inertia subgroup I(L'/L) C Gal(L'/L). Using ry & ry®pgunr(a) =
Nry @p unr(ad) = A9ry, there exists dg|d such that {a € EX | rqg & rqy ®p unr(a)} = pg,. Note
that dy only depends on the inertial type &.

Let & C £ be an absolutely irreducible subrepresentation, and fix F' € Wy, a lifting of the
arithmetic Frobenius. We denote by F(&) the conjugate of { by F (so it is an absolutely
irreducible representation of I(L’/L)). The following lemma follows from [26, Lemma 4.4].

Lemma 4.3.1. The integer dy is the minimal positive integer such that F% (&) C &. Moreover,
we have £ = @fialFi(fo) as I(L'/L)-representations and the F*(&y), i =0,...,do—1 are pairwise
non-isomorphic.

We fix a basis € = (eg, ..., €q4,_1) of & such that e; is a basis of & := F'(&). Let r1, ra be
two Weil-Deligne representations of inertial type ¢ and fix I(L’/L)-equivariant isomorphisms for
i€ {1,2}:

FEe=¢ 5 1. (4.26)

Consider the operators r;(F') acting on (the underlying vector space of) £ via the above isomor-
phisms. Then ro(F)ory(F)~!: ¢ — € is I(L'/L)-equivariant, hence ro(F) oy (F) ™! preserves &;
fori =0,...,dy — 1 and is equal to a scalar a; € E* when restricted to & (note that «; depends
on the choices of the isomorphisms (4.26)). Let o := HieZ/do a;, we have ro(F%)or (F¥)~! = o
on each & hence on . Moreover « is independent of the choice of the isomorphisms (4.26).

Lemma 4.3.2. Let 5 € E be a dy-th root of o (enlarging E if necessary), then ro = r @gunr().
Proof. Since ro and r; have the same cuspidal inertial type, there exists ' such that ro =

r1 @p unr(4’). Note that 8 is unique up to multiplication by an element in jg4,. It follows that
ro(F%) = ri(F%)(5)%, hence (f)% = . O

We now go back to the setting of § 4.2. We let g be the Bernstein component of GL,, (L)
associated to the cuspidal Bernstein component 2 of Lp(L), i.e. £ is the Bernstein component

with cuspidal type (Lp(L),7r, = KI_;m;). Let Zq, be the centre of Qg, and & be the inertial
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type of ©; for i = 0,...,r (note that & is different here from the &, of Lemma 4.3.1). We
have thus { = &]_,&. Moreover, by [33, Prop. 4.1] (see also [26, § 3.6]), there is a one-to-one
correspondence between closed points of Spec Zq, and semi-simple Weil-Deligne representations
r of inertial type &y (so N = 0 on r and r = @]_, r; for certain absolutely irreducible Weil-Deligne
representations r; of inertial type &;). Let #q := {w € S, | Q; = Q1(3y, Vi=1,...,r}. By [33,
Prop. 2.1], there is a natural isomorphism of E-algebras

WQ ~
ZQ — ZQO.

On closed points, the corresponding map Spec Zq — (Spec Zq)/#a = Spec Zq, sends the r-tuple
(r1,...,1,) to B)_ ;.

Let {51,...,58}~be the set of isomorphic classes of {&1,...,&}, and for j € {1,...,s} let

my = {i | & = &Y. Thus Y25 my = r, #a = [[j_; Sm;, and we have an isomorphism

& = ;Zlg?mj. By Lemma 4.3.1, we have a decomposition §; = @kez/djzgj’k for some integer
d; > 1 dividing dimpg Ej, where é}k = Fk(g]) for j =1,...,s and k € Z/d;Z are pairwise non-
isomorphic absolutely irreducible representations of I(L’/L) over E (note that distinct inertial
types do not have any common irreducible constituents). Let f; := dimg&;o (= dimg§; for
all k € Z/d;Z). Hence 377_ymjd;if; = n, > 35_ym; =1, djf; = n; if § = & and we have a

decomposition

S
50%@( S, (fj,k@"'@ﬁy’,k))- (4.27)
; —
J=1  keZ/d;Z e
In order to describe a Weil representation of inertial type &y in a more concrete way, we now fix
a basis of £ with respect to the decomposition (4.27):

€= (Qj,k)jzl,...,s = (Qj,k,z‘) Jj=1,...,8

kez/d;Z k€L/d;Z
i=1,....,m;
where each (e;; ;) for i = 1,...,m; means a choice of a basis on the f;-dimensional E-vector

space §j . We choose these basis so that the following conditions are satisfied:

Condition 4.3.3. (1) For 1 <i,i < mj, the E-linear map Ej,k — Ejk sending the basis e; . ; to

j
the basis ¢; . » is I(L'/L)-equivariant.

(2) The E-linear map vy ; : Ejk — gﬁkﬂ sending the basis €; 1, ; to the basis €; .1 ; satisfies

Ligi(gv) = (FgF ™) ki(v)

for all v € é}k and g € I(L'/L).

Condition (1) is equivalent to the fact that, for any element g € I(L'/L), the matrices of g
in the basis ¢;; and e;; ; are the same. Condition (2) is equivalent to the fact that, for any
element g € I(L'/L), the matrix of g in the basis ¢, ; is equal to the matrix of FgF~! in the
basis €; 111 ;-

T

We fix a semi-simple Weil-Deligne representation ro = @jzl j such that r; is of inertial

type gj for all 7. So rg is of inertial type & and N = 0 on rg. We fix an isomorphism ¢ of
I(L'/L)-representations:
o :(e) =& — 1o
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where the notation (e) means the E-vector spaces generated by the basis e. The F-action on rg
then gives an endomorphism r(F') on &y which sends E? ,:,n 7 to f i kt1- Modifying the isomorphism
to if necessary and by condition (2) in our choice of the basis e of &y, we can and do assume

€ikt1i =To(F)ejp; forj=1,....,sand k=0,...,d; — 2. (4.28)

Let r be an arbitrary Weil-Deligne representation of inertial type &o (with N possibly non-zero
on r), and fix again an I(L’/L)-equivariant isomorphism (e) = £y — r. The F-action on r gives

another endomorphism r(F') on &y sending E@ & 7 to Ej@ ,:rfl The endomorphism r(F) o ro(F)~! :

of & is I(L'/L)-equivariant, hence preserves each 5 & "for j=1,...,sand k € Z/d;Z. Since
Endyp /1) (g]’k) >~ F, the restriction of r(F)org(F)~ 1 to fj " is given in the basis (€ i)i=1,..m;
by a matrix A;; which lies in the image GLy; (E1dy,) of

GLmj (E) — GLmjfj (E), (auv)lguﬂ,gmj — (auvldfj)lgu,vgmj (4.29)

where Idy, € GLy, (F) is the identity matrix. Moreover, for j =1,...,s and k =0,...,d; — 2, we
see by (4.28) that A, is actually the matrix of the morphism r(F') : g?;n’ — EJ@lZJl in the basis
;1 and e;; ;. Hence the matrix of the endomorphism r(F) o ro(F)~! in the basis e is

A = diag ({AJ i 3 Z) € GL.(E). (4.30)

The converse also holds: given a matrix A’ = diag({4’;}) as in (4.30) with A, € GLy,; (Eldy,),
one can associate a Weil-Deligne representation of inertial type & with N = 0 by letting F' act
on the basis e by A’ o ro(F).

Now let B;y be the preimage of Aj; . via (4.29) and put B; := B;oBj1--- Bj4,—1 € GLy, (E).
Using again (4.28), we see that the image A; of B; via (4.29) is the matrix of r(Fd')

ro(F~%) ‘~@;n 1 in the basis e;4 1 of E?Zil Since both r(F%) and ro(F~%) preserve § d =)
.7 j

(actually they preserve EJEB ,;n T forall k =0,... dj — 1), the conjugacy class of Aj is independent
of the choice of the basis of E?Zil We call r generic if r* = ®]_,r; satisfies r; # ry and
r; # ry @punr(qr) for all ¢ # . In particular, if r is generic, then N = 0 on r and r = r*. Note
that all r of inertial type &y are generic if Q; # Qs for all 7 #£ 7'

Lemma 4.3.4. With the above notation, r is generic if and only if, for any j = 1,...,s, the
eigenvalues 1, . .., o m; of By satisfy aj; # ajyr, and aj; # ajvi/qij fori #1.

Proof. Assume r is generic, in particular r = =i l@glrm. Let 3;; € E* besuchthatr;; 2 T;Qg
unr(fj;). We then deduce that there exists a basis Q;-’ dj—1 of 53@ Zi , such that the corresponding

matrix of the operator r(F%) o rg(F~%) }~@m is equal to

d —1
d; d; d;
d1ag(6] e Bids s By - ,ijmj).
i i
Thus {1, .., Qjm, } = {ﬂc-ljl, o ;ij;nj}, and the “only if” part then follows from definition of
genericity. Now assume aj1,...,Q;,, satisfy the conditions in the lemma, in particular, are
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distinct. By comparing dimensions, we easily see that, for each «;;, the subspace r;;q;,—1 of
5?9 4, 7, on which r(F%) o ro(F~%) acts via a;; is isomorphic to §jda;—1- Any subrepresentation
fj d;—1 in §J d;1 is preserved by ro(F~%). We deduce then Tjid;—1 is preserved by r(F%). Under
the r(F)- actlon Tjid;—1 then generates an irreducible Weil-Deligne subrepresentation r;; of r of

inertial type §;. By Lemma 4.3.2, rﬂ =9 ®E unr(f3;;) for any d;-th root f;; of c;;. By the
conditions on {a;;}, we see that r & &7_; @;% rj; and that r is generic. O

Fix h = (hi;)i=1,.n € Z"5 @] with by ;> hig1,. Consider X5 (¢o, h) := (Spf RE™ (¢, h))".
TEXL
By [26, Thm. 4.1], there is a natural morphism

X757 (€0, h) — (Spec Za, )" = (Spec Z0)"8 /#4,
which, pointwise, sends p to the semi-simple Weil-Deligne representation associated to p. Let

:%%Cr(fmh) = :{pcr(&)’ h) x (Spec Zq) )Hie (Spec Zﬂ)rlg

so a point of %%Cr(fo, h) is of the form (p, (r;)) with r(p)* = @&]_,r;. In particular, the r-tuple
(r;) induces an Q-filtration on Dyig(p). Let UP(&o,h) (resp. Ugcr(fo,h)) be the set of points
p € X57 (&0, h) (resp. (p, (rs)) € f%%cr(&), h)) such that r(p) is generic.

Proposition 4.3.5. The set Ugcr(ﬁo, h) is Zariski-open and Zariski-dense in :{%Cr(éo, h).

Proof. Let U be an arbitrary (non-empty) connected admissible affinoid open of %%Cr(ﬁo, h). A
major part of the proof is to show Ugcr(&),h) N U is Zariski-open in U. We will show that a

certain torsor U over U admits a smooth morphism to (Hj=17--.,s GLpn, ) X Resép(GLn /B) (cf
kez)d;z.

(4.36)), where, roughly speaking, the morphism to the first factor sends p to the matrices {B; 1}

associated to r(p) as above, and the morphism to the second factor sends p to the Hodge filtration

on Dgr(p). The torsor that we will use comes from choices of basis on the corresponding objects.

Recall that by [63] we have the following data:

(1) arank n locally free Ly ®q, Oy = HTEEL/ Op-module DF; = HTGEL/ DFy - equipped with
0 0
a semi-linear action of (Gal(L'/L), ¢);
(2) a decreasing filtration Fil* = [[ ¢y, Fil? on the rank n locally free L ®g, Oy = [[,cx, Ov-

module Dy := (DFy @, L)/ = T o Dy, by L ®g, Oy-submodules which are
direct summands of Dy as Oy-module such that (letting —hg, = —oo and —hy 41, = +00)

l“k@U Fﬂj_ DU,T =n—j+1, for —hjflﬂ- <1 < —hjﬂ-.

Moreover, for any point « € U, the specialization of (DF 7, Dyy) at x is equal to (Dpst (pz), Dar(pz))
where p, is the associated Galp-representation. Shrinking U, we can and do assume that DFy;
and Dy are free over Q. We fix an embedding 7 : Lo < F and put 7; := 79 o Frob~% where Frob
is the (absolute arithmetic) Frobenius on the Witt vectors. Then we have a decomposition

Ly®g, E— P ( ) E)
iEZ/[LO:Qp}Z TEELE)

T|Lg="7i
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and a corresponding decomposition DFy = @;cz/(14.0,)z DFv,i, where DFy; is free over L @17
Oy and preserved by Gal(L'/L). Shrinking U and enlarging F if necessary (and using H*(H, M) =
0 for all 4 > 0, finite groups H and H-modules M over QQ), we can and do assume that there is
a semi-linear Gal(L’/L)-representation Vp, free of rank n over L ®r, -, E, such that we have a
Gal(L'/L)-equivariant isomorphism

Vo ®p Oy — DFyyp . (4.31)

For i € Z/[Lo : QP]Z,‘ let Fr' : L) ®pyry F — L(? ®o.rooFrob—i £ be the isomorphism of algebras
sending a ® b to Frob’(a) ® b. The morphism Fr* is Gal(L’/L)-equivariant, where Gal(L’/L) acts
on both sides via its natural action on the factor Lj. Put

Vii=W®pug, pri (Lo ®Los E), (4.32)

which is a semi-linear Gal(L’/L)-representation over L ®r, -, E. The action of ¢* on DF; sends

DFy to DFy,. For i = 0,...,[Lo : Q] — 1, the composition Vo ®g Oy — DFy LN DFy
induces an L{, ®r, -, Oy-semilinear Gal(L'/L)-equivariant isomorphism

V; @ Oy — DFy,; . (4.33)

For each 7 € X, with 7|, = 70, we have Vy & & as I(L'/L)-representation over £. The
basis e of &y (that we previously fixed) then gives a basis e, = (er1,...,ern) of Vg, satisfying
Condition 4.3.3 for the I(L’/L)-action. Then (QT)7_|L0:7_0 form a basis of V over E. Choosing the
basis (e, )| Lo=T0 is the same as choosing a basis of Vp, formed by bases of V; ; for each 7 on which
the I(L'/L)-action satisfies Condition 4.3.3. For i = 1,...,n, let & := (eri)r|,,=ro € Vo- Then
€= (€1,...,6y) is a basis of Vj over L, @r, -, E, which also gives a basis of V; over Ly ®r, -, E
by — ® 1 (see (4.32)). For i € Z/[Lo : Qp|Z, there exists thus P; € GL, (L' ®r, -, F) such that
(e1,...,¢n) := (€1,...,6,)P; is a basis of (V; 1 L')Gal(L//L) over L ®r, -, E. For 7 € ¥, and
i € Z/[Lo : Qp)Z such that 7|1, = 7, we let ¢, := (e17,...,¢,,) be the T-factor of ¢, which is a
basis of ((V; ®r L’)Gal(L//L))T over E.

Let ¢ be the affine subgroup Autgaz//r)(Vo) of Aut(Vp) = Resgg GL;, Xspec Lo,m Spec E where

“Aut” means L, ®r, -, E-linear bijections. Note that ¢ is smooth by Cartier’s theorem. Let U
be the ¥-torsor over U of Gal(L’/L)-equivariant isomorphisms in (4.31). Define

DFg= (P DFy,;:= O DFui®o,05
i€Z/[Lo:Qp)Z i€Z/[L0:Qp)Z

equipped with the action of (¢, Gal(L'/L)) by extension of scalars. By definition, we have a

Gal(L'/L)-equivariant isomorphism of Og-modules Vo® pOp — DFj; ,, which induces Gal(L'/L)-

equivariant isomorphisms V; ®p O — DFp; , for i € Z/[Lo : Qp]Z similarly as for (4.33). These
isomorphisms then induce isomorphisms

(‘/;, ®L6 Ll)Gal(L’/L) ®F Oﬁ _N_> (DF(j,l ®L6L/)Gal(L/L) (434)

(use that the left hand side of (4.34) is a direct summand of (V;®; L')®pOp = DFy @, L to see
that (4.34) is an isomorphism). Let Dy := Dy ®o,, Oy = (DF ®L6L')Ga1(L//L), and Dy _ be its
T-factor for 7 € ¥r. Using the isomorphism (4.34), we obtain a basis ¢, ®1 of D _ over O for all
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7 € Y. We denote by Fil? the filtration on D _ induced by the correspondlng filtration on Dy~

by extension of scalars. With respect to the ba51s ¢, ® 1, Fil gives a flag 7 _ € (GL,, /B)(Op).
Taking all embeddings 7 € X, we thus obtain a morphlsm

U — Res§ (GL, /B). (4.35)

We let ' € W, act on DF ) via @ Lo @l o F where F denotes the image of F' in Gal(L'/L).

We have a decomposition
DF;,= P DFy,

TEX

T|LO:7O'0
and each DF is preserved by F' and I(L'/L). For any 7 € ¥, such that 7z, = 7, DFy
equipped with F' and the action of I(L'/L) gives a Weil-Deligne representation of Wy, over Op
(which factors through Wy, /I, and is independent of the choice of 7). Using (4.31), the action
of F' on DFy  induces an operator denoted by ry 7(F) on Vo ®g Og. On the other hand, we
have the operator ro(F") on Vp » = & given as in the discussion above (4.28), and we still denote
by ro(F) its extension of scalars on Vp, ®g Op. Similarly as in the discussion above (4.29) and
using
Oy j=jk=F

HOIHI(L’/L) (éj,k OF Oﬁ’gj'vk/ “E 0(7) - {0 otherwise

we see that the operator rs(F) o ro(F)™! corresponds to a matrix Ay = diag({Ag k}] Zl/d Z)
where Aﬁj ;. is the matrix of the Op-linear endomorphism

ri(F)org(F)~": EEBmJ ®p Of —>g®m]®EO

and is the image of a matrix By ;| € GLn, (Op) via the morphism GLy, (Of) < GLy,r, (Ov),
(auwv) + (auwvly;). The matrices {BU,j, .} give rise to a morphism

U— ][] GLn,.
j:17"'78
kez/d;Z

Together with (4.35), we finally obtain a morphism

f:U— < I cLn ) x Resfy (GLy /B). (4.36)

j S
keZ/d iZ

We prove that f is smooth. Since both source and target are smooth over E (using L63,
Thm. 3.3.8] for the source), we only need to show that the tangent map of f at any point of U is
surjective. Let € U and f(z) = ({Bgjk}, {F2r}). Let u be an element in the tangent space of
the right hand side of (4.36) at f(z), and denote the corresponding element by:

({Baji} AFer)) € (( I ctn )xRes@p<GLn/B>>(k(m)[e}/a2>.

keZ/d Z
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Let A := diag({ﬁx,j,k}j:17,.,7s) € GL,(k(z)[e]/e?) where ﬁmd’k is the image of Em]k via
ke jZ _

GLiy, (k()[e]/e?) < GLp,y, (k(2)[e]/€), (auw) — (aglfj). We use A to construct a Deligne-

Fontaine module DF, over Ly ®q, k(z)le]/e®. Let DFy = (®icz/(10:0,12Vi) Qr k(z)[e]/e?, we

have a decomposition DFw = Grexn, , DF, . To get a operator ¢ on the whole DF;B, we only need

to construct @' : DF, — DFTOHOb_l for one 7 € ¥y, and for all i = 1,...,[Lj : @p]. Recall
we have fixed a basis e, of each Iﬁ‘T. For ¢ = 1,...,[Lj : Lo, let M; € GL,(E) such that
Flert, - vern) = (€ omob=r 10+ 1 Crofrop—i ) Mi and put:
Lo’ Lo’
SO[LOIQP]'L' :DF, — DFTOFI‘ObZé’ (67—71, ey eﬂn) — (eTOFI‘ObZé,l’ - ’eToFrobZé,n)Mi(AMO)ii

Fori=1,...,[Lj: Qp], writing ¢ = ip[Lo : Q] + j with 0 < j < [Lg : Qp], we define
SD,L : DFT — DF’TOFI'Ob_i7 (67—717 oo 767'77’1) — (eTOFI‘Ob_i,:l’ ey eTOFI‘Ob_i,TL)MiO (AMO)iZO

Thus DF, equipped with the (Gal(L'/L), p)-action is a Deligne-Fontaine module over Lj ®q,
k(z)[e]/e? and DF,, = z* DF5 = Dpst(ps) (mod €). Put:

D, := (DF, ®;, L)E/D = (B D, ..

TGEL

For each 7, ¢, form a basis of D, , over k(z)[e]/e2. Using the basis ¢,, we associate to the flag

F..» a decreasing filtration Fil’ on D, , satisfying
rkk(m)[s}/e2 (Fﬂi 690’7—) =n—j+1 for —hj_lﬂ— <1< —hjﬂ—.

We obtain a filtered (p,Gal(L’/L))-module (DF,,D,) which is a deformation of
(Dpst(pz), Dar(pz)) over k(z)[e]/e?. Thus (]315‘1;,255,;) is weakly admissible, and by [32] is iso-
morphic to (Dpst(pz), Dar(pz)) for a certain deformation p, of p, over k(z)[g]/e?. By choosing
an appropriate basis of p, over k(z)[g]/e2, we see that

(ﬁx; VO RF k(x)[g]/éj L> DF(ﬁm)O = 1,)\]T?ac,o)

gives an element in the tangent space of U at z which is sent to u.

The conditions in Lemma 4.3.4 cut out a smooth Zariski-open and Zariski-dense subspace of

[1j=1....s GLy; which, by taking fibre product with ReSQ (GL,, /B), gives a smooth Zariski-open
k€Z/d;Z

and Zariski-dense subspace of (H j=1,....s GLmn; ) X ReSQp(GLn /B). The proposition then follows
k)EZ/de
by the same argument as in the last paragraph of the proof of [18, Lemma 2.4]. O

Corollary 4.3.6. The set ﬁgcr(ﬁo, h) is Zariski-open and Zariski-dense in %gcr(&)’ h).

Proof. Let U, U be as in the proof of Proposition 4.3.5. For each point z = (Bj ) of

[Ij=1...s GLy; we can associate a Weil-Deligne representation r, of inertial type o with N =0
keZ/d;Z
as in the discussion below (4.30). By the same argument as in [26, Prop. 4.3], there exists a
unique morphism f : []j=1,. s GLmn; — (Spec Z0,)"8 such that Tf(z) = 15 and the composition
kez/d;z
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U5 U — %%Cr(fo,h) — (Spec Zq, )8 factors through ngzzl}ﬁ% GLp;. Hence (4.36) induces a
E .
smooth morphism ’

U X (Spec Zo, )i (Spec Zg)rig — (( H GLy,; ) X (Spec Zo, )i (Spec Zg)“g> X Res(ép(GLn /B).
i=1,...,
hez)iz

It follows from Lemma 4.3.4 (see also the last paragraph in the proof of Proposition 4.3.5) that
the image of the generic points of U X (gpec Zog)rie (Spec Zq)"8 is Zariski-dense and Zariski-open

in (J]j=1,..s GLm,) X (Spec Zq, )" (Spec Zq)™8. Since
kEZ/de

U X(Speczgo)rig (Spec Zg)rig — U X(Speczﬂo)rig (Spec ZQ)rig

is smooth and surjective, we deduce that the generic points are Zariski-dense and Zariski-open in
U X (spec 2q, )it (Spec Zq)"s. O

By the same argument as for [18, Lemma 2.2], we have

Proposition 4.3.7. The rigid space Z%%Cr(fo, h) is reduced.

Let z = (pg, (Tig)) € (75“(50, h). The Q-filtration associated to (r;,) induces an Q-filtration

on DF(p;), to which we can associate w, € an;& ; as in § 2.3 (where w, is denoted wz). Recall

that w, measures the relative position of the Hodge filtration and the Q-filtration on Dgr(pz)-
For w € #I let V> (€0, h)w be the set of points z = (pq, (rix)) in Uy (&, h) satisfying

ax,L>’
Wy = w.
Proposition 4.3.8. (1) The set V"' (€0, h)w, is Zariski-open and Zariski-dense in ﬁgcr(ﬁo,h)
(hence in %%“({0, h)).

(2) For w € WH{;&L, Vﬁpcr(é’o,h)w is locally Zariski-closed in ﬁgcr(&],h). Moreover, if w' €
Wn]ljax,L and w' < w, then V" (€0, h)w lies in the Zariski-closure V' (o, h)w of V2 (0, h)w in

U2 (€0, h).

Proof. Let U C Ugcr(fo,h) be a non-empty affinoid open subset as in the proof of Proposition
4.3.5. We freely use the notation of loc. cit. For j =1,...,s, let By := HieZ/[ngLo] By i, and
P;(X) € Oy[X] be the characteristic polynomial of By ;. Let % be an étale covering of U such
that Pj(X) = [[[7,(X — ;) (with «;,; # a; for i # i’ since any point in U is generic), and
such that, for each j, %, there exists 3;; € Oz such that B]C-l’]l'- = ;. Using the same argument as
in the proof of Lemma 4.3.4, we have an isomorphism of Weil-Deligne representations over Oy :

ry = 5 &2 Tj ®p unr(B)).

Let % = U X (Spec Zg,, )rie (Spec Zq)"® and Ty = Ty ®o, Oy. By the universal property of

U — U, we have an (ordered) r-tuple (razZi)i=1,mm of Weil-Deligne subrepresentations of r,;

over % such that Bio1Ty,; = DIy @?i’i T; @p unr(B;;) and r; . is of inertial type &;.
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The Deligne-Fontaine module DF ; := DFy ®0,0,; over U is isomorphic to the Deligne-

Fontaine module associated to r ;. Let DF% be the Deligne-Fontaine module associated to L
we have thus DF > = &{_; DF ;.. We let U" be the (Gh&)"-torsor over U of isomorphisms of
Deligne-Fontaine modules:

- ~
By the universal property of 427” , we have a universal isomorphism
iy DF@;TJ. AN DF@T,

hence universal embeddings EB{ 1 DFOZZT .= DF ;. for j = 1,...,r, where %, denotes the base

change of the corresponding object to O%T Let W := (L ®q, O%T)", and we equip W with a
filtration Filj;, consisting of free L®q, O,,-submodules which are direct summands of W such that

rkL®@p@@VT Fil%/v W =s;fori=1,...,r. Let @7; be the Reséép P-torsor over %" of isomorphisms
(L ®g, O7.)" = (DF;, @, L)S*H/H)

which send Fill;, W = (L®Qp O,7.)% onto (&_, DF; , ®r, L/)Gal(L'/L) " V/ia the universal isomor-
phism (L ®q, Oz7,)" — (DFg, @y L) /L) the Hodge filtration on (DF 7, @1 L/)GallL'/L)
(which comes from the Hodge filtration on (DFy @, L' )Gal(Z'/L) 1y base change) induces a mor-

phism .
Wp — Res§y (GL, /B). (4.37)

By similar arguments as for (4.36), one can show that this morphism is smooth.

For w = (w,) € #L ,, let %]Sw be the set of points which are sent to V'(£o, h),, via the

(smooth surjective) morphism 02/1’5 — U. We see that x € % 5., if and only if the image of
x under (4.37) is contained in the (generalized) Schubert cell H ex, (Pw:B)/B. Equivalently
%ﬁw is the inverse image of [[ .y, (Pw;B)/B in 02/1’5. The proposition then follows from the
corresponding facts on Schubert cells by the same argument as in the last paragraph of the proof

ax, L’

of [18, Lemma 2.4]. O
Let w € Wmax 1, then wwg 1, € Wmm 1, hence wwg 1, (h) is strictly P-dominant. Define

L2 XB (&, h) — X5 x (Spec Z0)" x Zo1, (p, (x:)) = (p, (x5), 1) (4.38)

We consider L_l(ngwwO’ L (n)(P)), which is a Zariski-closed subspace of %%Cr(é’o, h). By the discus-
sion in § 2.3 (in particular (2.4)) and using that, for any = = (p, (r;)) € V" (€0, h)w, We have by
definition w = w, (which is denoted wg in § 2.3), one can check that

V2 (€0, h)w 0 (Un e, () (P)) € ¢ (X wu, 1, (m) (7))

which implies
V2% (&0, h)w C X Qw1 (1) (P))-

By Proposition 4.3.8 (2), we deduce that, for w’ € #.l . and w' < w, we have L(Vpcr(€ h)y) C
XQ77ww07L(h) (p), and thus
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Corollary 4.3.9. Let x = (pg,(7iz)) € ﬁ%’cr(&),h). For all w € WHJ;X’L such that w > w,, we
have

L(Z‘) = (10137 (Tlﬂia ) rT,I)a 1) € Xﬂ,ww07L(h) (ﬁ)

Remark 4.3.10. (1) The point 1(z) € Xq ww, (k) (P) for w € wr w > wy, is called a local

max,L’
companion point of v(x) € Xqn(p) (see also Corollary 6.4.12 below).
(2) The case P = B (and p, crystalline) was contained in [19, Thm. 4.2.3]. Indeed, in this
case, as discussed in Remark 4.2./ (1), we have the isomorphism

LQ,wwO’L(h) : XQ,wwO,L(h) (ﬁ) —N_> XtDrl(ﬁ) (L> (Spf Rﬁ)rig X T(L))
where XC.(p) is the trianguline variety of [17, § 2.2]. And the isomorphism L wwo,r, (k) SEnds 1(x)
in Corollary 4.3.9 exactly to the point x,, in [19, Thm. 4.2.3]. Note that the resulting points
{xy} C XEi(p) are distinct.

(3) Note that, if w # wy, then ((r;z),0 = Ki_;z2%0M™i) € (Spec Zg)1s x Z;(\L) is not a
parameter of the Q-filtration induced by (r;5) on Diyig(pz) (compare with Remark 4.2.4 (2) and
see Definition 4.1.6 (2), (3) for a parameter of an Q-filtration).

5 The geometry of some schemes related to generalized Springer
resolutions

In this section, we show some results of geometric representation theory concerning algebraic
varieties which are a “parabolic” generalization of Grothendieck’s and Springer’s resolution of
singularities. These results will be crucially used in § 6 to describe the local rings of the Bernstein
paraboline varieties at certain points.

5.1 Preliminaries

We let G/E be a connected split reductive algebraic group. We recall/introduce certain schemes
Xp (where P C G is a parabolic subgroup) which are related to parabolic versions of Grothendieck’
simultaneous resolution of singularities for G.

We fix a Borel subgroup B of G, and let T' C B be a maximal torus and N C B the unipotent
radical of B. Let P O B be a parabolic subgroup of G, Lp be the Levi subgroup of P containing
T and Np the unipotent radical of P. Let p be the Lie algebra of P over F, np its nilpotent
radical, vp the full radical of p, [p the Lie algebra of Lp over E, and 31, the centre of [p. We
have tp = np % 31,,. Let g, b, n, t be the Lie algebra over E of G, B, N, T respectively.

Let # be the Weyl group of G and wy € # the element of maximal length. For w € #', we
also use w to denote some lift* of w in Ng(T) C G(E). Asin § 2.1, denote by #.L.  (vesp. #,L

max?
resp. LW, resp. L #) the set of minimal (resp. maximal, resp. minimal, resp. maximal) length
representatives of #7,,\# (vesp. W, \¥ , resp. W /Wi, resp. # /#1,). Note that w € #.L

if and only if wwy € #L .. Also w € #L (resp. w € #L.) if and only if w™! € Ew

min

4When we apply this notation for certain group operators, we always mean first applying group operations then
taking a certain lift, e.g. we use wiwz € Ng(T) to denote a lift of wiws € # rather than the multiplication of a
lift of wy and a lift of ws.
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(resp. w™t € LA#). For w € # or #1,\¥, denote by w™ € I ) the
corresponding representative of #'. We use “” to denote the dot action of # on the weights of t

(cf. [57, Def. 1.8]).

(resp. w™a ¢ w.P

max

If f: X — Y is a morphism of schemes and Z a locally closed subscheme of Y, we denote
f~Y(Z) :== X xy Z, which is a locally closed subscheme of X. If Xi, X5 are locally closed
subschemes of X, we denote X1 N Xy := X7 X x Xo.

Let gp be the closed E-subscheme of G/P x g defined by

{(9P,0) € G/P x g | Ad(g~ ") € tp}

where as usual Ad(h) means the adjoint action of h € G (i.e. conjugation by h). We have an
isomorphism of E-schemes (using standard notation, see e.g. [61, § VL.8]):

G x"vp =5 gp, (9,9) = (9P, Ad(g)¥). (5.1)

We see that gp is a vector bundle over G/P, hence is smooth and irreducible. We also have
dimgp = dim G/P + dimtp = dimnp + dimtp. There are natural morphisms:

Kp: 9P — 3Lp (9P7¢)'—>m
qgp: Gp— 9 (9P ) — 4
mp: gp — G/P (9P, ¢) — gP

where Ad(g—1) is the image of Ad(g~')1 € tp via the canonical surjection tp —» 31,. Al-
ternatively we can see gp as the morphism G xP tp — g, (9,9) — Ad(g)y. We denote
§:=9p ~ G xB b and define ¢p : § — g similarly to ¢gp. We put:

Xp:=gX%Xg0p,
which is also the closed subscheme of G/B x G/P x g defined by
Xp = {(91B,92P,¢)) € G/Bx G/P x g | Ad(g;")¢ € b,Ad(g; )¢ € tp}.
It is easy to check that we have isomorphisms of F-schemes

Xp = GxPqg'(tp) (01B,92P ) +— (92.(95 ‘91 B,Ad(g5 "))

~ 2 - z 5.2
Xp S GxPgE)  (@BePy) — (oo el AdG ). )
5.2 Analysis of the global geometry
We prove useful statements on the geometry of the E-scheme Xp.
Let m be the composition
7:Xp—G/BxG/Pxg—G/BxG/P. (5.3)

We equip G/B x G/P with an action of G by diagonal left multiplication. For w € #/, write
Uy = G(w,1)(B x P) =G(1,w (B x P) C G/B xG/P.

Note that U, only depends on the the right coset #7,,w (or equivalently, the left coset w™1%#7,).
In fact, we have an isomorphism

G xP(G/P) = G/B x G/P, (g1,92P) — (1B, 9192P)
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which induces an isomorphism
G xB (Bw™'pP/P) = U,,.
Likewise, we have an isomorphism
G xP (G/B) = G/B x G/P, (g1,92B) — (91928, g1 P)

which induces an isomorphism

G xP (PwB/B) = U,.
By the standard Bruhat decomposition of G/P and G/B, we deduce

G/B X G/P=Uyeyr Up=Uyeyp Un.
We also deduce that U, is a locally closed subscheme of G/B x G/P which is smooth of dimension

dim G — dim B 4 dim(Bw™'P/P) = dim G — dim B + lg(w™™)
= dim G — dim P + lg(w™) = dim G — dim P + dim(PwB/B) (5.4)

where, for the first equality, we use lg((w™™)~1) = lg(w™™") and (w™)~1 e Py .
We let V,, := 71 (Uy).

Proposition 5.2.1. The surjection V,, — U, induced by 7 is a (geometric) vector bundle of
relative dimension dimtp — lg(w™m).

Proof. Let y = (9B, gw™'P) = (¢B, g(w™®)~1P) € U, C G/B x G/P. One can check that
() =y x Ad(g) (Ad((@™™) Vs, & (00 Ad((@™™) Vup) ). (5.5)

Since (w™)~t € P%  one has
dim (n N Ad((wmin)fl)np) = dim (n N Ad((w™™) M)n) — dimng,

= dimn — lg((w™")™") — dimny, = dimnp — lg(w™™).

The proposition then follows by the same argument as for [19, Prop. 2.2.1]. O

From (5.4) and Proposition 5.2.1 we obtain that V}, is equidimensional of dimension dim G —
dim B +dimtp. Let X, be the closed subscheme of Xp defined as the reduced Zariski-closure of
Vw in Xp. By the same argument as in the first part of the proof of [19, Prop. 2.2.5], we have:

Corollary 5.2.2. The scheme Xp is equidimensional of dimension dim G —dim B +dimtp. The
irreducible components of Xp are {Xu},epr = {Xwhwewr and Vi is open in X,

Remark 5.2.3. (1) We could equip the underlying closed subset X,, with another scheme struc-
ture, namely the scheme theoretic image of the open subscheme Xp \ UWLPw’#"//LPwa’ of Xp.
Let us denote it by X!,. When P = B, by [19, Thm. 2.2.6], Xp is reduced, so X,, = X,, as closed
subschemes of Xp. However, in general, it is not clear to the authors if Xp is reduced, or if Xp
is Cohen-Macaulay (for instance one can easily check that the last paragraph of the proof of [19,
Prop. 2.2.5] does not extend to P # B).
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(2) For w € W let us define q5'(vtp)% (resp. qp*(0)%) as the preimage of PwB/B (resp. of
BwP/P) via the composition q5'(tp) < G/B x g — G/B (resp. ¢p'(b) — G/P x g — G/P).
By similar arguments as in Proposition 5.2.1, the map q5'(vp)% — PwB/B (resp. ¢p' ()% —
BwP/P) is a vector bundle of relative dimension dimtp — lg(w™™). We define q5' (tp)w (resp.
45" (0)w) to be the reduced Zariski-closure of g5 (vp)% (resp. g5t ()%) in g5 (tp) (resp. ingp'(b)).
The scheme qz'(tp) (resp. qp' (b)) is equidimensional of dimension dim P — dim B + dimtp
(resp. dimtp) with irreducible components given by {q;(tP)w}werm (resp. {qgl(b)w}wemii%).
Moreover q5' (vp)S, (resp. qp*(6)%,) is open in g (tp)w (resp. ¢p' (b)w). From (5.2) we also have
isomorphisms of reduced E-schemes for w € erin

Xy =G x QBl(tP)w =G x5 QJ;l(b)w—l'

Lemma 5.2.4. For w,w' € # we have that X, N Vyy # 0 implies w' ™" < @™ (& ' ™8% <
MaxX o w/rninw0 > wminwo)_

Proof. The lemma follows by the same argument as in the proof of [19, Lemma 2.2.4], noting that
in G x¥ (G/B) we have U, NUy # ) = PwB/B D Pw'B/B = w™a > q/MaX = ¢yin > g/ min

(where (—) means Zariski-closure). O
Denote by kg : Xp — t (resp. kp : Xp — t) the morphism

(1B, g2P, ) — Ad(gy )¢ (vesp. (g1B,gaP, ) — Ad(g; ' )) (5.6)

where Ad(g;')¢ is the image of Ad(g; ') € b via b — t (and see § 5.1 for Ad(g;)1). Note that
kp factors through 37, < t. For x = B, P denote by k., the restriction of k. to X,.

Lemma 5.2.5. For w € # we have kp,, = Ad(w) o kB, where Ad(w) : t — t denotes the
morphism induced by the adjoint action of # ont. In particular, the following diagram commutes

KB,w
Xy —— ¢

S

t —— /W

where t/W = Spec R! (with t := Spec Ry) and the two morphisms t — t/# are both the canonical
surjection.

Proof. This is the argument for [19, Lemma 2.3.4], let us recall it. Ast/# is affine, it is separated,
hence the diagonal embedding t/%" — t/%# x gt/# is a closed immersion, and so is tx¢/yt — txpt
by base change along t xgt — t/# xgt/# . Since the diagram clearly commutes with V,, instead
of X, and V,, is Zariski-dense in X,,, the lemma follows. ]

In particular, Ad(w) o kg 4, only depends on the coset #7,,w as the same holds for kp,,.

Consider the affine E-scheme Jp :=t Xy j1,. We have a morphism of E-schemes

(FJB,KVP) : Xp — yp.
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Lemma 5.2.6. The irreducible components of Tp are { Twtyepr = {Twtwenr, where Ty is
the reduced E-scheme: -
T = {(Ad(w™)2,2), 2 €51,}

(so T, only depends on the coset #1,,w). Moreover X, is the unique irreducible component of
Xp such that (kp, kp)(Xw) = -

Proof. Since t — t/# is finite, we deduce dim Jp = dim 3, = dim .7, for any w € #. It is also
clear that .7, = 31, is irreducible. The first part of the lemma easily follows. By Lemma 5.2.5,
(kB,kp)(Xw) C T. From (5.5), we see that the restriction (kp, kp)|v,, : Vaw — T 1s surjective.
The second part of the lemma follows. O

For a scheme Y and a point y € Y, recall that we denote Oy, the local ring of Y at y, 6y,y
the completion of Oy, along its maximal ideal, and Y, := Spf Oy, the associated formal scheme
(whose underlying topological space is one point).

Lemma 5.2.7. Let x be a closed point of Xp, w,w’/e\ W. Assume x € Xy. Then the compo-
sition Xz — Xpz — Ipy y factors through F,. ( — Tpy ) if and only if
WLP’LU/ = WLPZU.

kp.kp)(z KB,kp)(T) KB kp)(T

Proof. Let y := (kp,kp)(z), a closed point of Fp. We have a commutative diagram of local rings

Ozpy — Oxpa — Oxy

Lo o0

Ogpy — Oxpa — Oxpa

where the vertical maps are injective by Krull’s intersection theorem. By assumption, the bottom
composition factors through Oz , ,,. Using the commutative diagram

Oeﬁpﬁg E— O,7w/,y

! |

Ogpy — 07,4

and the injectivity of all the vertical maps in (5.7), we deduce that the upper composition in (5.7)
factors through Oz, ,. In particular the map Xp — Jp sends the generic point of X, to the
generic point of 7,,. By Lemma 5.2.6, we must have w’ = w. O

Remark 5.2.8. Lemma 5.2.7 is the analogue of [19, Lemma 2.5.2] where the normality of X,
there was used in the proof. However, this normality is in fact useless there, arguing as in the
above proof.

Recall that ¢ € vp is called regular if the subgroup Cq(v) := {g € G, Ad(g)y = 9} satisfies
dim C(¢) < dim Ce(y) for all ¢’ € vp. We write v)s® for the subset of regular elements in tp,

which is preserved under the P-action, and 5295 = 35p N tgfg. When ¢ € 31, we have ¢ € 3rLe§

reg

exactly when Cg(¢) = Lp. We say that ¢ € vp is reqular semi-simple if ¢ € Py (for the adjoint

action of P on tp) and we write t)5® ™ C t)5® for the subset of regular semi-simple elements in

tp. It is well-known that both ¢)58 ™ * and ¢}5® are Zariski-open (Zariski-dense) in tp and that for
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each 1 € t)5® we have dim C(z) = dim Lp. Moreover the product map gives an isomorphism of
(smooth 1rreducible) E-schemes:

P/Lp x 378 — t® % (5.8)

Let g»® ™ be the Zariski-open (Zariski—dense) subset of gp corresponding to G x* pE T via

the isomorphism (5.1), and X%~ * := §p® ™ x4 §, which is Zariski-open in Xp = gp X4 g. As
Vi N X587 £ () for any w € # (use (5.5) for instance), Xp® ™™ is Zariski-dense in Xp.

reg —

Proposition 5.2.9. The scheme X;fg ® is smooth over E. Moreover, the composition Xp ey

K .
Xp =5 3Lp S smooth.

Proof. Since 31, is smooth over E, it is enough to prove the second statement. Let q_l(b)reg T8 =
gt SsﬂqISI (b) = gp° T xg, q}l (b), which is Zariski-open in q]_g1 (b) and Zariski-closed in g%~ °
An argument similar to (5.2) gives an isomorphism of E-schemes

Xpe™% 55 G <P gpt(b)res s, (5.9)

Seeing qlgl(b)reg_SS inside G x¥ )58 7% via (5.1), it is enough to prove that the composition

Hggg—ss : q};l(b)regfss s G xF t;fg 5 _ 3Lp (5.10)

is smooth, where the second map is (g,1) + 9 (note that ﬁreg ** is B-equivariant with the

trivial action of B on the target). Indeed, under (5.9), the composition in the statement is the
composition

id ><Klreg ss

G><Bq]§1(b)reg_sS RN GXBZ,LPZG/BX;,LP—»Z,LP
(where the last surjection is the canonical projection), which is smooth as both maps are.

By (5.8), we have G xP ¢)58 7% ~ G/Lp x gfeg Under this isomorphism, the last map in
(5.10) is (9Lp, %) = ¢ (where ¢ € 375), and q}_)l(b)mg_Ss is the closed subscheme of G//Lp x 3¢
defined by {(gLp,v) | Ad(g)i) € b}. Denote by Y the inverse image of gp'(b)*~ under
the smooth surjective map G x 37> — G/Lp X 5reg then by base change Y — gp'(b)™8 =55 is
also smooth surjective, and using [1 Lemma 02Ko] it is enough to prove that the composition
Y < G x 35 — 35 is smooth. It is enough to prove this Zariski-locally on Y, and since
(Bwon)we/y is a Zariski-open covering of GG, one can replace G x 3Lg by BwgNw X 3L (for an
arbitrary w € #') and Y by Y N(BwoNw x 5reg) Since the multlphcatlon induces an 1somorphlsm

of schemes B x wgNw — BwyNw and since Y is B-invariant, we have Y ~ B x Z for the closed
subscheme Z := {(wonw, ) | Ad(wonw)yp € b} of wogNw x 3rLg As the projection B x Z —» Z
is smooth, it is enough to prove that 7 — 5reg (wonw, ¥) + 1) is smooth.

Since Ad(nw)vy € b and Ad(wy)b N b = t, it follows that
Z = {(wonw, ) | Ad(wonw)y € t} =~ {(n,¥) € N x 575 | Ad(nw)y € t}.

Since Ad(w)y € t and the adjoint action of unipotent elements on t doesn’t change the diagonal
entries, we have

Z ~{(n,¥) € N x 5% | Ad(nw)y = Ad(w)e} = {(n, ) € N x 575 | Ad(w™'nw)y = ¢}
~w(NNLp)w™' x 3%
where the last isomorphism follows from Cg(v)) = Lp. As w(N N Lp)w~! is an (affine) smooth
scheme, so is the projection w(N N Lp)w ™! x 3f§ —» 3265, which finishes the proof. O
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5.3 Analysis of the local geometry

In this paragraph we study the local geometry of X, at certain points.

Theorem 5.3.1. Let w € # and x = (g1B,g2P,0) € Xy, then the scheme X, is unibranch at
T.

Proof. By Remark 5.2.3 (2), it is enough to prove the same statement with the irreducible com-
ponent Yy, := qgl(b)w of the closed E-subscheme qgl(b) of G x¥ tp. We want to prove that the
normalization of the (reduced) local ring of Y,, at a point (g,0) (g € G) is still a local ring. The
argument below is strongly inspired by the proof of [65, Lemma 3.4.8] and we give full details.

We see the E-scheme A! as an algebraic multiplicative monoid. The scheme G x tp is endowed
with a left action of A! by a(g,v) := (g,a)) (where g € G,9 € tp). As the adjoint action of
P on tp is linear, this action of Al descends to a left action on G x tp. It also preserves
(Bw,tp N Ad(w™1)b) C G x tp, hence its image ¢5'(b)% in G xT tp (see Remark 5.2.3 (2)),
hence its Zariski-closure Y,,. Let Y,°m C Y, be the closed subscheme (with its reduced structure)
of fixed points by G,,, where G, is seen as a Zariski-open subgroup of the monoid A!. Since
a) = Va € Gy, < 1p = 0, we have (G xF tp)®n ~ G xF 0 ~ G/P x {0}, and we easily deduce
that Y.0m ~ C, x {0} € G/P x {0} where C,, is the Zariski closure of BwP/P in G/P. In
particular we see that the action of A on Y,%m is also trivial.

Consider the normalization map f : Yy — Y, which is a finite surjective birational morphism
between two noetherian irreducible E-schemes (see for instance [1, § 035E] and [1, § 0BXQ)]). Note
that f is an isomorphism above BwP/P x {0} C Y= as BwP x* {0} is contained in the image
of (Bw,tp N Ad(w™1)b) in Yy, which is the smooth open set gp' (b)) of Y, (see Remark 5.2.3
(2)). By [65, Rem. 3.4.3], it is enough to prove that the (geometric) fiber f~!(g,0) is a connected

scheme for g € G. This is a fortiori true if f~1(g,0) is geometrically connected, hence we can
extend scalars from F to an algebraic closure of F, which we do from now on in this proof (still
using the notation E).

The composition Al x Y — Al X Y, — Y, is surjective (as both maps are surjective,
where the last map is the action of A" on Y,). By [1, Lemma 035J], since A! x Y, is normal
this_composition factors as Al xY, — Y, — Y,,, which induces a canonical action of Al
on Y, such that the map f is Al-equivariant. By exactly the same argument, we also have an
action of the Borel B on Y,, such that J is B-equivariant. Moreover these two actions of Al and B
commute on Y as they do on Y,,. The action of A! on Y,, is again trivial on the closed subscheme
Yf’ C Y, (with its reduced structure), but we need another argument than for Y.Sm. Consider
the morphism of E-schemes:

m: Al ><l7w —>l~fw x?w, (a,9) — (7, ay)

and see }7@"‘ as a closed subscheme of Yy X Yy, via the diagonal embedding. Then m™ (YG“‘) is
a closed subscheme of A! x Y, which obviously contains the locally closed subscheme Gy, x YG
Hence it also contains its Zariski-closure, which is Al x YG‘“ In particular the action of Al on
Y is trivial on YG

‘We prove that we have an isomorphism YGm 2y ol (yGmyred of (reduced) closed subschemes
of Y. Since f is Gp-equivariant we have a closed embedding Yf"i — fHYSm)red hence
it is enough to prove that G, acts trivially on f~'(V®m)red inside Y,. Since we are over an
algebraically closed field F, the action of Gy, on f~1(Y,$m)rd is trivial if and only if the action of
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E* is trivial on the set of E-points f~1(Y,$m)(E) (see for instance Remark 4 in [43, p. 38]). Since
any such E-point is in f~'(g,0)(E) for some (g,0) € Y,®m, it is enough to prove that E* acts
trivially on f~1(g,0)(E). Since f is a finite Gy-equivariant morphism, (g, 0)(E) is a finite set
stable under the action of E*. Hence there is an integer n > 0 such that x™ acts trivially on
f~1(g,0)(E) for any x € E* (for instance n = |f~1(g,0)(E)|!). But as E is assumed algebraically
closed, any element in E* is of the form z", hence E* acts trivially on f~1(g,0)(E).

We now consider the morphism 0 : Yy — Y 2 +— 0.z where 0 € A'. Since Al acts
trivially on V.9 C Y,,, the morphism 0 is surjective. As Y,, is irreducible and the image of an
irreducible set is irreducible, it follows that the closed subset )N/,f’m of Y,, is irreducible. Since
YCm &y f=1(YBm)red e deduce that f induces a finite birational surjective morphism of noethe-
rian irreducible E-schemes f~(V;Gm)red — ¥Cm (it is birational since it is an isomorphism above
the open subset BwP/P x {0} of Y,®m ~ C,, x {0}). But C,,, and hence Y,$= are normal schemes
by [70]. One then uses Zariski’s connectedness theorem (see e.g. [72, § II1.9.V]) applied to the
morphism f~1(YEm)red — yCm which implies that all the fibers f~!(g,0) are connected schemes
and finishes the proof. O

Remark 5.3.2. The proof of Theorem 5.3.1 only works for the points (g,0) of Ya,. In particular,
when P # B, we do not know the unibranch property of Yy, at points (g,1) € Yy, where 1) € tp\{0}
is not reqular semi-simple (the reqular semi-simple case being a consequence of Proposition 5.2.9).
Recall that, when P = B, this is known since Yy, is normal at every point ([19, Thm. 2.3.6]).

If z € X, is a closed point, recall that the tangent space T, X,, of X,, at x can be identified
with the k(x)[e]/(e?)-points of X, mapping to x via k(z)[e]/(¢?) — k(x), e = 0. Recall also that
dimy(y) T Xy > dim X, = dim(G/B) + dimtp.

Proposition 5.3.3. Assume © = (¢1B,g2P,0) € X, NV (which implies w'™* < w™* py
Lemma 5.2.4), then

where 52’}()11}’)*1 — {Z € inp ‘ Ad(w(w/>71)z _ Z}.

Proof. The proposition follows by similar arguments as in the proof of [19, Prop. 2.5.3], to which
we refer the reader for more details (e.g. on the notation). The closed embedding Xp < G/B X
G/P x g induces a closed embedding X,, < U, x g. Let T = (91 B, 92P,v¥¢) € T, Xy, where we
see (1B, G2P) € Tr(yUw. As T € Xp(k(z)[e]/(?)), we have Ad(g; Y)Y € b and Ad(gy )y € tp.
As x € V,y, there exists g € G such that (g1B, g2P) = (gw'B, gP). Replacing g1 by gw’, and g»
by g, we have thus

Ad(g~ )y € tp N Ad(w')b. (5.11)

By Lemma 5.2.5, we have kp(z) = Ad(w)xp(Z) and hence

Ad(g~1)¢ = Ad(w)Ad((w')~1g~ )Y € 3L, (5.12)
Writing Ad(g~1)y = A + 7 with X\ € 37, and 1 € np, we deduce from (5.11) and (5.12):

n€npnAdw)n and ez @) (5.13)

P

We have dim(np N Ad(w')n) = dim(n N Ad(w'™*)n) = lg(w'™**wy) (where the first equality
follows from nz, N Ad(w'™*)n = 0). Together with (5.13), the proposition follows. O
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Corollary 5.3.4. With the notation of Proposition 5.5.3, assume that U, is smooth at the point
m(z) and that

dimgff}w,)il + lg(w™) — lg(w'™™) = dim 37, (5.14)

Then X,, is smooth at x.

Proof. Recall dim U, = dim G — dim B + Ig(w™™"). Under the assumptions in the statement, we
have by Proposition 5.3.3 (and using lg(w™®) — lg(w™") = dimnz,):

< dim G — dim B+ lg(e™™) + dim sz, — (1a(w™) — lg((w)™)) + lg(uo)  la((w')"™)
=dimG —dim B —dimny, + dimjz, +1g(wp) = dim G — dim B + dimnp + dim 3z,
= dim X,,.

The corollary follows. O

Remark 5.3.5. (1) By [10, Thm. 6.0.4] and [10, Cor. 6.2.11], if 1g(w' ™) > lg(w™) — 2, then
m(x) is a smooth point of Uy,. Indeed, by loc. cit., under this assumption, PwB/B = Bw™*B /B
is smooth at any point of Bw'™**B/B. Then using the P-action, we deduce that PwB/B is
smooth at any point of Pw'B/B, hence U, is smooth at any point of U.,. If moreover lg(w' ™) >
lg(w™@*) — 1, it is clear that (5.14) holds, so X, is smooth at x. When lg(w' ™) = lg(w™) — 2
however, (5.1/) does not necessarily hold when P # B: for example, when P is a mazimal

parabolic subgroup, then dimgffjw/)_l =1=dimjz, — 1 < lg(w™) — lg(w' ™). See Remark
A.3.5 for related discussions.

(2) The proof of Proposition 5.53.3 actually shows that its statement and the one of Corollary
5.3.4 hold with X,, replaced by X, in Remark 5.2.3 (1). In particular, the closed immersion
Xy — X|, is an isomorphism on local rings at points satisfying the assumptions in Corollary
5.8.4.

5.4 Characteristic cycles

We study the fibres x5, ({0}) < X, and show that they are closely related to the characteristic
cycles of certain G-equivariant regular holonomic D-modules over G/B x G/P.

Let Zp = x5 ({0})™! = kp'({0})™d < Xp (see (5.6), one may view Zp as a generalized
Steinberg variety). Let N C g denote the nilpotent cone and put Np = {(gP,v) € G/P x
N | Ad(g~')¢ € np}. We have Np 2 G xP np, (gP,v) — (g,Ad(g71)v). We write N = Nz
(defined as Np with B instead of P). The morphism gp (resp. gp) in § 5.1 restricts to the so-called
Springer resolution (resp. generalized Springer resolution): ¢g : G x®n — N, (g,%) — Ad(g)y

(resp. qp : G xPup = N, (g,9) — Ad(g)v). We have
ZP ~ G ><P qgl(np)red ~ G ><B qlgl(n)red.

The morphism 7 (see (5.3)) restricts to a natural morphism 7z : Zp — G/B x G/P. Similarly

to § 5.2, for w € # we put V, := ng(Uw) = Vuw N Zp, and let Z, be the Zariski-closure

of V! in Zp with the reduced scheme structure. We put ¢5'(np)?, := ¢5'(tp)) N g5 (np) and
g ()Y == gp'(6)%Ngp' (n) (see Remark 5.2.3 (2) for g5 (vp)d and 5" (6)). We define g5 (np)wy
(resp. gp' (1)) as the Zariski-closure of g5'(np), (vesp. of ¢p' (n)%) in g5' (np) (resp. in gp'(n)).

By similar arguments as in § 5.2, we have
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Proposition 5.4.1. (1) The scheme Zp (resp. qp(n), resp. qz'(np)) is equidimensional of
dimension dimn+dimnp (resp. dimnp, resp. dimn) with set of irreducible components given by
{Zw}we“///WLP (resp. {QJ_Dl(n)w}wE“///WLpr Tesp. {Q§1(nP)w}w€“///LP\W)’

(2) We have Z,, =2 G xF q5'(np)ed = G x B q]_gl(n)g’iil.

Remark 5.4.2. One can show that qgl(n) 18 also equidimensional of dimension dimn, hence the
subscheme qgl(np)red of qgl(n) is isomorphic to a union of irreducible components of qgl(n).
The irreducible components of ¢ (n) are {g5" (W)w fwew, where q5'(n)y, is the Zariski closure of
the preimage qgl(n)?v of BwB/B via qgl(n) — G/B. Using similar argument as in the proof of

[19, Prop. 2.2.1] (see in particular [19, (2.6)]), one can show that ¢5' (n)%, C q5*(np) if and only
if we Wk . If so we have q5'(n)), = q5'(np)Y,. Hence we deduce q5'(np)y = g5 (n)ymax for

weW.

By exactly the same argument as in the proof of Theorem 5.3.1 replacing everywhere tp by
np, we have the following theorem which is interesting in its own right (and which is new even
for P = B, see [19, Rem. 2.4.2]):

Theorem 5.4.3. Let w € # and x = (1B, g2 P,0) € Zy,, then the scheme Z,, is unibranch at x.

For a finite type E-scheme Z, denote by ZY(Z) the free abelian group generated by the
irreducible components {Z;} of Z. Given a scheme Y whose underlying topological space is a
union of irreducible components of Z, put

V)= m(Z,Y)IZ] (5.15)

where m(Z;,Y) is the length of the Oy,,,-module Oy, at the generic point ;.

For w € ¥, let X, := H;,%U({O}) = Xw Xkpysr, 10}, Where “X,p 5 7 means taking the
fibre product over 31, via the morphism kp,, : X\, — 31,. Note that we do not take the reduced
associated scheme. By the same argument as in page 320 of [19], X, is equidimensional of
dimension dim Z. So each irreducible component of X,, is Z, for some w’ € #. We have the

following easy fact.

Lemma 5.4.4. We have m(Zy, Xy) = 1, and m(Zy, Xo) > 1 implying w' ™8 < qmax,

Proof. By the proof of Proposition 5.2.1, we have V,, X kb L p {0} 2 Vi, N Zp = V,. The first
part follows. The second part follows easily from Corollary 5.2.4. O

We construct some other cycles which are closely related to (the characteristic cycles of)
parabolic Verma modules (see Proposition 5.4.8 below). Let 3SLdP C 31, be the set of strictly
dominant integral weight A = (A1,...,\) € 31,, 1.e. \j € Z and A\; > Ay for i > ¢'. In particular
3SLdP C 312 (see the end of § 5.2 for 37'%). This assumption on A will be used in the proof of
Proposition 5.4.7 in Appendix A.2. Let 35 := EX < 31, (a one-dimensional vector subspace of
3LP) and tp) =3\ T np — tp. Define:

ﬁp)\ = GXPtP7,\‘—>GXP‘CP,

Xpx = gpa Xg9— Xp.
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Let 7y be the restriction of 7 to Xp . For w € # put V,, ) := W;l(Uw), which is a vector bundle
of relative dimension dimtp ) — Ig(w™™") over U,. We let X,, x be the reduced Zariski closure of
Vw in Xp . We have that Xp ) is equidimensional of dimension dim G — dim P + dimtp , with
irreducible components given by {X,, 1}. Let X\ := Xop 2 X ki praia 107

Lemma 5.4.5. (1) We have m(Zy, X)) =1, and m(Zyy, X 2) > 1 implies w' ™ < qmax,

(2) We have Xon 2 (X Xnpu, 32 Consequently, for w™ < wh™, m(Zy, Xy) >
m(Zy, Xw ). Moreover m(Zy, Xy) > 0 if and only if m(Zy, X y2) > 0.

Proof. (1) follows by the same argument as for Lemma 5.4.4. We have a natural closed immersion
Xy = (Xu XK pwdL p 3>\)red. By the same argument as on Page 320 of [19], each irreducible
component of X, Xk pussr p 32 has dimension dim X, — (dim 37, —dim ) = dim X,, » and is thus
some X, ) for w' € #. However, using Lemma 5.2.6, it is easy to see that, if #7,w’ # #1,w,
then Vi, \ can not be contained in (Xuw Xpp, 51, 32)"d. The first part of (2) follows. Together

with the isomorphism X,, & (X, Xkipwinp 30) Xkpway {0}, the other parts also follows. O

Remark 5.4.6. If P is mazimal, then 35 +3 = 31,. We have in this case X, = 3 x Xy, \, and
hence Xy = Xy 1. If P = B, then X,, is Cohen-Macaulay by [19, Prop. 2.5.3]. As Xy, X kb p 32
is cut out by (dim X, —dim X, X kpwidLp 3x)-equations in X, we can deduce that Xy, X kpwdrp 3
is also Cohen-Macaulay. Using Proposition 5.2.9 and similar arguments in the proof of [19, Thm.
2.2.6], we can show that X, X KpawssLp 3 is reduced, hence equal to X, x. By the proof of Lemma

5.4.5, we have in this case Yw)\ = Xy

Let O be the parabolic BGG category O associated to p (cf. [57, § 9.3]) and OF(0) the full
subcategory of OF consisting of objects with trivial infinitesimal character. Let Mod,,(D¢/p, P)
be the category of regular holonomic P-equivariant D-modules over G /B, which is the same as the
category of coherent P-equivariant D-modules over G/B by [54, Thm. 11.6.1]. By the Beilinson-
Bernstein localization, we have an equivalence of categories with inverse given by taking global
sections (see for example [54, Thm. 11.5.3]):

Locgg : OP(0) — Mod,, (D¢, P).

Let Mod, (D¢, p, B) (resp. Mod., (D¢ Bx /P, G)) be the category of regular holonomic B-equiva-
riant (resp. G-equivariant for the diagonal G-action) D-modules over G/ P (resp. over G/BxG/P).
Put

ip:G/B— G/BxG/P, gBw~ (9B, P),
ip:G/P—s G/BxG/P, P~ (B,gP).

As in [54, Prop. 13.1.1] (see also [82, Lemma 1.4]), we have R7i%9M = 0 (resp. R7Yi%IM = 0) for
M € Mod,w(Dgyp, P) (resp. for M € Mod.,(Dg/p, B)) and j > 0. Moreover the functor ij
(resp. i}) induces an equivalence of categories Mody, (D¢ pxc/p, G) — Modwn(Dg/p, P) (resp.
Mody,(Dg/pxa/p: G) = Modwm(Dgp, B)).

For a smooth algebraic variety Y, let T*Y be the cotangent bundle. For a regular holonomic
D-module 9 over Y, denote by Ch(9) C T*Y the associated characteristic variety (cf. [54,
§ 2.2]). We have T*G/B = G xB (g/b)Y = G xBn, and T*G/P = G x¥ (g/p)Y = G xF np (see
for example [31, Lemma 1.4.9] where we identify g with gV using the Killing form, cf. [58, § 5]).
By the same argument as in the proof of [19, Prop. 2.4.4], we have:
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Proposition 5.4.7. For M € Mod.,(Dg/pxa/p, G)
Ch(M) = G xP Ch(imM) = G x Ch(iyM) C T*(G/B x G/P)

is equidimensional of dimension dim Zp = dim G/B + dim G/P. In particular, the underlying
topological space of Ch(9M) is a union of irreducible components of Zp.

For M € Mody(Dg/pxcy/p, G), [Ch(M)] € Z°(Zp) is thus well-defined. For w € #/, let
Mp(w™wg - 0) := U(g) @y(p) (™™ wp - 0) € OF(0)

be the parabolic Verma module, and L(w™**w-0) be the (unique) simple quotient of Mp(w™**wyq-
0) in OP(0). Denote by M p(w™*wq - 0) (resp. L(w™*wp -0)) the D-module over G/ B associated
to Mp(w™wq - 0) (resp. L(w™wyg -0)) via i’ o Locgg. The following proposition will be proved
in Appendix A.2.

Proposition 5.4.8. Let A € 35Ldp, then we have [ X, 2] = [Ch(Mp(w™ wy - 0))] for allw € ¥ .

Conjecture 5.4.9. For w € ¥, we have [X,] = [Ch(9Mp(w™wy - 0))].

Remark 5.4.10. Conjecture 5.4.9 holds for P = B by [/5, (6.2.3)] or [9, Prop. 2.14.2] (see
Remark 5./.6). It also holds in the case P is mazximal by Proposition 5./.8 and Remark 5./.0.

Theorem 5.4.11. (1) The classes {Z,}, {{Ch(Mp(w™wy - 0))]}, {[Ch(L(w™wy-0)]}, {[Xw]}
for w € WL \W are a basis of the finite free Z-module Z°(Zp).

(2) For \ € 5SLdP and w € W', we have

[Xupl = D buwl[Ch(L(w ™ w - 0))] (5.16)
wWeNL\W

where by, € L>o is the multiplicity of L(w'™**wq-0) in Mp(w™*wq-0) (hence by, only depends
on the cosets Wi p,w and Wi, w', byw =1 and by, = 0 unless w' ™ < ™),

(3) Let w,w' € W, there are integers ay . € Z>o only depending on the cosets Wi, w, W1, w'
such that
[Ch(E(w™™wo-0)] = Y awwlZw] € Z2°(Zp)
’u}IEWLP\W

where ayw =1 and ay, = 0 unless w' ™ < w™*. Moreover, if W™ < w™* and Bw'™>*B/B
is contained in the smooth locus of the Zariski-closure of Bw™*B/B, then ay ., = 0.

Proof. (1) follows from the same argument as in the proof of [19, Thm. 2.4.7] (with [19, Prop.
2.4.6] replaced by Proposition 5.4.8 and using Lemma 5.4.5 (2)). (2) is a direct consequence of
Proposition 5.4.8. By Proposition 5.4.7, (3) will follow from a parallel statement for
[Ch(ipL(w™ wg - 0))]. Let ay . € Zxo such that (see Remark 5.4.2 for the second equality):

Ch(i5@™we )] = S apwlgg ] = S tulaz (W)urmes].
’wIEWLP\W ’IUIEWLP\W
(3) follows then from [19, Thm. 2.4.7 (iii)]. O
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Remark 5.4.12. By [27, Conj. 3.27] and [27, Thm. 3.28] (see also [34], [39]), the coefficients
by, in Theorem 5.4.11 may be described using certain relative Kazhdan-Lusztig polynomials.
Howewver, we couldn’t find a precise statement in the literature and we don’t need such description
in the paper. We remark that, by [27, Thm. 3.28], by, is also equal to the multiplicity of
L(w'™wg - \) in Mp(w™wq - \) for any integral dominant weight \. Finally, using [57, Thm.
9.4 (b)] and [57, Ex. 8.3 (a)], we easily deduce by, v = 1 when w'™™ < w™ and lg(w' ™) =
lg(w™a) — 1.

Let Xp := Xp Xkpsr, 10} If M is a coherent O -module, we define its class [M] € Z%(Zp)

as in (5.15) with m(Zy,,Y’) replaced by the length m(Zy, M) of the O, -module M,, .

Let o be a closed point in Xp (or equivalently in Zp), the complete local rings Ozp s @Zw,:c
are equidimenisonal, and the set of irreducible components of Spec @Zp,a: is the (disjoint) union
for all w € #1,,\# of the sets of irreducible components of Spec @Zw,m. Note that in general
we don’t know whether Spec @Zw,x is irreducible (see the discussion above [19, Lemma 2.5.5]).
However if the np-coordinate of x is zero, then Spec @Zw .z is irreducible by Theorem 5.4.3. Put

M, =M R0y @Yp,w and define []/\4\,,:] € Z°(Spec @ZP@) similarly to [M] above. By the same
argument as in the proof of [19, Lemma 2.5.5], we have
[]\/Zx] = Z m(Zy, M)[Spec @wa] € Z°(Spec CA)ZPJ), (5.17)
’LUEWLP\W

where [Spec @wa] € Z°(Spec @Zp,a:) is defined similarly as in (5.15). For w € #1,,\#', put (see
Theorem 5.4.11 (3) for ay, . € Z>o):

[E(wmaxwo <0)g] = Z Ay [SPEC @Zwuff] € Z°(Spec 6Zp,a:)-
w/EWLP\W

Lemma 5.4.13. Letw e ¥ .
(1) Let X € 3SLdP, we have

[@Yw,)\,l’] = Z by ! [S(w' ™ wy - 0),] € Z°(Spec @Zp,a:)- (5.18)
’UJIEWLP\W

(2) For w' € # there are integers ¢y
Wi W', satisfying the following conditions:

,civ w € L0, depending only on the cosets Wi, w and

— A — 1.

¢ Cww = Cw,w - 17
/ .
® Cy! > Cww';

o Cyu >0=¢, ., >0;

® Cyu = Cp =0 except when w' M < wh;

e we have the equalities in Z°(Spec 6Zp,z)-'

[wa,wﬁ] = Z cww [Spec Oz , 2] and [wax] = Z cﬁu,w, [Spec Oz, ]
’wIEWLP\W U/EWLP\W
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(3) If x € X, is a smooth point of Xy, then (//)\wa$ = (/’)\YM’A,I, in particular (5.18) holds with
(’)yw .. replaced by O%, .z

Proof. (1) follows from (5.16) using (5.17). (2) follows from Lemma 5.4.5 by putting c¢,, . =

m(Zy, X ) and cﬁuyw, = m(Zy, Xy). For (3), it suffices to show wamx &~ wayx if X,
is smooth at z. Using the description of X, » and X,, in the proof of Lemma 5.4.5, we only
need to show that X, , = X, Xkpwsrp 3 is reduced at the point x. It is easy to see that
Xy, is cut out by (dim 3z, — dimjy)-equations in X,,. As X,, is smooth at z and dim X, y =
dim X, — (dimjz, — dim3y), there exists an open neighbourhood U C X/ , of  such that U
is a local complete intersection, hence Cohen-Macaulay. It is thus sufficient to show that U
is generically reduced (cf. [47, Prop. 5.8.5]). By Proposition 5.2.9, X5®~* is smooth. It is

also Zariski-open and Zariski-dense in Xp. We deduce X% ™ = Uwrew s, (X587 N Xy)

where {X;fg_ss N X} are the irreducible components of Xffg_ss. In particular, we have that
X387 ¥ N X, is Zariski-open and Zariski-dense in X,,. Moreover kp : Xp® * N X, — 31, is
smooth by Proposition 5.2.9. We deduce that X8 := (Xp* ¥ NXy) Xup;, , 32 is smooth and
is Zariski-open in Xz/u,)\‘ One easily checks X%~ NV, \ # 0 (e.g. using (5.5)), so X%~ NV, ) is
non-empty Zariski-open, hence Zariski-dense, in V,, , which implies that X zf 8™ is Zariski-dense
in Xy As ijgj\f * is smooth, we see that U is generically smooth hence generically reduced.
The lemma follows. O

6 Local models for the Bernstein paraboline varieties

Generalizing [19, § 3|, we show that the geometry of the Bernstein paraboline varieties of § 4
is closely related to the schemes considered in § 5. We use the notation of § 4 and § 5 applied
to G = GL,,. When applied to G = (Resép GLy) Xspecq, Spec F ~ HEL GL,, we modify the
notation of § 5 by adding a subscript “L” to each scheme considered in § 5 (to stress the field “L”
and to distinguish from the case G = GL,,), for instance gz, is g ®q, L, Xpr = I Xp and
we have gpp,, etc.

TEX]

6.1 Almost de Rham Bgr-representations

We define and study certain groupoids of deformations of an almost de Rham Bggr-representation
of Gal L-

Let B; g be the algebra B, [log(t)] defined in [44, § 4.3] and Bpar = B;rdR ®pt Bgr. Recall
B; 4r (resp. Bpgr) is equipped with a natural action of Galy, extending the usual Galz-action on
Bj; (resp. Bgr) such that g(log(t)) = log(t) + log(Xeyc(g)). Moreover there is a unique Bqg-

derivation vp_,, of Bpqr such that vp,qr(log(t)) = —1. It is clear that vp_,, preserves B;; qr and
commutes with Galy,.

We fix an almost de Rham representation W of Galy, over Bqr ®q, F, i.e. W is a free Bqr®q, £-
module equipped with a semi-linear Galy-action such that dimz,(Bpdr ® By W)GalL =dimpg,, W
(cf. [44, Thm. 4.1 (2)]). Let P C GL,, be a parabolic subgroup as in § 2.1. Let Fy = (F;)o<i<r be
a P-filtration on W, i.e. 0 = Fy C F1 C --- C F, are Bgr ®Q, FE-subrepresentations of W such

93



that F;/F;_1 is free of rank n; over Bqr ®q, F for 1 < i < r. We assume that F;/F;_1 is de
Rham for 1 <i <, so F;/F;—1 = (Bar ®q, E)®"i as Galp-representation.

For A in Art(E), we call Bqr ®q, A-representation of Galy, a free Byr ®gq, A-module of finite
rank endowed with a semi-linear action of Galy, (so Galy, acts trivially on A). We define Xy 7,
as the following groupoid over Art(FE):

(1) The objects of Xy 7, are the quadruples (A, W4, Fa.,t4) where

e Ac Art(FE) and Wy is a Bqr ®q, A-representation of Galp;

o Fae = (Fai)o<i<r is a P-filtration on W, by Bgr ®q, A-subrepresentations of Galf,
such that Fao =0 and Fa;/Fa;-1, 1 <i <7, is free of rank n; over Bgr ®q, A and
isomorphic to (F;/Fi—1) ®p ar®g, B €A, for some rank one Bqr ®q, A-representation
€Ay

e 1y Wi®4 E = W is an isomorphism of Bgg ®q, E-representations which induces
isomorphisms 14 : Fa,; ®4 E = F; for i € {0,...,7}.

morphism (A, W4, Fae ta) — S War, Fare,tar) is a morphism A — A’ in Art an

2) A hi A, Wa, Fa, AWy, Far, i hism A — A’ in Art(E d
an isomorphism W4 ®4 A" = W4 of Bgr ®q, A’-representations which is compatible with
t4 and vy and induces isomorphisms Fu; ®4 A’ = Fariforie{0,...,r}

Note that the rank one €4 ; in (1) and the F4 ; are automatically almost de Rham since extensions
of almost de Rham representations are always almost de Rham by [44, § 3.7].

We fix an isomorphism of L ®g, F-modules:
a:(L®g, E)" = Dpar(W) == (Bpar @5y W)L,

and we let Xy, X be the groupoids over Art(E) defined as in [19, § 3.1] where “(—)2” is with
respect to . We have a natural morphism of groupoids Xw r, — Xw sending (A, Wa, Fa.e,t4)
to (A, Wa,ta). We put XVDVJ. = Xw,r Xxy Xi. The objects of X‘[,:‘Vf. are the 5-tuples
(A, WA, Fae ta,an) where (A, W4, Fae,ta) is an object in Xy 7, and a4 is an isomorphism
as: (Leg,A)" = Dpar(Wa) such that a4 = o (mod my). A morphism (4, W4, Fae,ta,04) —
(A" Wyr, Far ey tar,agr) is amorphism (A, Wa, Fae,ta) = (A, War, Fare,tar) in Xy 7, such that
the following diagram commutes

(L®qg, A)" ®a A’ 248l Dpar(Wa) @4 A’

| |
(Log, A"  —2%  Dpar(War).

Let (A, WA, Fae,ta,aa) be an object in XVDVJ.. Recall that the Bggr-derivation vp ., on Bpar

induces an L ®gq, A-linear nilpotent operator vy, on Dyqr(Wa). We denote the matrix azl o
U, © g by NWA c Mn(L ®Qp A) = gL(A). We let 'DA, = (DA,i)i with DAJ' = Dde(JTA,i)~

Lemma 6.1.1. With the above notation (a;'(Dase), Nw,) € gp.(A).

Proof. The P-filtration D4 o is stable by vy, . It is then sufficient to show that the induced action
of vy, on Dy ;/Da;1is ascalar (in Lig,A). Since the Fa; are almost de Rham and the F;/F; 1
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are de Rham, we have an isomorphism of E-vector spaces Dy ;i/Dai—1 = Dar(Fi/Fi-1) @ L&g, F
Dyar(e,:) which is compatible with vyy,. Hence v, is given on Da;/Dai1 by vr r_, ®
id+id ®ve, , = id ®vg , ,, which is the multiplication by the scalar v, ; € L ®q, A.

We denote by EP,L the completion of gpy, at the point (a~!(Ds), Nw) € gpL(E), that we
also see in the obvious way as a functor from Art(E) to sets. If X is a groupoid over Art(E), we
denote by |X| the functor on Art(E) such that |X|(A) is the set of isomorphism classes of the
category X (A) (see [62, Appendix| and [19, § 3.1] for more details). The following proposition
easily follows from [19, Lemma 3.1.4].

Proposition 6.1.2. The groupoid XII/jV,J-‘. over Art(E) is pro-representable. The functor
(A, Wa, Fae ta,an) — (a3 (Dae), Nw,)

induces an isomorphism of functors between |X%',7]_-.| and EP,L- In particular |X1I/j[/]-‘.‘ is pro-
represented by a formally smooth noetherian complete local ring of residue field E and dimension
[L: Qp](dimnp + dimtp).

Remark 6.1.3. As discussed in [19, § 5.1], the morphism X — | Xiy| is actually an equivalence.
We then easily deduce X",]Vf. = ]X%f.\.

Since vz, /7,_, = 0, the morphism 9p.L ALi 31p,0 (cf. § 5.1) induces a morphism EP?L AL 3Lyl
where 37, denotes the completion of 31, at 0. Consider the following composition of groupoids
over Art(E)

KW, F, Xl%l/,]-'. — |XI%|/,]-‘.| — 8pr = 3pL- (6.1)

One checks that (6.1) actually factors through

KW,Fe : XW,Fs — 3Lp,L-

The morphism (6.1) has the following functorial interpretation. Let z4 := (Wi, Fae,ta) €
Xw,r,, then the endomorphism vy, on Dpgr(Wa) induces an endomorphism v4; on every
Dpar(Fa,i)/Dpar(Fa,i—1) = Dpar(Fa,i/Fai—1). As in the proof of Lemma 6.1.1, v4; is a scalar
in L ®qg, A which is 0 modulo my4. It follows that

kwF(xa) = (YA, .. var) €3Lp,L(A). (6.2)

6.2 (p,I')-modules of type ) over REL[%]

We study certain groupoids of deformations of a (¢, I')-module over R, L[%] equipped with an
Q-filtration.

Let @ = [[;_; © be a cuspidal component of Lp(L). Let A € Art(E) and M be a (¢,I')-
module of rank n over R r[1/t]. For i = 1,...,7, let z; be a closed point of Spec Zg, and
let A;, be the associated p-adic differential equation. We call M of type 1 if there exists a
filtration Mo = (M;)o<i<r by (¢, I')-submodules of M over R4 1[1/t] such that My = 0 and
Mi/Mi1 = Ay, Ory RA,L(@‘)[%] for some continuous character §; : L* — A*. Such a filtration

—

M, is called an Q-filtration of M, and (z,8) = ((x;),X!_,6;) € (Spec Zq)"& x Z1,, (L) is called a
parameter of M, (compare with Definition 4.1.6).
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Lemma 6.2.1. Let M be a (¢, I")-module of type Q over Rg, r[1/t] and Mo an Q-filtration of M
of parameter (x,0). Then all parameters of M are of the form (2',8") such that, fori=1,...,r,
A% = Ay, @R, Re,p(¥i) and 0) = 5iz/1i_1mzk for some unramified character ¢; of L™, n; € uq,
and k € Z>l,

Proof. We have Ay, ®ry, , Re,(0:)[1/t] = Ay @Ry, RE,(67)[1/1] if and only if for sufficiently
large N:
Hom,r) (At " Ay @y, REL(5:6,1) #0

The lemma then follows by the same argument as in the proof of Lemma 4.1.9. O

We now fix a (¢, I')-module M over R, 1[1] of type  and an Q-filtration M,. We define the
groupoid X s, over Art(E) as follows:

(1) The objects of X m, are the quadruples (A, Ma, My, ja) where A € Art(E), My
is a (p,T')-module over R4 [1] of type Q, Mya, is an Q-filtration of M4, and ja is an
isomorphism M4 ®4 E = M which induces isomorphisms M AiRaFE = M.

(2) A morphism (A, Ma, Mae,ja) = (A, Ma, My e,ja) is a morphism A — A’ in Art(E)
and an isomorphism M4 ®4 A" = M which is compatible with the morphisms j4, jar
and induces isomorphisms M 4; ®4 A’ = Muyrjfori=1,...,r.

Lemma 6.2.2. Let (z,6) be a parameter of Mo and (A, M, Mae,ja) € Xpmm,. There exists
a unique character 64 = W_104; : Z1,,(L) = A* such that 04,; = 0; (mod my) and (z,04) is a
parameter of My .

Proof. Let d4 = X]_164; : Z1,,(L) — A* be a continuous character such that My ;/ My ;1 =
Az, @Ry, Ra,L(64,)[3]. Denote by 64 : 64 — A* — E* the reduction of §4; modulo m4. We
have Axi ®RE,L RE,L(EA,i)[%] = Azi ®RE,L RE,L((Sz)[%] It follows that

Hom(%p) (Ami7 t_mAxi®RE,LRE,L(5;15AJ)) gH?%F) (t_mA%@RE,LA;c/i ®RE,LRE,L(61_15AJ)) ~F

for m > 0. By the same argument as in the proof of Lemma 4.1.9, we see that there exists an
algebraic character x; of L™ and v; € ng, such that d4,; = d;1;x;. Since sz[%] = Ay, Orp
RE’L(qb;lX;l)[%], replacing 64 ; by 5,47@-1#;1)(;1, the existence in the lemma follows.

Assume d4, 0’y are two characters satisfying the properties in the lemma. We have an injection

A H(O%F) (A:Bi ORp 1, A;c/i ORp,L RA7L<5271’6£4’Z') [%} )’

where by definition H(O@’F) (V) = Hom, r)(Ra[l/t], N) for a (¢,T')-module N over Ra r[1/1]
(see [19, § 3.3] for the cohomology of (¢, T')-modules over R, 1[1/t]). We write Ay, @ry, A, =
Rer @ (Dg, @Ry, A, and we have HY 1) (A, @Ry, AY)°[3]) = 0 (using [19, (3.11)]). By
an easy dévissage on A, we deduce that

A1y (B, ©rp Y, Brps R3304 [1]) 2 Yy (Rari00[7]).

By [19, Lemma 3.3.4] and 64, = ¢4 ; (mod my4), we must have d4,; = &y ;. O

96



——

Let § be a continuous character of Z,, (L), that we also view as a point of Z,,(L). We denote

o —

by Z1,,(L)s the completion of ZZ:E) at d. It is easy to see that the functor

Aec Art(E) — {04 =X]_104,: Z1,(L) = A", d4;,=0; (mod my)}

is pro-represented by ZZ,E) s5- By Lemma 6.2.2, we have a morphism of groupoids over Art(E):

o —

ws: Xmme — Zrp(L)s, (A, Ma, Mae,ja) — 0a.

Recall we have a functor Wyr from the category of (¢, I')-module over Rg, L[%] to the category
of Bqr ®q, E-representations of Galy (cf. [19, Lemma 3.3.5 (ii)]). Moreover, by loc. cit., for
A € Art(E), Wag sends a (¢, T')-module of rank n over R4 1[1] to a Bar ®q, A-representation
of Galy of rank n. Let W := Wyr(M) and F; := Wyr(M;). Assume that for one parameter
(equivalently all parameters) (z,d) of M,, we have that ¢; is locally algebraic for all . Then it is
casy to see that War(Mi/M;—1) = War(M;)/War(M;_1) is de Rham (hence = (Bar®q, E)™).
For (A,MA,MA,.,jA) € XMmM,, let Wy = War(M4) and Foi = WdR(MAJ‘). If (z,04) is a
parameter of M4 o, then we have

Fai/Fai—1=War(Mai/Mai—1) = War (Awi ED ®Bar@g, E War (RA,L((SA,Z‘) ED, (6.3)

where, for the last isomorphism, we use [5, Prop. 2.2.6 (2)] and the fact that War(D[7]) =
Wik (D)[4] for a (¢,I')-module D over R, 1. Let 14 be the composition

LAt War(Ma) @4 B — War(M4 ®@4 E) — War(M)

where the last isomorphism is induced by js4. By (6.3), we see that (Wa, Fae,ta) € Xw.r.,
so Wyr defines a morphism X pme — Xw 7,. Let X be the groupoid over Art(E) defined as
X m,m, but forgetting everywhere the ()-filtrations. It is easy to see that Wyr defines a morphism
of groupoids X ¢ — Xy, and that the following diagram of groupoids commutes

W,
Xpme — Xw,r,
Xy e oy

We fix an isomorphism a : (L ®q, E)" = Dpar(W), so we have the groupoids XVDV, X‘% F, over
Art(E) (cf. § 6.1). We put

X o= X Xxy X,

N 6.4
Xy = XmMe XXz Xiv 7o = XpMme XXy Xipr (6.4)

and note that X/%l — XM, X/%t, M. — XMmMm, are formally smooth of relative dimension [L :
Qp]n? by base change. We fix a parameter (z,8) of M,. For A € Art(E), the natural map

da=Wi_104; —> (Wt(6a,1) — wt(6;)) € (L ®q, A)" ~30p.0(A)

o —

induces a morphism of formal schemes wt —wt(0) : Z,(L)s = 31p,L-
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Proposition 6.2.3. The following diagram of groupoids over Art(E) is commutative:

War
Xmm, —— Xwar,

ws l KW, Fe l

— wt—wt(d) .~

ZLP (L)5 ——— 3Lp,L-

Proof. The proposition follows from (6.2) and [19, Lemma 3.3.6 (ii)] (which trivially generalizes
to the case M =R 1(6)[2]P™). O

We call a parameter (z,0) of M, generic if the following condition is satisfied:

for i # j, if Ay, = Ay, ®rp , RE,1 () for some smooth character i of L*, then 65
5i5j_1¢ # 2 and 5i5j'_1¢ # unr(q; ')2X for any k € ZI¥zl. .

By Lemma 6.2.1, if M, admits a generic parameter, then any parameter of M, is generic,
and in this case we call M, (or even M if M, is understated) generic.

Remark 6.2.4. (1) Let D be a (¢,T')-module of rank n over R, such that D[1] = M. The
Q-filtration Mo on M induces then an Q-filtration F on D. It is straightforward to check that if
M, is generic then F is generic in the sense of (4.13).

(2) Let p as in § 2.3 and use the notation of loc. cit. The Q-filtration F on M(p) = Dyig(p)[1]
is generic if and only if p is generic.

For 1 <i,j5 <r,i+# j, denote by ./\/l-?j = Ay, ORp 1 A}B/j ORE.1L RE,L((Sidj_l) and N j 1= ./\/;OJ[%]
Lemma 6.2.5. Assume (z,0) is a generic parameter of Me and let 1 <i,5 <r, i # j.
(1) We have ng’r)(./\/},j) = H(Q@,F)(M,j) =0 and
dimp H{, r)(Nij) = [L : Qplnin;.
(2) Suppose that ¢ is locally algebraic, then the natural morphism
H{,(Nij) — H'(Galg, War(Ni;)) (6.6)

18 an isomorphism.

(3) Suppose that ¢ is locally algebraic and let A € Art(E), 644,045 : L* — A* be continu-
ous characters such that 045 = 0;, 64 = 05 (mod my), and Nija = Ay, Orp ij ORp.L
1

REﬁL(‘SAyi‘sZ,lj)[?]. Then the natural morphism
18 surjective.

Proof. (1) We claim that for s = {0, 1,2},

H{, r(WNij) = Hi, (t_k/\/;?j) for k sufficiently large. (6.7)
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Indeed, identifying the cohomology of (¢, I')-modules and the Galois cohomology of B-pairs (see
for example [73, § 3]), we deduce from the morphism ¢~ k/\/ 0 ey t=h= 1N 0. a long exact sequence

0= HQ,py(t7FNY;) — H{, by (875 1/\/0 ) = H,py (175 1/\/0 JtND))
— Hi, oy (TN = H oy (8757 1N°) ot TIND JEND)
- H(gp,F)( kM?j) — H(%r) (t IM?j) — H(%r) ("IN EEND). (6.8)

By [66, Thm. 4.7], we have H(2<p r) (tFIND; /RN, = 0 and
dimp HQ, py (¢7F TN /RN = dimp HE, oy (875N /E7RAD)).
By [15, Lemma 5.1.1], we have
HQ, oy (RN /RND)) 22 HO(Galg, ¢ W (VD) [t F W (VD))

As Ay, ®rp, Ay, is de Rham of constant Hodge-Tate weight 0, it follows that W(;FR(./\/;?J.) =

W(;FR (REyL((Si(gj*l)) Gning , hence

HO(Galg, tF 7 Wi (M) /7 F Wi (ND))
= HO(GalL7t—k 1W(;—R(RE7L(626J_1))/t_kW;_R(REVL(dz(SJ_l)))@nzn]
By [73, Lemma 2.16], the latter is zero when k is sufficiently large. We conclude that
Hi,r) (t—k—lA/;O,j/t_kA/;?j) =0 for s = {0,1,2} and k sufficiently large. By (6.8) and [19, (3.11)],

(6.7) follows. Then (1) follows easily from the proof of Lemma 4.1.12 (see also Remark 6.2.4) and
[66, Thm. 1.2 (1)].

(2) Since both sides of (6.6) have dimension [L : Qp]n;n; over E, it suffices to show that
the map is injective. By (6.7), it is enough to show that Hy(t""Np;) := Ker[H'(t7*N};) —
HY(Galg, War(N;,;))] is zero when k is sufficiently large. Put

H; (tk(-/v;(,)j)v ®RE,L RE,L(XC}’C))
= Ker [H(l%r) (tk(./\/;?j)v ORp.1L RE,L(chc)) NS ( Galr, We(Nij ®rp RE,L(chc)))}
where W, (D) denotes the B.-module associated to a (¢, I')-module D, see [5, Prop. 2.2.6 (1)]. By
[73, Prop. 2.11], we only need to show f is zero for k sufficiently large. Let s be an integer small

enough so that ts(/\/;?j)v @Ry, RE,L(Xcye) has only negative Hodge-Tate weights. For k > s, the
morphism f factors through (see the discussion below [19, (3.22)])

H, oy (N2 @Ry Rz (Xeye)) — Hi,my (E VY)Y @y, R (Xeye))- (6.9)

By (an easy generalization of) Lemma 4.1.12, and [66, Thm. 1.2 (1)], dimg H (tk(./\/o )Y ORp.
RE,L(Xeye)) = [L : Qp]nin;. Using the cohomology of B-pairs (cf. [73, § 3]), We see that the map
in (6.9) lies in the following long exact sequence, where W+ := W(;FR((/\/' 0V Ry, REL(Xeye)):

0— H (¢,T) (tk(NO ) ®RE L RE L(XCYC)) — H(0<p r) (tS(N'O‘)v ®RE,L RE,L(chC))
— HO(GalL tsW+/tkW+) — H (tk(NO ) ®72E L RE L(chc))
— Hl, 1y (E VD) @Ry REL(Xeye))-
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By the same argument as in the proof of Lemma 4.1.12, it follows that the terms H (Ocp F)(o) are
both zero. When k > s, it is easy to see that dimg H(Galy, t*W* /t*W+) = [L : Q,]nn;, hence
(6.9) and the map f are both zero. This concludes the proof of (2).

By dévissage, (3) follows from (2) together with the fact the functor W + H!(Galy, W), on

almost de Rham representations of Galy, over Bgr ®q, F, is right exact (see for example the
discussion below [19, (3.19)]). O

Theorem 6.2.6. Assume (z,9) is a generic parameter of Me such that 0 is locally algebraic.
The induced morphism of groupoids over Art(E)

XM,M. — ZLP (L)6 ><ZLP,L XW]:-

1s formally smooth.

Proof. The theorem follows by the same argument as in the proof of [19, Thm. 3.4.4] with Lemma
3.4.2 and Lemma 3.4.3 of loc. cit. replaced by Lemma 6.2.5. 0

Corollary 6.2.7. With the assumption of Theorem 6.2.6, the morphisms Xy m, — Xw,r, and
XEA,M. - XVDV,I. are formally smooth.

—

Proof. By [19, Lemma 3.5.5], the morphism wt —wt(d) : Z,(L)s = 31,z is formally smooth of
relative dimension r. Together with Theorem 6.2.6, the first part of the corollary follows. The
second part follows from the first part by base change. O

The following proposition is analogous to [19, Prop. 3.4.6] (for a closed immersion of groupoids
over Art(E), see the discussion before [19, Prop. 3.4.6]).

Proposition 6.2.8. Assume that M, is generic, then the morphism X pm, — X of groupoids
over Art(E) is relatively representable and is a closed immersion.

Proof. Since M, is generic, using Lemma 6.2.5 (1) and an argument analogous to [3, Prop. 2.3.6],
an Q-filtration M4 o on a deformation M4 of M is unique if it exists. We deduce that | Xy s, |
is a subfunctor of | X x| and that we have an equivalence of groupoids over Art(FE):

XmMme = X X x ) [ XMMe|-

Hence we only need to show that | Xy, | <= | X ] is relatively representable. By [69, § 23], it
is enough to check the following three conditions:

(1) If A — A’ is a morphism in Art(E) and (M, Ma.e,ja) € [Xpmm.|(A), then (Mag ®24
A Myoe®@a A ja®aA) € X, |[(A).

(2) If A — A’ is an injective morphism in Art(F), (Mu,ja) € [Xam|(A), and if (My ®4
A ja@a A) € | Xpmmd|(A) = [ X (A7), then (M, ja) € [Xpm,[(A).

(3) If A, A" € Art(E), (Ma,ja) € [ Xpmm,|(A) and (Mar, jar) € [Xpm,[(A7), then (Ma X pm
Mur, jaxpar :=jaopry = jar opry) € [ Xpm.|[(A xg A).
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(1) is clear. For (3), we just note that Muy, 4 = Ma Xy My admits the Q-filtration
Maxpari = Ma; xpm, Mar;. We prove (2). Let My = My N Ma: this is a (¢,T)-
module over R, L[%] (as it is a submodule of M 4) which is equipped with an action of A. By
an easy variation of the proof of Proposition 4.1.3, one can show that there exists a continuous
character 041 : L™ — A* such that 641 =1 (mod m4) and Ma1 = Ay Qry, Ra,rn(da1)[1/t).
As Mo/ Mag — Mar/Myq and Ma /My is free over Rg, r[1/t], so is Ma/Mai. By [3,
Lemma 2.2.3 (i)], Ma/Ma, is free over A. It follows by [3, Lemma 2.2.3 (ii)] that Ma/Ma
(= Mur /My ) is free over Ra[1]. Using Ma/Ma1 < Ma /My 1, by an induction argu-
ment, we can construct the desired filtration M4 ; on M 4, and hence (M 4,j4) € | X pmm.|(A) —
| X a|(A). This concludes the proof. O

By [19, Lemma 3.5.3 (i)] and the same argument as in the proof of loc. cit., we have (where
the third relative representability follows from the second one by base change):

Lemma 6.2.9. Assume that M, is generic, the morphisms Xy — Xw, Xpmm, — Xw,r, and
X%A,M_ — XEV’L are relatively representable.

Proposition 6.2.10. Assume that M, is a generic, then the groupoid XE/( M, over Art(E) is pro-
representable. The functor |X/'€1 M. | s pro-represented by a formally smooth noetherian complete
local ring of residue field E and dimension [L : Qp)(n? + dimgtp).

Proof. The first statement follows from Lemma 6.2.9 and Proposition 6.1.2. By Proposition 6.1.2
and Corollary 6.2.7, ‘X/%t, M, | is pro-represented by a formally smooth noetherian complete local
ring of residue field E. We only need to calculate ’X/%l, I (Ele]/e2).

Assume that (z,d) is a parameter of M,. For each i = 1,...,r, we fix an isomorphism
Bi: Do, Ry, REL(6:)[3] = Mi/M;_1. As in the proof of [19, Prop. 3.5.7], we introduce a new

ver

groupoid X7\, over Art(E):

(1) The objects of X\ 1, are the 5-tuples (A, Ma, Mae,ja,B,), where (A, Ma, Ma,ja)
is an object of X aq, and ﬁA = (Bay) is a collection of isomorphisms a; : Ay, @Ry,
RA,L(éAﬂ-)[%] = Mai/Mai—1 (where 6,4 is as in Lemma 6.2.2) which are compatible with
ja and B = (5;).

ver

(2) A morphism in X MM, 182 morphism in X aq a4, which is compatible with the liftings of 3.

We have [X3F 1| = X3, Foreach i € {1,...,7}, we also use M, to denote the induced
filtration on M;, and we define X\ \, = [X{T ;| similarly to X37 \( = | X3y, |- We first
use an induction argument on ¢ (inspired by the proof of [30, Thm. 3.3]) to show that the functor

\X/‘(fé M, | is pro-represented by a formally smooth noetherian complete local ring of residue field
E. It is easy to see that | X7 4| is pro-represented by @LAX 5 = B[z, ..., 21.0,)+1]]- Assume
that |X}(fll;_1, M.’ is pro-represented by a formally smooth noetherian complete local ring R;_; of

residue field E and dimension

¢—1+[L:Qp]<z‘—1+ > njng.).

1<’ <i—1
Let S; denote the completion of R;_1 ®p O x5 with respect to the maximal ideal generated by
the maximal ideal of R;_; and the one of O~ So S; is a noetherian complete local ring which

LX5;
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is formally smooth over £ of dimension i+ [L : Qp](i — 1+ <;jr<;—1 7jn;). For any morphism
S; — A with A € Art(E), let M4 ;1 be the (¢,T')-module over R4 [1] given by the pull-back
along R;_1 — S; — A of the universal (p, I')-module over RR%l,L[ ], and let 04,; be the character
L* — @;AX 5 S — A*. Let

b

1
Ni:= lim Ext%%p) (Ami ORp, Ra,L(0a) [;],Mmq)-
schnge

Since M, is generic, we deduce by Lemma 6.2.5 (1) (and a dévissage) that V; is a free Si—module
of rank [L : Qp](n; Z] ' n;). By definition, [M,] € Ext%w (A, Ory, ReL(0:)[1/t], Mi1),
which corresponds then to a maximal ideal m; with residue field F of the polynomial S; algebra
Symmyg, N. We let R; be the completion of Symmyg, N at m;. Thus

Bi 2 El[21, o T (10,45 <y imim)) ]

and one can directly check that [X}7 | is pro-represented by R;. In particular | X | is pro-
represented by a formally smooth noetherian complete local ring of dimension r + [L : Q,] dim tp.

Now we define X.%l‘,]f\il. as XE/I,M. XX e X MM~ Since X v = | X3 4, | 18 pro-represen-

table, it is easy to see that XE/’[V; is pro-representable (by adding formal variables corresponding

to the framing «). The morphism XEAVJQ\Z — X3 m, 1s formally smooth of relative dimension

n?[L : Qpl. As XE/IVJG\Z can be constructed from X M. Dy adding frames (with respect to 3)
and End(, 1) (Az; ®rp p Ra,L(64,:)[1/t]) = A (which follows from the proof of Lemma 6.2. 2), the

morphism Xavjﬁl — XY M., 18 formally smooth of relative dimension r. We then compute:

dimpg \XE/LM.\(E[a]/EZ) =n?[L: Q)+ (r+[L: Qplep) —r = [L: Qy)(n® +dimtp)

which concludes the proof. O

6.3 (¢,I')-modules of type Q2 over Ry

We study certain groupoids of deformations of a (¢,I')-module over Rg 1, equipped with an Q-
filtration. We keep the notation of § 6.2.

Let D be a (¢,T')-module of rank n over R, and M := D[1]. Let W := W (D) be the
associated By ®q, E-representation of Gal;, and W := War(M) = WT[1]. Assume that W is
almost de Rham. We define the groupoids X p, Xy + over Art(E) of deformations of (respectively)
D, W+ as in [19, § 3.5]. Recall that we have natural morphisms Xp — X+ (induced by the
functor W(;FR(—)) and Xp — Xu, Xyw+ — Xw (inverting t), and that the following diagram

commutes:
Xp — Xm

! |

Xw+ — Xw.

By [19, Prop. 3.5.1], the induced morphism Xp — X Xx,, Xy+ is an equivalence. Fix an
isomorphism «a : (L ®g, E)™ = Dpar(W) so we have the groupoid X{j, over Art(E) (§ 6.1 or [19,
§ 3.1]). We put

Xips = X+ Xxw Xivy, X5 = Xp Xxy Xiv-
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We assume that D has distinct Sen weights (hi, > hir > -+ > hpr)ren,. Then W7 is
regular in the sense of [19, Def. 3.2.4]. Let (A, W}, 1a,04) € XVDV+ and Wy = W{[1/t], then
the Bl; ®q, A-lattice W of W, induces a complete flag Fﬂwj,. = FilWX’.(Dde(WA)) =
(FilW:J(Dde(WA)))i:l ..... n Of Dde(WA) by the formula

File‘- (Dpar(Wa)) @ F] n+1 i (Dpar,-(Wa)) = GB (t_hn+l—i,7‘WZ)7(_;alL’

TEEL TEEL
where
Dde,T(WA) = Dde(WA) ®L®QpE (L ®L,7’ E)
(t*hnﬂfi,r WX)T = t*hnﬂﬂ‘,f (WX ®L®@pE (L QL7 E))

Since the flag FilW: , is stable under the endomorphism vy, of Dpar(Wa) (see § 6.1), it follows

that we have:
(o@l(FilWX’.), Nw, = agl oV, © aA) € gr(A).

Denote by g, the completion of §; at (o (Fily+ o), Nw). By [19, Thm. 3.2.5], X7, is pro-
representable and we have an isomorphism of functors

‘X%/”r‘ — gLa (W;{Fa LA, OZA) — (aZI(FﬂWX,o)7NWA)'
Consider the composition
Rt Xige — [ Xy ")

where t, denotes the completion of t; at 0 (and kp is defined in (5.6)). The morphism fy +
factors through a map still denoted by Ky + : Xyy+ — tr.

We call D of type 2 if D admits an Q-filtration D, (see Definition 4.1.6 (1)). The D; for
i =1,...,r are saturated (p,I')-submodules of D and M, := (M;)o<i<r = (Dz‘[%])ogigr is an
Q filtration of M as in § 6.2. We assume that M, is generic (which implies that D, is generic,
see Remark 6.2.4 (1)). Assume D is of type Q and let Dy be an Q-filtration of D. We put
Fo 1= War(Ma) = Wiz (Ds)[}] and define the following groupoids over Rp,y,

X+ Fa = Xw+ Xxw Xwir, Xy g o= X 7 Xxw Xip = X+ Xxy Xtz
XD M, = XD Xx, XM M,s XD,M. = Xp Mo Xxp Xp = XD M Xx0 Xi1r,
where we have used X% = Xp Xxy XEV.
Proposition 6.3.1. The morphisms of groupoids Xp m, — Xw+ 7, and Xg,/\/l. — X"}H’}. are

formally smooth and relatively representable.

P?"OOf. Since XD = XM XXWXW+a we have XD,M. = (XW+ XXWXM) XXMXM,M. = XW+ X Xw
Xm,M,- The first part then follows by base change from Lemma 6.2.9 and Corollary 6.2.7. The
second part follows from the first again by base change. O

We define:
Dy := (D;)1<i<r := (Dpdr(Fi) )1<i<r = (Dde<WdR(Mi)))1SiST-
Using XpyL = gRL Xar, @L, we have:

y:= (o (D.), 0 (Filyy+,.), Nw) € Xpr(E). (6.10)
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Proposition 6.3.2. (1) The groupoid XVDVJr’}_. over Art(E) is pro-representable.  The
functor |XII/]V+ ]__.| is pro-represented by the formal scheme Xpy, .

(2) The groupoid X%,M. over Art(FE) is pro-representable. The functor |XBM.| is pro-
represented by a formal scheme which is formally smooth of relative dimension [L : Qp]dimyp
over Xpp, y.

Proof. (1) follows by the same argument as in the proof of [19, Cor. 3.5.8] (with [19, Cor. 3.1.9]
replaced by Proposition 6.1.2). Using Xp m, = X+ Xxp Xmom, and Xypv 7, = X+ Xxyp
Xw,r,, we deduce Xp m, = X+ 7, XXy 2, Xmm, and thus:

~ ~ v O
XD Mo = Xw+ Fo XX, re XMMe = Xw+,]:. XX\I;V,]-'. XM M, (6.11)

The first part of (2) follows from (1) and Proposition 6.3.1. From (6.11) and the fact that, for each
groupoid Y in the fibre product on the right hand side of (6.11), we have Y = |Y'| (see Remark
6.1.3 for X%/}- , the others being similar), we deduce | X5 DMl = | X 7l XX, |XE/1,M.|' By

Corollary 6.2.7, Proposition 6.1.2 and Proposition 6.2.10, the functor |X/vt M.l is formally smooth
over | X1, 7| of relative dimension

[L: Qp)(n® +dimvp) — [L: Qy)(dimnp + dimvp) = [L : Q,] dim p.

The second part of (2) then follows by base change from the above fiber product. O

For w = (w;)rex, € W1 = wIELl let X, = HTEEL Xw, = Xpr, where X, — Xp is
defined as in § 5.2. This is an irreducible component of Xp; which only depends on the coset
W1p w. We put (using Proposition 6.3.2 (1) and with X, , empty if y ¢ X,,):

. .
X m = X £, Xix2, | Xy (6.12)

Corollary 6.3.3. The groupoid XW+ F. over Art(E) is pro-representable. The functor | X

1s pro-represented by the formal scheme me.

W+f.’

Proof. This follows from (6.12) and the equivalence of groupoids X —> |XW+ Al O

We define the groupoid X7, | F

of XEV:LUF by the forgetful morphism XVDVJF’]_.. — Xw+ 7, Thus, for A € Art(E), the objects of
X’U/'

W F (A) are the quadruples (W}, Fae,ta,54) in X+ 7, (A) such that

over Art(E) as the subgroupoid of Xy + z, which is the image

(o' (Fily+ ), 03" (Dae), 0 o vy 0 aa) € Xu(A)

for one (equivalently any) isomorphism aa: (L ®@p A) = Dpar(Wa). As in [19, (3.26)] there is

an equivalence of groupoids XW + 7 = X+ Fo XXyt 5, X%H T We define then
‘:l K
XDU-A)/[. —XDM. XXD XW+]_- and XDM —XDM. XXW+,F. XI%+,.7'-.' (613)

W+, Fe

Proposition 6.3.4. The morphisms of groupoids Xy, 7. Xwt A XW’+ F XVD‘H]_.,

XPm. — XM and X[D)’;‘(/l. — X%,M. are relatively representable and are closed immersions.
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Proof. The proposition follows by the same argument as in the proof of [19, Prop. 3.5.10] with

[19, (3.25)] replaced by (6.12). O
Define R
Each groupoid Y in the isomorphism Xg’%t X% M. XxO XW’ + 7 is equivalent to the

W+, Fe
associated functor |Y| (as all the automorphisms of an object in the groupoid are trivial). Hence

|~ X5 M.l Xx N | X From Proposition 6.3.2 and Corollary 6.3.3, we deduce:

1 Xp Ma w7l

Corollary 6.3.5. If w € S(y), the functor \Xg’%[.\ is pro-representable by a noetherian complete

local E-algebra which is formally smooth of relative dimension [L : Qp)dimp over )?w,y.

The map (kp,kp) : Xpr — tr X, jy; 3Lp,L = Jp,L induces a morphism )?p,L,y — @7147(070).
Denote by © the composition

a a ~ O ~Y o
XD,M. ’ XW+,]—'. — ’XW+,f.’ — XpLy — gP,L,(O,O)v

which factors through a morphism still denoted by © : Xp rq, — @7 L,(0,0- By Lemma 5.2.7, we
have

Corollary 6.3.6. Let w € S( ) and w' € #71,, then the morphisms Xllj):wM. — XE,M. — i/%\:’L,(O,O)
and Xp pq, = XD M. — pr (0,0) of groupoids over Art(E) induced by © factor through the
embedding ﬂ 1(0,0) < yP,L, (0,0) if and only if Wi, LW =Wip Lw.

6.4 Galois representations and Bernstein paraboline varieties

We show that the completed local rings of the Bernstein paraboline varieties at generic points of
distinct integral weights can be described (up to formally smooth morphisms) by completed local
rings on the variety Xp .

Let p : Gal, — GL,(E) be a continuous group morphism and let V' be the associated repre-
sentation of Galy. Let X, be the groupoid over Art(E) of deformations of the group morphism
p, and Xy be the groupoid over Art(E) of deformations of the representation V' (so X, can be
viewed as the groupoid of framed deformations of V'). The natural morphism X, — Xy is rel-
atively representable and formally smooth of relative dimension n?. Let D := Dyig(V'), we have
then an equivalence Xy — Xp. The morphism X » — |X,| is an equivalence. In fact, this holds
for any groupoid with “p” in subscript in this section.

Assume that D is almost de Rham with distinct Sen weights and that D admits a generic
Q-filtration. Let M, be a generic Q-filtration on M = D[%] (recall Q is fixed in § 6.2) and put
Xvme = Xv Xxp XD Mas XpMe = Xp X xy Xvme = Xp X x 0 XXMM, - Note that X, pq, — X,
is a closed immersion by Proposition 6.2.8 and base change. For w € #7, we put

XVM. —XV XXDXDM anprM —X XXVXVM.

(where we use W := Wi (D) = BJ; ®q, V in the definition of XPB . see (6.13)). Lety € Xpp,
be as in (6.10) and S(y) as in (6.14).
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Theorem 6.4.1. (1) The functor [ X, a.| (resp. [ X x| for w € S(y)) is pro-representable by

an equidimensional noetherian complete local ring R, pm, (Tesp. RZ),M-) of residue field E and

dimension n? + [L : Qp](n(n2_1) + 7). If p is moreover de Rham®, then RY v, = Ry /Pw for a

minimal prime ideal py, of Ry pm,. Finally, in this case, the map w w— py, is a bijection between
S(y) and the set of minimal prime ideals of R, m, -

(2) The morphism |Xg;\4.| — ’X%/U//\/l.‘ = | Xvm.| = | XpM.| S, @,L,(O,o) of groupoids over
Art(E) factors through T, 0.0y = Ip,L0,0) if and only if Wi, 0" = W1, Lw.

Proof. (1) We have X, v, = X, Xx,, XmM,.- By Proposition 6.2.8 and the fact that X, is
pro-representable, we deduce that X, rq, is pro-representable. We have X, v, 50X oM. | and
we let R, rq, be the noetherian complete local ring which pro-represents | X, a4, |. Define

o . 0 ~ 0
XP,M. T P7Mc XXM,M. XM,M. - Xp XXM XM,M.

which is formally smooth of relative dimension [L : Q,]n? over X, 1, by base change (see (6.4)).
Since X, — Xy = Xp is relatively representable and formally smooth of relative dimension n?,
8o is the morphism XEM. — XD Xx X/%I,M. = XLD),M.' Together with Proposition 6.3.2 and
Corollary 5.2.2, we deduce that R, rq, is equidimensional and

n(n —1
dimBypn, = n?+ (L Q) dimp) + (1L Q) (M2 4 dimep) ) —n(L 2 @)
-1
- n2—|—[L:Qp]<n(n2)+r). (6.15)
Let XE’X‘/][. = X} X X X/%l,/vl. o ngufi/t. Xx, Xp. As X, is relatively representable

over Xp, we deduce by Corollary 6.3.5 (and the fact Xg’wM. = |Xg’1/’\’/l. ) that XEXZ. is pro-

representable. It is also easy to see X/)Dﬁ. = ‘X;;D}\lfl." As X, is formally smooth of relative
dimension n? over Xp, using Corollary 6.3.5 again we have formally smooth morphisms (the first

of relative dimension [L : Qy]n?, the second of relative dimension n? + [L : Q,] dim p)
XY | — X000 — Xy (6.16)

As X740 = XP Mo XXp e Xp, Mo by (6.15), Proposition 6.3.4 and (6.16) (and the fact X7\, =
| X m. 1), it follows that | X7, | is pro-representable by a (reduced) local complete noetherian

ring of residue field E and dimension n?+[L : Qp](n(n2_1)

Ny in y is zero, hence O X,y 18 @ domain by Theorem 5.3.1. The second part of (1) follows. Using
Corollary 5.2.2, the last part of (1) also follows. Part (2) follows easily from Corollary 6.3.6. [J

+7). When p is de Rham, the parameter

Corollary 6.4.2. For w € S(y), we have
dimp [ XY, [(Ele]/€%) = [L : Qy) dimp + n® — n?[L : Q) + dimp X,y (Ele] /2?).

Proof. The groupoid XEXZ. is formally smooth of relative dimension n? over Xa’j”/l. = XE)ZIX/(.?

and is formally smooth of relative dimension [L : Qp]n? over X m,- We have V = |Y| for

50r equivalently potentially crystalline as D admits a generic Q-filtration.
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Y e {X ., X, Xp'hy ) and thus

dimg [ XY, [(Ele]/e%) = dimp \Xg%. (Ele]/e?) + n® — [L : Q,]n?
= [L:Q,)dimp + n? —n?[L: Q)] + dimg X, 4 (Ele] /%)

where the second equality follows from Corollary 6.3.5. O

Let w, € #.L, 1, such that 7(y) = (a1 (Ds), a Y (Filyy+ ,)) lies in the Gr-orbit of (wy,1) in

ax

Gr/Br x Gr/Pr. By Lemma 5.2.4 and the equalities in (6.14), we have

Proposition 6.4.3. Let w € W, if X}y, # 0, then w™™ > wy,.

Now fix a group morphism 7 : Gal;, — GL,(kg) and a strictly P-dominant weight h € Z">z!
of G as in § 4.2. Let x = (p,z,X) be a point in Xqn(p) = X5 x (Spec Zq)™8 x Zj 1. Assume
that p is almost de Rham (hence x is locally algebraic by Proposition 4.2.10) and has distinct Sen
weights.

Corollary 6.4.4. We have that M := Dyis(p)[2] has an Q-filtration Ma of parameter (2, X, )-
Moreover, if the parameter (z,Xxw,) i generic, then Mg is the unique Q-filtration of parameter
(&7 XwL) on M.

Proof. The existence follows from Corollary 4.2.6. By Lemma 6.2.5 (1) and the same argument
as in the proof of Corollary 4.1.13, the uniqueness follows. O

Recall that X, = |X,| is equivalent to (g)p (cf. [62, § 2.3]). We have a natural morphism of
formal schemes

— —

Xon(p), — (X5), = X,

—

Proposition 6.4.5. (1) The canonical morphism Xqn(p), — X, factors through a morphism

—

Xon(), — XpM.-

—

(2) The morphisms Xqn(p), — X, and Xqn(p), — Xpm, are closed immersions of groupoids
over Art(E).

Proof. (1) follows from the same argument as in the proof of [19, Prop. 3.7.2] with [60, Cor. 6.3.10]
replaced by Corollary A.1.2 and Corollary A.1.3 (2). (2) follows from the same argument as in
the proof of [19, Prop. 3.7.3]. O

Consider the composition
/\7 ~ @ —
Oz : Xon(P), = Xpme = Xvme = Xp M. — TpL,0,0)-

Let h' = ( 1117' > héyT > .-+ > hl _)i=1,.n be the Sen weights of p. Then by Proposition 4.2.10,

n,T
TEX],
there exists wy = (wzr)rex, € #.L ; such that, for j = 1,...,n, h;},l(j)T = wt(xi)r + hjr

where ¢ is the integer such that s;_1 < j < s;.

Proposition 6.4.6. The morphism ©, factors through ixwo,u(0,0)'
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Proof. The proposition follows by the same argument as for [19, Lemma 3.7.4] using Proposition
4.2.10. O

—

Corollary 6.4.7. Assume moreover that p is de Rham. The closed immersion Xq n(p), = Xp M.
factors through an isomorphism

o —

Kanlp), > X0k, (6.17)
In particular, Xq n(p) is unibranch, hence irreducible, at x.

—

Proof. By Theorem 4.2.5 (1) and Theorem 6.4.1 (1), dim Xq(p), = dim X, r(,. We also know

that Xon(p) is reduced and equidimensional by Proposition 4.2.5 (1). Hence Xgh\(ﬁ)x is iso-
morphic to a union of irreducible components Spec R}, of Spec R v, (see Theorem 6.4.1 (1)).
However, it follows from Proposition 6.4.6 and Theorem 6.4.1 (2) that Spec R} \1, can not be con-

tained in Xm)x if #1, 1w # Wi 1 (wpwo ). We then obtain the isomorphism in (6.17). O

Let y € Xpr(k(x)) be the point in (6.10) associated to (p, M,). By Corollary 6.4.7 and
Proposition 6.4.3, we have

Corollary 6.4.8. Assume moreover that p is de Rham, then w,wo 1 > wy.

By corollary 5.3.4, we deduce:

Corollary 6.4.9. Assume that p is de Rham, that w(y) € Gr/Pr, x Gr/By, lies in the smooth
locus of the closure of Gr(1, wywo,r)Pr, % B, and that

-1
dimjp "+ lg(wewo,r) —1g(wy) = dimjr, L.

Then Xq p(p) is smooth at the point x = (p,x, X).
By the discussion in Remark 5.3.5 (1), we obtain the following special case that will be
frequently used:

Corollary 6.4.10. Assume that p is de Rham, that 1g(w,) > lg(wzwo.r) — 2 and that

-1
dimjr,  —dimz, 2P0 =2 if 1g(wy) = lg(wewo L) — 2.

Then Xq p(p) is smooth at the point x = (p,z, X).

-1
Wa W0, [ Wy

Remark 6.4.11. When P # B, it could happen that dimj3r, 1 — dimgLPL = 1 while
lg(wy) = Ig(wywo,1,) — 2 (see Remark A.3.5 below, and compare with [19, Rem. 4.1.6]). In this
case, we don’t know if Xq p(p) is smooth at the point x.

As a quick application, we obtain the following full description of local companion points
which completes Corollary 4.3.9. Changing notation, let 2 := (p, (r1,...,1,)) € Uy (£, h) be as
in § 4.3 (where it was denoted x (see above Proposition 4.3.8)): p is now a generic potentially
crystalline representation with distinct Hodge-Tate weights h, {y = ®;_,& with & the inertial
type of ;, and (ry,...,1,) € (Spec Zq)"® is an (ordered) r-tuple of absolutely irreducible Weil-
Deligne representations such that r(p) = @!_;r;. Recall we have attached to the point z an
element w, € #F (see before Proposition 4.3.8 where w, was denoted w;). In fact, if we let

max,L

y be the point in (6.10) associated to z (for D = Diyjg(p) and M, the Q-filtration on M = D[1]
associated to the filtration {@'Z’:lri};:l on r(p) as in § 2.3), then by definition w, = w,,.
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Corollary 6.4.12. Let w € #L

max,L» With the above notation the point

(o, (r1y.y 1), 1) € Xp X (Spec Zq)"8 x Z/O\,L

lies in Xq ww, (v (P) if and only if w > w,.

Proof. The “if” part is Corollary 4.3.9. The “only if” part follows from Corollary 6.4.8. O

Remark 6.4.13. The case for P = B (and p crystalline) was proved in [19, Thm. 4.2.5], see
Remark 4.3.10 for related discussions.

6.5 Galois cycles

We construct certain cycles on the deformation space X, = (X5) o of a characteristic zero repre-
sentation p of Galy.

Let p be as in § 6.4 and p € X;(E). Recall that the local complete noetherian E-algebra @x,
is equidimensional of dimension n? + [L : Q,]n? and pro-represents the functor |X,| of (framed)
deformations of p over Art(E). Denote by Z(Spec (935,1 ) (resp. Z%(Spec (935, ,) for d € Z>¢) the
free abelian group generated by the irreducible closed subschemes (resp. the irreducible closed
subschemes of codimension d) in Spec @xﬁ,p- If A is a noetherian complete local ring which is a

quotient of @365,,], we set

[Spec A] : Zm p, A)[Spec A/p] € Z(Spec @xm)

where the sum is over the minimal prime ideals p of A, m(p, A) € Z>¢ is the finite length of A, as
a module over itself and [Spec A/p] is the irreducible component Spec A/p seen in Z(Spec Ox, ).

Assume that p has integral distinct 7-Sen weights for each 7 € Y1, and that D,ig(p)[1/t] admits

an Q-filtration M, of generic parameter (z,9) € Spec Zq % Zm) (so ¢ is locally algebraic). We
refer to § 5.4 (and the very beginning of § 6) for the schemes X p, and X,,. Let y € Xp 1 (E) C
Xpr(E) be the point associated to (p, M,) in (6.10) (depending on a ch01ce of framing «). Let
w € W7, such that y € X,(E) C Xy(E) (which implies w™%wq ;, > w,, by Proposition 6.4.3).
Similarly as in [19, § 4.3], by Proposition 6.2.3 and Theorem 6.4.1 (and its proof), we have a
commutative diagram of groupoids over Art(E):

X0y —— X L Xuy

i

k N
Mo Xy, —— XPLy

)

X
Kp

——_  wt—wt(d)
Xp Zrp(L)s ————3Lp.L

Xp

)

where we still denote by ws the composition X, v, = XM, LNy p(L)s. Taking everywhere
(except for X,) the fibres over 0 € 31,1, we obtain the commutative diagram of affine schemes
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over F:

SpecR M. <—SpecR M %Spec(’)

| |

Spec Rp,/vl. +—— Spec o oM. — Spec O«

w,Y

XpLy

Spec @35?70'

For w = (w;) € #1,, we denote Z,, := []

components of Spec C’)

rex, Zw. < ZpL (see § 5.4 for Z,_). The irreducible

. are the union of the irreducible components of Spec O Zw,y for w such

that y € Z,(E) (the last condltlon does not depend on the choice of the framing «). By pull-back

and smooth descent, we obtain a bijection between the irreducible components of Spec OXPL v

and the irreducible components of Spec va M, In particular, Spec Rp, M, is equidimensional of
dimension n? + [L @p]n n-1) (equivalently of codimension [L : Qp]@ in Spec @xﬁ,p)- For
w € #7,, denote by

3, € 2015 (Spec Oy, ) (6.18)

the cycle corresponding via the embedding Spec Em M. — Spec @fm to the cycle [Spec @Zw,y]
under this bijection. By Theorem 5.4.3, we have:

Lemma 6.5.1. Assume that p is de Rham. Then the cycle 3y, is irreducible for w € #7,.

Remark 6.5.2. It is easy to see that Zy, , = Gr/Br x Gr/Pr, x {0}. Indeed, we have a natural
embedding G /B x GL/Pr x {0} <= Zuy,
irreducible schemes of the same dimension. Thus if 3., # 0, the nilpotent operator Ny associated
to p is zero, hence p is de Rham. As p admits a generic Q-filtration M, p is potentially crystalline.
Let h be the Hodge-Tate weights of p and & the inertial type of p (thus & has the form ®]_&;).
By the same argument as in [19, Rem. 4.3.1] (using [63]), it follows that 3, = [6362“(50,/1),;7]-

which has to be an isomorphism since both are

For w = (w;) and v’ = (w)) € #7, put ay. = HTEEL Uy, AN by g 1= HTGEL bus, .

where d., ., by, . are given as in Theorem 5.4.11 (applied to G = GL,). Put
&y = Z Qo ' € AR (Spec (935, L) (6.19)
’LU/G“/VLP7L\WL

Note that 3,, and €, are independent of the choice of the representative w in its associated class
in WLP,L\WL-

Lemma 6.5.3. Assume that p is de Rham, and let w € #7. The followings are equivalent: (1)
Cw #0, (2) 35 #0, (3) W™ > w,.
Proof. (2) = (1) is clear.

(1) = (3): If €, # 0, then 3,y # 0 (= y € X,v) for some w' with w'™** < ™ By
Proposition 6.4.3, w'™* > w, hence w™ > w,.

(3) = (2): As pis de Rham (i.e. the entry Ny in y is zero), if w™** > w,, then y is contained
in the Zariski-closure of (GL(wmaX, 1)Br, x PL) x {0} in Gr/Bp, x G/Pr, x {0} — Zp, thus
Y E Zy = 3w # 0. O
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Now let = (p,z, x) € Xan(p)(E) such that p is de Rham and (z, x) is generic. Let M, be
the unique Q-filtration on Dyig(p)[1/t] of parameter (z, xw,) (cf. Corollary 6.4.4) and y be the
point (6.10) of Xp associated to (p, M,). Recall that we have defined elements w, € WHI;X’ I
and w, € WnﬁmL (see above Proposition 6.4.3 for w, and above Proposition 6.4.6 for w,). Let
Xan(P)wt(y) denote the fibre of X n(p) at wt(x) (via the morphism X n(p) — Z/OTL AN 3LpL)-
The following conjecture is a consequence of Conjecture 5.4.9 and Lemma 6.5.3:

Conjecture 6.5.4. We have

~ .1 7nt1) ~
[Spec Ox g (@) wiiya) = > busaane g0 € ZEC 5 (Spec Oy ).

wEWLP ,L\WL
Wy SwmaxngwO,L

Remark 6.5.5. It follows from Lemma 5.4.13 that Conjecture 6.5.4 holds if x is moreover a

smooth point of Xq n(P)wi(x)-

7 Applications

Under the Taylor-Wiles hypothesis, we show several (global) results on p-adic automorphic repre-
sentations including a classicality result, and the existence of all expected companion constituents
for certain parabolic subgroup P.

7.1 Automorphy cycles

We use locally analytic representation theory to construct certain cycles on patched Bernstein
eigenvarieties.

7.1.1 Representation theoretic preliminaries

We give some preliminaries on locally analytic representations which we will use in § 7.1.2. We
use the notation of § 3.1.
Denote by O§1g C OF the full subcategory of objects with integral weights (see [74]). Let V' be

an admissible locally analytic representation of G,,. Let M ¢ Oglg, the p-action on M canonically
extends to a P(Qp)-action ([74, Lemma 3.2]). We equip Homyg) (M, V) with the left action of
P(Q,) given by (pf)(v) := pf(p~'v) for p € P(Q,), v € V. Note that this action does preserve
Homyy(g) (M, V') because we have for p € P(Qp), X € U(g) and v € V:

(pf)(Xv) = pf(p~' Xv) = pf (Ad(p~ " )(X)p~ ') = pAd(p~")(X) f(p~'v) = Xpf(p~'v)
= X(pf)(v).
We also see that the derived p-action is trivial, so the P(Qj)-action on Homyg) (M, V) is smooth.
We equip Homy(q) (M, II) NP with a natural Hecke action of L p(Qp)" defined as in (3.11).

For any M € O° (in particular M € Oglg), we endow Homyy(g) (M, V') with a canonical topology

of space of compact type as follows. Choose finitely many weights A* of the Lie algebra of T
such that &;Mp, (\') - M where Mp , (\") := U(g) ®y(p ) A’ Then Homy 4 (M, V) is naturally
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a closed subspace of @;V[b, = )] that we endow with the induced topology. Using that a
continuous bijection of vector spaces of compact type is a topological isomorphism, one easily
checks that this doesn’t depend on the choice of the A* (for two choices A’ and p’, consider
(®iMp,(\) ® (®;Mp,, (1)) — M) and that for a morphism M — N in O, the induced
morphism Homyg) (N, V) — Homyg) (M, V) is continuous. We denote by Homyg) (M, V)gg the
finite slope part of Homyg) (M, V)NIOD defined as in [40, § 3.2]. The following lemma follows by
the same argument as in the proof of [19, Lemma 5.2.1] (see [40, Prop. 3.2.4 (ii)] for the second
isomorphism).

Lemma 7.1.1. Assume that V is very strongly admissible ([41, Def. 0.12]), let 7 be a finite length
smooth representation of Lp(Q)) over E and M € Oslg. There are natural bijections

G oo _ ~ 0
Homg, <]:Pf(Qp)(HomE(M, E’)"P*,ﬂ'(épl)),V) — Homp,(q,)+ (7, Hom ) (M, V)NP)

= Homy,(g,) (m, Homyg) (M, V)i.")
where Hompg (M, E)*P~ C Hompg(M, E) is the object in 021; defined in [14, § 3] and dp is the
modulus character of P(Qp).

Fix 0 an integral weight of 37, and o a cuspidal type of Lp(Q,) as in § 3.1.1. Consider

LO

0 ~
V(M,D,O’) = ((HomU(g)(M, V)gp RE ((5aodetLP))®ECprla(Z% E) RQF O'V> r

p?

NY ~ _la
=~ Homyy (o, (Homy (g (M, V)" @ (6 o dety,,))8C% (2, E))

0 ~
where Lp(Q,) acts on (Homy g (M, V)gp ®g (6 o detLP))®ECQP713(Z2P,E) via the diagonal
action with Lp(Q,) acting on CQP_la(ng,E) via (3.2). As V(M,d,0) is a closed subspace of

0 ~
(Homyg) (M, V)gP ®p (6 o detLP))®ECQP_1a(Z2P,E) ®p oV (where ¢ is equipped with the
finest locally convex topology), it is also a space of compact type. We equip V(M,0,0) with

~

an action of Zy x Ag x Zq similarly as for B, (V) in (3.3): Zy = ng acts via the regular
0
action on CQj_la(ng, E), Ao = Z1,,(Qp) acts via the diagonal action on Homyg) (M, V)gp ®F
(0 o det LP)®ECQP_13(ZEP,E), and the Zg-action comes from the isomorphism (recalling that
~ - 1Lp(Q
Zo Ende(Qp)(C'lndLoi( ») o)):

. N9 ~ _la
V(M,?,0) = Homp,q,, (c-mdjg(@“ o, (Homy g (M, V)N @5 (5 o detp,) ) 8pCe (20 E)).

Similarly as in the discussion above Lemma 3.1.2, the Ag-action is equal to the action induced
from Zq via Z1,,(Qp,) — Zq. By considering the action of [p on V(M,?,0), we have also
N9 ~ Lo

V(M,U,O’) = ((HomU(g)(M, V)fsp KR ((53 o detLP))®E(C°°(Z2P, E) RQF (Sg) RF O'V) r

NO LO

& (HomU(g)(M, V)fSP XRE ((53 o detLP) XRE (Cw(ng,E) XRE (5g) XRE Uv) r
where COO(ng, E) denotes the space of smooth E-valued functions on ZOP, where COO(Z,%P, E)®Eg
89 embeds into CQP*la(ng, E) by f®@1 [z f(2)09(2)], and where the second isomorphism
follows from [64, Prop. 1.2] and the fact that COO(ZgP, E) is topologically isomorphic to a direct
limit of finite dimensional E-vector spaces (each equipped with the finest locally convex topology).
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Lemma 7.1.2. Let \ be an integral P-dominant weight of T », we have an isomorphism of vector
spaces of compact type (cf. Notation 3.1.5 and the discussion after Lemma 3.1.7)

L:V(Mp(N),0,0) — Baa(V)[z0 = 0]
such that for (o, B) € Zq x 29 and v € V(Mp(\),0,0):
((@.8) - v) = 8(8) (1531 (0), B) - 1(0)).
Proof. We have isomorphisms
Homy ) (Mp(X), V) = Homy, (L(A)p, V") 22 (V™ @5 L(A)p)'”

which are moreover topological isomorphisms if Homy,(L(A)p, V") = (V' g L(A\)%)'? is

equipped with the induced topology as closed subspace of V ®p L(A)}. We deduce then an

Lp(Q,)T-equivariant isomorphism (where Lp(Q,)* acts on the right hand side by (zf)(v) =
2f(z71v)): . .
Homy gy (Mp(X), V)VP = Homy,, (L(A)p, V7). (7.1)

)
This isomorphism induces L p(Q))-equivariant isomorphisms by the universal property of the finite
slope part functor [40, Prop. 3.2.4 (2)] (for the first) and Lemma 3.1.12 (for the second):

Homy(g) (Mp(A), V)nF = Homy, (L(\) p, Vi *) 2 Jp(V)a 1, = 0. (7.2)

S

From (7.2) we deduce topological isomorphisms
V(Mp(X),0,0)
= ((JP(V)AL%LP = 0] ®p (63285 ) o detr,))RpC¥(Z] . E) @5 UV) Le
= <(JP(V)>\ ©p (632 o detr,))DpCY (22, E)sr, = 0] @5 UV)L%
= Homy,, g, (c-ind} @, (T (V) @5 (0325 o dety,.)) 8pCS (28, B)lpr, = 0])
= Homy., g, (B3)™ o detiy) © cind o, Tp(V)\BeC™ (24, B)sr, = 0]
= Homy, (g, (c-ind§§<@p> 0, Jp(VIABsCo (22 B)fsp, = 0]) Baa(V)[30 = 0]

where the second isomorphism uses %~ la(ng, E) ®p 03 5 = CQP*la(ZO , E) and the fifth uses
(3.8). The last part of the statement on the Zq x Zp-action follows by the same argument as in

the proof of Lemma 3.1.6. O
Lemma 7.1.3. For M € Oalg’ we have
V(M,0,0) =PV (M0,0)mlmF = @ V(M0,0)m]m>]
% meSpm Zq,x

where 6 (resp. x) runs through the smooth characters of Ag = Zr,,(Qp) (resp. through the locally
algebraic characters of Zy =2 ng of weight 9), and ms C E[Aqg] (resp. my, C E[Z]) is the
mazximal ideal associated to the character § (resp. x). Moreover, each term in the direct sums is
finite dimensional over E.
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Proof. As M € Oglg, there exist finitely many P-dominant integral weights A; such that
@;Mp(N;) - M. Using successively the following facts:

1) Homyg)(—, V) is left exact;

(1)
(2) taking N9%-invariant vectors is exact on smooth representations of P(Q,);
(3) taking (—)g preserves injectivity (cf. [40, Prop. 3.2.6 (ii)]);

(4)

4) (=)LP is left exact,

we deduce an injection:
V(M,0,0) — &;V(Mp(\),0,0).

It is sufficient to prove the statement for each V(Mp(A;),0,0). Indeed, if this holds, then any
vector v € V(M, 0, 0) generates, under the action of Zq x 2, a finite dimensional E-vector space,
and from this we easily deduce the decompositions in the lemma for V(M,d,0). Moreover for
each m € Spec Zg and each x, the vector space V (M, 0, 0)[m,][m*] is finite dimensional as it is a
subspace of @&;V (Mp(X\;),0, 0)[m,][m>]. However, the statement in the lemma for V (Mp(X\;),0,0)
follows from Lemma 7.1.2 and Lemma 3.1.4. O

Lemma 7.1.4. Let m C Zq be a mazimal ideal and x a locally algebraic character of Zy of
weight 0. Let V be a continuous representation of G, on a Banach space over E such that V'V
is a finitely generated projective Og[[K,]|[1/p]- module where K, := G(Z,). Denote by V" C V
the subspace of locally analytic vectors ([42, Def. 3.5.3]), which is an admissible locally analytic
representation of G, on a E-vector space of compact type ([42, Prop. 6.2.4]). Then the functor
Var(—,0,0)[m,][m*>] is exact on (’)glg
Proof. Let my be the smooth Lp(Q,)-representation associated to m and w its central charac-
ter. Let m, C E[Ag] be the maximal ideal associated to w. Then V*(M,0,0)[m,][m>] =
Var(M,9,0)[m>][m,] is a direct summand of V** (M, 9, o)[mZ’][m,], and it is enough to prove the
statement with [m*°] replaced by [m2°]. Let

8= (((X(ég)_ )2(6;‘;)_ ) odety,, )w = ((Xda_l) odety,, )w
which is a smooth character of Zy,(Qp). Let ms C E[Zy,(Qp)] (resp. ms4 C E[Z1,(Qp)T]) be
the maximal ideal associated to §. For M € (’)alg, we have (by unwinding the Ag-action, and
noting that Lp(Q,) acts on x via xZ! odety,, cf. (3.2))

0 0
Van(M> 0, U)[mx] [mgo] = (HomU(g) (M7 Van)gfp [mgo] 029 5) (50 o detLP) RXE X QF UV)LP

~ an\N% . oo \Y, L?:'
= (Homyg)(M,V*™)Vr[m§% ] @p (6 o detr,) ®p x @p o) " (7.3)

where the second isomorphism follows from [40, Prop. 3.2.11] and [40, Lemma 3.2.8]. In particular,

the right hand side of (7.3) is finite dimensional by Lemma 7.1.3. By [19 Lemma 5.2.5], the functor

Homy(g)(—, V") is exact, hence so is the functor Homy g (—, V) P as m — 7P is exact on

smooth representations 7w of P(Q,). We deduce that, for an exact sequence 0 — M; — My —
M3 — 0 in (’)alg, the following sequence is exact:

0 1,90

0 — (Homyq) (Ms, V")NP @ (6 0 detr,) ®p x ®p a”) ™"

0

— (Homyg) (Mo, VEYNE @5 (6 0 detr,) Op X ®F UV)LP
0
— (Homyg) (M1, Van)NJOD ®p (0yodetr,) ®r X ®F UV)LP — 0. (7.4)
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By (7.3) it is enough to show that the sequence (7.4) stays exact after applying [m3°_|.

We now explain how to prove this by a generalization of the arguments in the last paragraph
of the proof of [20, Prop. 4.1]. We let H be as in loc. cit. and replace N% by H N Np(Q,) (which
won'’t cause any problem). Using [40, Prop. 3.3.2], we choose finitely many z; € Zy,,(Q,)" such
that NSz ! C (N9)P for N% = Np(Q,) N H, and such that ng and the z; generate Zp,,(Qp)

as group. For M = Mp(\) € Oglg, we have by (7.1) a topological isomorphism

0
(Homyq) (M, V™) @ (5 o dety,,) @5 x ©p o) "F
0
~ (VNP @ LN @5 (6 0 detr,) @p x @5 0Y) P, (7.5)

By an easy generalization of [18, Lemma 5.3] (see also the proof of Proposition 3.1.15), we can
write the right hand side (hence the left hand side) of (7.5) as an increasing union over j of
BH-subspaces Vj such that each z; preserves V; and acts on (the underlying Banach space) V; via
a compact operator. The same holds for a general M € (’)Zlg as (Homy gy (M, Van)N,Q, ®F (60 o
detr,,) ®E X ®F oV)EP is a closed subspace of a finite direct sum D; (Homy g (Mp(N;), Ve NP @
(0 odetr,) ®r X ®F O'V)L(l)” for some integral P-dominant weights A;. We can now apply the
argument in the last paragraph of the proof of [20, Prop. 4.1] with the BH-subspaces IIj, of loc.
cit. replaced by the BH-subspaces V; (for general M) discussed above to conclude. O

7.1.2 Cycles on patched Bernstein eigenvarieties

We construct certain cycles in the completed local rings (at some specific points) of patched
Bernstein eigenvarieties.

We assume that we are in the setting of § 3.3 and we use without comment the notation
and constructions of loc. cit. We fix A an integral P-dominant weight, 2 a cuspidal Bernstein
component of Lp(Q,) and p a UP-modular continuous representation of Galp over kg (where
U? is a “prime-to-p level”). We have the associated patched Bernstein eigenvariety £3° (p), see
(3.29). ’

Let 0 be an integral weight of 37, and put g := A + 09 odetr,. Let Ss%f’/\(ﬁ)a be the fibre

of EF\(p) at d via EF)\(p) — Zy — 30 = 37, Note that using [28, Lemma 6.2.5] and [28,
Lemma. 6.2.10], we can deduce from Corollary 3.3.3 (1), (2) and Proposition 3.3.2 that £3° (p)»
is equidimensional of dimension

o+isi + 3 (1 @2 D).

Let My, \ == Mg, ®(9550A@ (’)&?A@D. Using (3.28) the vector space of compact type

F(c‘,’g‘f)\(ﬁ)a,/\/l “, )\)v is topologically isomorphic to the following vector spaces of compact type
(which are of compact type by an obvious generalization to the patched case of the discussion
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above Lemma 7.1.1):

R 0
(Tp(F=a), @ %1820 B) o 0¥) P30 = 0]
0
( ( Roo—an))\®ECQp—la<Z2P7 E) [5LP = 0] XRE O'V)LP
(JP(Hiw_an)/\[éLp =00 detLP]®ECQp_la(Z2pa E) [5LP = 0] QF JV

1%

I

)
—an\ VP > —la L
%(HomU(g)(Mp(u),HoRo“ )i’ ®E (0 odety,)OpC® (2], E)5L, =0 ©p UV) "
_an\ VY ~ la LY
o~ (HomU(g)(MP(M),Hioo )i" ®F (6 o dety,,)®pCY (2} | E) g aV) :

where the second and fourth isomorphism follow by considering the action of [p (see also (3.6)),
the third isomorphism follows from (7.2) and the natural isomorphism

Tp(IE )51, = 0] 2 Jp(IE= )5 [32, = Do detr,] ©p (& ' o detr,). (7.6)

The natural surjection Mp(u) — L(u) induces an injection

0 ~ 1,9
((HomU(g)(L(u),Hfo"o_an)gP ®p (0 o detLP))®EC@P_la(Z2P, E)®g Uv) i
0

0 R L
N <(HomU(g)(Mp(,u,),Hfow_an)gp D (6 0 dety,))BpCP (20 E)@p UV) T

As in the discussion above Lemma 7.1.1, we equip the right hand side of (7.7) with the topology
induced by the one on ITE=~2" 5 (§;, o detLP)(@EC@P*la(ZgP, E)®p ¢V, and the left hand side
of (7.7) with the topology induced by the one on the right hand side, which identifies it with a
closed subspace (in particular, all spaces are of compact type). It is also clear that the morphism
in (7.7) is equivariant under the action of Ro, X Zy X Zq. In particular the left hand side of (7.7)
is preserved by 058‘3(5)0‘ Let £, » be the quotient of the 058%\( -module M, \ such that

L(EEAP)o L)

L,
—an N3 o~ —la Lj
~( (Homy q) (L (1), =) N? 5 (8 o det,,) ) 8xCo (28 E) 0 JV) T(1.8)

P

The Ogoo (@) -module £, ) is finitely generated, and its schematic support defines a (possibly

empty) Zariski-closed rigid subspace 3 2 of 3 (p)o. We denote by 3,1 C 30 ™4 the union of its
irreducible components of dimension dlm Egn(P)o, which is still Zariski- closed in Egn(P)o-

Next we move to a similar discussion for the completion of the patched Bernstein eigenvarieties

at some specific points. Let z := (2P, xp, 2, Xz) € (Spf R5 )" x (Spf R%' )8 x (Spec Zq )8 x Zy. We
. . . p

write y := (2, xp) € (Spf Roo)™® = (Spf R5)™8 x (Spf R%'p)“g. Let my, my, m,, be the associated

maximal ideals of R[1/p], Zq, E[Z] respectively. Let 0, := wt(x;) and A* := X\ + 0, odety,.

By definition, we have an isomorphism of finitely generated Ogéo)\( -modules (for such sheaves

P
of modules, we identify them with their global sections with no ambiguity):

an 001 —la 00 LY 0o v
MZx ®ocp Oese, ()0 = ((JP<HR°° AmX)ReC¥ (2], B)m] ®p o) P[mgl)

QN
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and an isomorphism of finitely generated (7)\580A (P)oy ,o-modules:

~

Max ®OS§'{§A@> Ofﬁ%(ﬁ)amx
~ 0 %
~ ((JP(Hiw_an)A[mzo]®ECQp_la(Z2p7E) [3Lp = aw][m;i] ®F O_\/)LP [mzo]>
0 v
= ((JP(Hfo*‘a“)x[m?] ®p Xz @p0”) " [mg]) (7.9)

which are both non-zero if and only if z € £3° (p). Assume in the sequel 0, € ZIFT™Q By
modifying the Bernstein centre 2 and using Proposition 3.2.3 (which obviously generalizes to the
patched case), we can and do assume that the character x, is algebraic. We have

1,9
(Jp )\ mi] @ xo @ ) [me]

0
LP

= (JP(HOROW‘“)A[mZ‘)][zLP =0, odetr,] @p Xz ®F oV) [m]

0
0
N9,

L
= (HomU(g) (Mp(A"), TTI72") P [m>] @ p (6, 0 detr,) @p Xe O aV) "m] (7.10)

where the second isomorphism follows from (7.2) and (7.6) (be careful with the action of Ay).
Lemma 7.1.5. With the above notation, the functor

_an NO Lo
M — (HomU(g) (M, T1>=) P mp®] @ (6, 0 detr,) ®F Xo ©F JV) " mg?]

on the category Oglg 1S exact.

Proof. For each t € Zx>1, let Z; be the kernel of the composition Sx[1/p] — Roo[l/p] —
Roo[1/p]/m},. Then TIo[Z;]" is a finite projective Op[[K)]][1/p]-module (see § 3.3) and we have
oo [ = TTE=30[T,] (which easily follows from [17, (3.2)]). By Lemma 7.1.4 and Lemma 7.1.3

0
applied to V' := I [Z;], the functor M > (Homy 4 (M, V)gp ®F (5azodetLP)®EXx®Eav)L% [mg°]
is exact. We then argue as at the end of the proof of [18, Thm. 5.5]. O

Define

~

i A %) o
M)\17/\,y = MQ’)\ ®O‘9?zox<ﬁ) O“:gzo,x(ﬁ)%ﬂ = M/\ac,)\ ®O£5OA(5)% OE&%?A(ﬁ)azvx (7.11)

which by (7.9) is isomorphic to the strong dual of the space in (7.10). Let L(x) be an irreducible
constituent of Mp(A”) and define NV, 5, as the dual of the following space of compact type:

0
0
N9

L
(HomU(g) (L(,u), Hfow_an)fs [m;o] ®F (0, odetr,) O Xz OF UV) P[mzo]. (7.12)

By Lemma 7.1.5, N, \, is a subquotient of the @583 (B)o, w-module Mz 5. One can show
moreover that V), ) , is preserved by the action of Ry x Zy x Zq, hence is also a finitely generated
(955?A (B)o, o-0dule.

Lemma 7.1.6. We have N}, », # 0 if and only if
G _ — — —an
Hom(;p (fPE(QP) (L (—n), Ty OF ((%;X'x@) odetr, ) XF 5]31)’1_[?000 [my]> # 0.
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Proof. By definition NV, », # 0 if and only if

Roo—an NI(; \Y, L?)
(HomU(g) (L(,u),HOO"O )fs [my] ®p (6, © detLP) RF Xoe QE O > [md # 0.

Using Lemma 3.1.2 (applied to M = Zq/m,) and Lemma 7.1.1, the above vector space is isomor-
phic to (be careful with the Lp(Qp)-action on the factor x,):

0
Homy, ,(qg,) (7@, Homyy (g (L(p), Hfow_an[my])gp @5 (6, odetr,) ®p (Xem) 0 detLP)
~ _ Con NO
= Homp,(q,) <7T£ ©p (6, (Xe.w) ') o detr, ), Homyg) (L(p), T [my])fsp>
~J G — — — oo —an
=~ Homg, (fpf((@p) (L™ (—p), 72 @5 (05 Xa) o detr,, ) @p 0p"), T4 [my]).

The lemma follows. O

It follows from Theorem 3.3.9 and Proposition 6.4.5 (2) that the natural morphism (7)\350073/ —
@géﬁ)\(ﬁ)%@ is surjective. Consequently N, », is a finitely generated (535007y—m0du1e. Let X be
another integral P-dominant weight and 9 an integral weight of 37,,, such that L(yu) is an irreducible
constituent of Mp(\ +0odetr,). Let 2’ € Spec Zq such that 7y = 7, ®p (0325, » © detr,)
and ' := 67 (recall x; = 63 ). Let 2/ := (y,2/,X’) € (Spf Rsc)"® x (Spec Zq)"8 x Z,, hence
A = X+ (wt(x') odetr,) = XN +dodety,. Using similar arguments as in the proof of Lemma

3.1.6 (especially in the last paragraph), we have a topological isomorphism which commutes with
R:

o

0
0
NS

((Homug) (L (), =) 7% [m¥] @ (%, 0 detr,) @5 xa @5 0") (]

~ Roo—an N}OD %) ! \Y L(I)D o]
— (HomU(g) (L(/L),HOOOO )fs [my | ®E (0podetr,) ®p X @p o ) I:mgl].

Note however that the Zo x Zp-actions on both sides differ by a twist. We then obtain (using
Lemma 7.1.5 for the second part):

Lemma 7.1.7. We have an isomorphism of @xwﬁy—modules Nury = Nyny. Consequently, if
Nury # 0, then Myt v, # 0, hence ' = (y,2',x') € £y (D)

Keep the notation of Lemma 7.1.7 and suppose moreover A* = A%, then by similar argu-
ments (with L(u) replaced by Mp(A*)), we obtain an isomorphism of @xw7y—modules Mz yy =
Mz y . We will use the notation Ny, := Ny xy, Mz y := Myz y, in the sequel when we are
only concerned with the Rec-action. As £ (p)a, is equidimensional of dimension g + [S In? +

> ves, ([F : Qp]@), so is @553 (P)o, .z (€€ for example the discussion on page 309 of [19]). For

-module N we set (where Z¢(—) is defined in the same way as in

a finitely generated 658% (P)og,@

§ 6.5):
~ .0+ ~
[N] = Zm(S,N)[:’)] € ZO(SpeC 0583(5)01790) C Z[F+.Q] 2+1 (SpeC Oxoo,y)
3

5As we will not use this result, we leave the curious readers work out the precise twist.
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where 3 = Spec O,; runs through the irreducible components of Spec Ogoo R0 (m3 is the asso-

Plog T
ciated generic point and Oy, the localization at 73), and m(3, ) is the length of the Op5-module
Niy5- We have by Lemma 7.1.5:

Moy Z b (7.13)

where bz ,, denotes the multiplicity of L(j) as an irreducible constituent in Mp(A*). The following
lemma is straightforward (comparing (7.8) with (7.12)):

Lemma 7.1.8. We have [N, 4] # 0 (resp. Ny # 0) if and only if x € 3, (resp. « € 3 -

Assume that p, 3 is generic potentially crystalline with distinct Hodge-Tate weights hg for all
v|p, and that 27 lies in the smooth locus of X5 := (Spf R5,)". By Corollary 6.4.7, X5 x X n(p,)
is irreducible at the point = (see Theorem 3.3.9 for the notation). We deduce:

Corollary 7.1.9. The embedding in Theorem 3.3.9 induces a local isomorphism at the point x,

and E°,(p) is irreducible at .

Let h = (hy) and p = () = (U34r) i=1,...n With pz,, = hy,; - + i — 1. By Proposition
vESY, TEXY

3.3.4, there exists w, = (w,5) € #L = w1l . such that A* = w, - p. For each v € 5,

min v€ESp ” min,
and wy € Wk, let &, € ZF5: Q]

mt )(Spec Ox,_, ) be the cycle defined in (6.19) (applied to
L = F3, p = py and so on). For each w = (wg) € “//F, we put

X H Cow, € AR (Spec@xwyy). (7.14)
vES)

Cw,F = [Spec @36’;0

,a:P}

n(n+1)
2

Similarly, let 3, r := [@xgmxp] X [Tves, dows € ZIF"a (Spec @xooy), where 35, is the
cycle defined in (6.18) (applied to L = Fy, p = py). Note that both €, r and 3, r are independent
of the choice of the representative w in its associated class in #7,,\##. By Lemma 6.5.1, we have:

Lemma 7.1.10. For w € #F, the cycle 3., F is irreducible.

For w,w' € #r, let

— || - || / - || /
- aw%w%’ Cww' *= Cw%w%’ Cw o’ = Cw;,w%

vES) vES) vES)

where a,,_,, € Zx>o are those a,,.s defined above (6.19) (applied to L = F; and so on),

Cug wly» civmw € Z> are the integers ¢,y , C, w.w Tespectively in Lemma 5.4.13 (2) (adapted to the

setting G = Rest GL,, and so on). By (6.19) and Theorem 5.4.11 (3), we have

e n(n+1) ~
Q:w,F = Z aw,w’Bw’,F = Z aw,w’Sw’,F S Z[ @) 2 (SPeC O.’foo,y)' (715)
U)IEWLP\WF wIEWLP\WF
wl max Swtnax

We let wy, 5 € #  be the element associated to py (and Q) as in § 2.3 (denoted by w there)

max,Fy
and

wy = (wy5) € 4 =[] an’;x e (7.16)

vES)
which is exactly the product for v € S, of the w, in § 6.5 for L = F;. By Lemma 6.5.3 we have:

119



Corollary 7.1.11. For w = (wy) € #F, we have €, p # 0 <= 3 # 0 <= w™™ > w,.

Corollary 7.1.11 allows to further refine (7.15) as:

.0, n(n+1) ~
Q:w,F = Z aw,w’Sw’,F € Z[F+.Qp] 2+1 (Spec Ox()o,y)' (717)
’LUIGWLP\WF
wy Sw/ max Swmax
Corollary 7.1.12. (1) We have
~ +.q)2nt+D) A
[SpecOg&A(ﬁ)DWx] = Z céUEwO,F,wayF e Z U757 (Spec Ox ).

WEWLP\WF
wygwmaxSwIwO’F

(2) Assume x is a smooth point of E3\(p), then we have:

~ +.nn(nt1) ~
[Spec Ogg%?)\(ﬁ)Dzvx] = Z wawo,p,wQ:w,F S Z[F :Q) 2 (Spec Ofoo’y)
wEWLP\WF
wygwmaxngwoﬂF
where by, = Hvesp by e for w = (wg),w" = (wy) € W, which is equal to the multiplicity of
L(w/maX'UJQ,F . 0) m Mp(wmaxwmp . 0)

Proof. (1) (resp. (2)) is a consequence of Corollary 7.1.9, Lemma 5.4.13 (2) (resp. Lemma 5.4.13
(1), (3)) and Corollary 7.1.11. O

7.2 Companion constituents

In this section, we prove our main (global) results on p-adic automorphic representations.

For v € S}, we let p; be an n-dimensional generic potentially crystalline representation of Galg;
over E with distinct Hodge-Tate weights hy = (hg i )i=1,...n- Let XA := (Ag) := (M\gir) i=1,..n
TEX Y vESY, TEXY
with Az, = hg;r +i—1 (so A is integral P-dominant). Let = := (y,z,1) = (2P, 2p,2,1) €
(Spf Reo)™® X (Spec Zq)™8 x Zy (50 y := (2P, xp) € Spf Roo)™®). Let w = (wz) € #L , and assume
z lies in £, \(p). Assume moreover that 2? lies in the smooth locus of XB,. We let wy, € #L .
be as in (7.16).

Lemma 7.2.1. Let w' € #L,

min’

if Nuay) # 0 then w'wo p > wy,.

Proof. If [Ny .xy] # 0, we deduce by Lemma 7.1.7 (applied to ' = w’-h, 9 = d, = 0) that
(y,z,1) € S&wu(ﬁ)' Then using Theorem 3.3.9 and Corollary 6.4.12, we get w'wo r > wy. O

The following lemma is a consequence of (7.13), Remark 5.4.12 and Lemma 7.2.1 (compare
with Corollary 7.1.12 (2)):

Lemma 7.2.2. We have an equality of cycles in Z[F+:Q]n(n2+1> ((5350073’,):
[Mw-)\v y] = Z bwwoyp,w’wo’p[-/v’w’-)\,y]- (718)

w' et

min
wy <w'wo, p Lwwo, F
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Proposition 7.2.3. We have [Ny.»,] # 0.

Proof. By Theorem 3.3.9 and Corollary 6.4.12, we have wwo r > w,.

If wwo r = wy, then by Corollary 7.1.9 and Corollary 6.4.10, we know that £5°,,.,(p) is smooth
at the point z. By Corollary 3.3.3 (3), it follows that MG oy 18 (non-zero) locally free at the
point x, hence [My,.» ,] # 0. We easily deduce from (7.18) [My.x 5] = [Ny.a,y] hence [Ny ] # 0.

Now assume wwo,r > wy. We let X% (&0, h) = [[,e5, X5° (0,3, hs) where §o = (o) is the

P v
inertial type of p, = (p5). For w' = (wk) € #L.., we let

VIS (0. )ur = [T V2" (o hauy, € X5 (60, )
vES)

max
Y

tion 4.3.8, we see that p, = (pz) lies in the Zariski-closure Vg;“(go, h)ww, 5 Of Vg;“(go, h) g - i

%%:r(&), h). Let Cyu,  be the connected component of Vg;cr(éo, h)yw, » at the point p,, and let

UP be the smooth locus of the irreducible component of X5, at the point 2. The embedding in
(4.38) induces a closed embedding

where each term in the product is defined as in Proposition 4.3.8. As wwg r > w;**, by Proposi-

L Vplz)cr(fo, h)wwo,F X UP — XQ’w.)\(ﬁp) x UP.

We have (pp, 27) = x € £, (p). Moreover, by Corollary 6.4.7, it follows that Xq .. (p,) x UP
is irreducible at any point in the image of .. We then deduce that ¢ induces a closed embedding

L Cuwg o X UP — EG A (P)- (7.19)

Let Vwo p = Cuwwy p N szcr(éo, h)yw, »» Which is Zariski dense in Cyupg f, (:c;,,x’p) be any point
in Viwy p X UP, and put ' := (z3,,2"7) € Xoo. Since wwo,r = w, (Where, similarly as for wy, w,
is associated to x; and 2, noting that the framing in x;) does not cause problems), by the same
argument as for the case wwy r = w, above (but now applied with ¢(y’) instead of x), we have
Nway] # 0. By Lemma 7.1.8, this implies ¢(y) € 3p.awa- As ¢(y) lies in the Zariski closure
in £°,.,(p) of the set of all points ¢(y') as above, and 3y.5.1 is by definition Zariski-closed in
ngw_;(ﬁ), we deduce ¢(y) € 3u.aw-2, hence (by Lemma 7.1.8 again) [Ny.x ] # 0. O

Corollary 7.2.4. We have [Ny .»,] # 0 for allw’ € #.L such that w'wo r > wwo p (equivalently
w <w).

Proof. Assume first 1g(w’) = Ig(w) + 1. As [Nyay] # 0, by (7.18), [Myr.ay] # 0 (note that
buwwg, pw'wo p = 1, cf. Remark 5.4.12) hence (2P, 2y, 2,1) € £\ (p) (cf. (7.11)). Applying Propo-
sition 7.2.3 with w replaced by w’, we obtain [NVy,.) ] # 0. We can then start again this argument
with a w” such that lg(w”) = lg(w’) + 1. Using [11, Thm. 2.5.5], the corollary follows from an
obvious induction. O

Remark 7.2.5. In particular, if v € £, \(p). then x € £\ (p) for all w' € wE W <w. In
the trianguline case (i.e. P = B), it was proved in [18, Thm. 5.5] that this holds without assuming
pw to be generic potentially crystalline with distinct Hodge-Tate weights (see also Remark 4.5.10
(2)). The proof was quite different and based on the fact that, for any w' < w (in #%), L(w - \)
is an irreducible constituent of the Verma module M(w' - ), which does not hold in general if
ww e WE and M(w' - \) is replaced by Mp(w' - \). When P # B, the authors do not know if
this statement holds without the potentially crystalline assumption.
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Corollary 7.2.6. Assume that we are in the same situation as Conjecture 3.3.11 (we use the
notation of loc. cit.) Let 2P be the point of (Spf R5,)"8 associated to m, and assume moreover
that xP is a smooth point of (Spf R5)"'8. Then Conjecture 3.5.11 (1) is equivalent to Conjecture
3.3.11 (2).

Proof. By Lemma 3.3.13, we are left to show that, if z = (m,Nyes,71, ,1) € £5,.,(p), then
Boe s,C(wg, F5) < Eeo=0[m]. However, this follows directly from Proposition 7.2.3 and Lemma
7.1.6 (applied to p = w - A\, my = m etc.). O

Corollary 7.2.7 (Classicality). Let p be an UP-modular continuous representation of Galg over
k. Let Eq x(UP,p) be as in (the end of ) § 3.2.4 and x = (n, 7L, X) € Ear(UP,p). Assume

(1) Hypothesis 3.3.1;
(2) pa5 is generic potentially crystalline with distinct Hodge-Tate weights for all v € Sp;

(3) pu is a smooth point of (Spf Rﬁi)rig forve S\ S,.

Then S(UP, E)28[TS = ] #£ 0, i.e. py is associated to a classical automorphic representation of
G(Ap+).

Proof. By Proposition 3.2.3, we can and do assume x = 1 (by modifying A and ). Then by
Proposition 3.2.17, there exist a dominant weight p and w € #L  such that A = w - pu. By

Hypothesis 3.3.1 and Proposition 3.3.8, we can associate to x a pglrrllt, still denoted by «, of the
form (y = (2, 2p), 7rp, 1) in EF)\(p) satisfying S(UP,E)[TS = n] = I [m,]. Moreover, by the
assumption (3), 2P is a smooth point of (Spf R%,)*8. By Corollary 7.2.4, we see Ny # 0 hence by
Lemma 7.1.6 (noting that, as p is dominant, the Orlik-Strauch representation .Fgf (@p)(—) there

is locally algebraic) S(UP, E)[TS = n]%ls = I, [m,]'2!8 # 0. The corollary follows. O

Remark 7.2.8. (1) Using similar arguments as in the proof of [18, Thm. 3.9/, one may remove
the assumption (3) in Corollary 7.2.7 but assuming the weight A\ + wt(x) o detr, is dominant.

(2) If S\ S, = {v1} where vy is a finite place of FT as in [26, § 2.3] and UP is chosen as in
loc. cit., then (Spf R5.)"8 is smooth (so the assumption (3) is automatically satisfied).

Theorem 7.2.9. Assume that we are in the setting of § 3.2.1, and let p : Galp — GL,(E) be a
continuous representation unramified outside S such that the modulo p reduction p is irreducible
and UP-modular. Let m, be the associated mazimal ideal of T*[1/p] (via (5.19)). Assume

(1) Hypothesis 3.3.1;
(2) py is generic potentially crystalline with distinct Hodge-Tate weights for all v € Sp;
(8) py is a smooth point of (Spf Rz )¢ for v € S\ Sp;

(4) there exists a parabolic subgroup P O [],cg Resgng such that Jp(g(Up,E)an[mp]) has

non-zero locally algebraic vectors for LE(Qy).

Then §(U7’,E)[mp]lalg # 0, i.e. p is associated to a classical automorphic representation of
G(Ap+).
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Proof. Let P be a minimal parabolic subgroup such that the assumption (4) holds. Thus there
exists an integral P-dominant weight A such that Jp(g(Up,E)an[mp])A # 0 (see (3.1)). As
Jp(S (UP, E)*[m,])y is an essentially admissible locally analytic representation of Lp(Q,) and
is smooth for the LIQ (Qp)-action, there exists a compact open subgroup H C LJQ (Zy) such
that Jp(S(UP, E)™[m,])i is a non-zero essentially admissible locally analytic representation of
Zr1,,(Qp). There exists thus a continuous character § of Zr,,(Q),) such that

Tp(SUP, )™ [m,)){[Z1,(Qp) = ] #0.

We let x be a continuous character of ng such that wt(x)odetr, = wt(6) and put 6 := d(xg' o
detr,,, ), which is a smooth character of Zr,,(Q,). Consider the (non-zero) Lp(Q))-representation:

(Jp(S(UP, ) [my])x ©5 xz" 0 detr,)[Zr,(Qp) = 6

which is smooth and admissible by [42, Cor. 6.4.14]. Let 77, be an irreducible subrepresentation
of (Jp(S(UP, E)™[m,))x ®p Xz o detr,)[Z1,(Qp) = 6°°], so we have

T1p @5 (Xe 0 detr,) @5 L) p — Jp(S(UP, E)*[m,)). (7.20)

Let © be the Bernstein component of 77, ,. As P is minimal, using (7.20), it is not difficult to see
that  is cuspidal. By (3.13) and (7.20), it follows that (m,,7r,,x) € EaA(U?,p). The theorem
then follows from Corollary 7.2.7. O

Remark 7.2.10. The case where P = [],cq Resgz B was essentially proved (without the as-
sumption (3)) in [19, Thm. 5.1.3] (see also [19, Rem. 5.1.5]).

Next we prove results towards the socle conjecture in [13]. Let A = (A3, ) be an integral
dominant weight of G}, h = (hg; ;) with hg; - = Ay —i+ 1 (hence h is strictly dominant). For
w e #E | let .7, be the set of points z = (y = (IL‘p Tp),z,1) € Ey\(P)o (recall that £ (p)o is

min’

the fibre of £5°, (p) at the weight 0 of 37,,) such that:

(1) for v € S\ Sp, ps5 is a smooth point in (Spf R;_)"e;

(2) for v € Sy, py7 is generic potentially crystalline of Hodge-Tate weights hy and of inertial
type &5 (which is determined by €2);

(3) wy = wwo F.
Put . := U, cypr . Note that .71 consists of non-critical points in ..

Proposition 7.2.11. Let x € ., then we have [Ny ,] € Z&y, . F € 75 (Oxy) (cf
(7.14)).

Proof. Let o be a cuspidal Lp(Zy)-type for Q. For any s € Z>1, put mp s := (c—indﬁg((@p) 0)® Rz,
- - P
Zqo/m$. By Lemma 3.1.2 and Lemma 7.1.1, we have (noting that Ny , 18 isomorphic to the direct
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limit of the following E-vector spaces over s, cf. (7.12))

(L), T~ ) VP @ 0) P [m3)

%9 xZ.

(Homyq)

~ —anp, s\ VP
— HomLp(Qp) (7T27S,HOmU(g)(L(>\),H§o°° [my])fsp)

% Homg, (Fp7 g, (L7 (=A), e @ 051, e = m3])

~ G —1\o0 oo —aN[,..S

>~ Homg, (L()\) RF (IndP’i(Qp) Tzs OF ®E5P1) ,Hfo [my])
. 1Gp ~ —anf..s

< Homg, (L()\) 9 (c-indy? 7), 117 [my]>

~  Hompg, (L(\) ®p &, TEe"")[mS

‘] (7.21)

~ . G -1 G -1
where o is a Kj-type of G, for (IndP’i(Qp) Ty ®p 0p ) (note that (IndP’i(Qp) Tas QE 0p )™
is isomorphic to a successive extension of (IndIGfi @,) Tz OF §51)®). By [26, Lemma 4.17], the

) Tz
Rec-action on the last term in (7.21) factors through R&®o, Ry (&0, h) (where we recall that
p
Rg;r(go,h) = @Uengggr(fo,a, hy)). We deduce that the Ry-action on N, , also factors through
RE.®0, R%:r(fo, h). By Remark 6.5.2, we have €y, . r = [Oxr_ 1» ®(’)3€%;r(£07h),pp] (here the comple-

tion in ® is with respect to the maximal ideal associated to (aP, pp)). The proposition follows. [

Let x € . and recall that, by Corollary 7.1.9, £3°\(p) is irreducible at the point x. Let
my € Z>1 such that Mgy is locally free of rank m, in the smooth locus of a sufficiently small
neighbourhood of z in £, (p). We view z as a point of (Spf Roo)'® x (Spec Zq)'e x Z,. For
we WE

nin: We want to understand when z € EG°, ().

Lemma 7.2.12. If lg(w,) > lg(wo r) — 1, then for any w € WL such that wwo r > wy, we have

Nuwayl # 0, hence x € Ss%f’w,)\(ﬁ). Moreover, Mg, \ is locally free of rank my at x.

Proof. Since lg(wy) > 1g(wo,r) — 1, by Corollary 7.1.9 and Corollary 6.4.10, £5° (p) is smooth at
the point . Hence by Corollary 3.3.3 (3), Mg, is locally free of rank m, at the point x. By

Corollary 7.1.12 (2) and (7.18) (noting that, as lg(w,) > lg(wo,r) — 1, for w € WnﬁmF we have

1 >
bug powwe p = wwo.F N wy, see Remark 5.4.12 and Lemma 7.2.15 (1) below), we have:
’ ’ 0 otherwise

. n(n+l) -~
> Wand =Ml =my Y Cuugey €28 (0x,). (122)

wy Swwo, p<wo, F wy Swwo, F SWo, F

By Lemma 7.2.3, [N, 4] # 0 and the case where w, = wo r (which implies w = 1) follows. Assume
now lg(wy) = lg(wo r) — 1 and wwo p = wy. By (7.22) and Proposition 7.2.11, we have

[va\,y] = my@wo,F,y + my@wwo,p,y - [N/\,y} € my@wwo,F,y + Zgwo,p,y- (7.23)

By (7.17) and Lemma 7.1.11, it is easy to see Cywypy & ZCuwypy. We deduce [Ny.x,] # 0,

hence x € £5°,.,(p). Again by Corollary 7.1.9 and Corollary 6.4.10, £5°,.,(p) is smooth at x

hence M,  is locally free at x, say of rank mj. Hence [Ny, = [Muay] = myCuug py €
Z>0€wwo py- By (7.23) and the fact €y py & ZCuw; py (again), we deduce [Ny.xy] = My Cuwg gy
(i-e. my = my) and [N ,] = m,&, . This concludes the proof. O
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Lemma 7.2.13. Let w € # L,

min*
(1) Assume that, for any =’ = (y',2',1) € A, we have [Ny, # 0. Then for any x =
(y,z,1) € & with wy, < wwo r, we have [Ny.»,] # 0.

(2) Keep the assumption in (1), and assume moreover that, for all x' € S, MG p.n 18 locally
free of rank m,, in the smooth locus of a sufficiently small neighbourhood of «’. Then, for any
z = (y,z,1) € 7 with wy < wwoy r, MG . 18 locally free of rank my in the smooth locus of a
sufficiently small neighbourhood of x.

Proof. The lemma follows by the same arguments as in Step 9 of the proof of [19, Thm. 5.3.3].
We include a proof for the convenience of the reader.

(1) By Lemma 7.1.8, we only need to show = € 3,.)4.1. We use the notation in the proof
of Proposition 7.2.3. Denote by C C %%Cr(&), h) the irreducible component containing p, ,. The
p

embedding in (4.38) induces an embedding
t:CxUP — XQJI(pp) x UP

which sends y to x € £5,(p) = Xan(p,) x UP. By Corollary 7.1.9, X (p,) x UP is irreducible
at any point in the image of «. We then deduce +(C xUP) C £\ (p) (this is similar to (7.19)). It is
clear that Viw, p C Cuww,  C C (recalling that C is irreducible and smooth, cf. [63, Thm. 3.3.8]),
and that any point in ¢(Vyw, » X UP) C £y (p) lies in .. Recall the morphism in (4.38) induces

L CUJU}O,F X UP — XQ,w(h) (ﬁp) x UP.

For each y' € Vi, x UP with ' = 1(y') € S, we have by assumption [Ny.x] # 0, hence by
Lemma 7.1.8 2’ € 3uawr C €5, (P) = Xawm)(Pp) X UP. As x lies in the Zariski-closure of
such ’, it follows z = ¢(y) € 3. aw-r- (1) is then a consequence of Lemma 7.1.8.

(2) By (1), we have & € 30 w2 = €5y (P)- Let Dy, (resp. Dq) be the irreducible component
of £5°,A(P) (resp. £\ (p)) containing 2. As in the proof of (1), we have t(Viw, ) C D1 and
t(Vwwo r) C Dw. Let Uy, be a Zariski-open neighbourhood of = in £, (p). Since £5,,.,\(p) is
irreducible at z (Corollary 7.1.9), shrinking U,,, we can and do assume that U,, and the smooth
locus U™ of U, are both irreducible (note that U™ is Zariski-open Zariski-dense in U, cf. [17,
Prop. 2.3]). There exists m such that Mg , is locally free on U;™ of constant rank m. Similarly,
we let Uy be an irreducible Zariski—operf neighbourhood of z in Eff’)\(ﬁ) such that U™ is also
irreducible. Then Mg, is locally free on U™ of rank m,. We have (2, z,) € YY) N (U) N
(Cowwy p X UP). Since Vi, , x UP is Zariski-dense in Cyu, - X UP, we deduce THUD) NN Uy) N
Vwwo p X UP) # 0, and we let y = (2’7, x;,) be a point in the intersection. By Corollary 7.1.9 and
Corollary 6.4.10, the point 2’ := «(y') € Uy, is in fact a smooth point of U,,. Hence by assumption
m = m, = my. This finishes the proof. O

Lemma 7.2.14. Let x = (y,z,1) € . and assume 1g(wy) < Ig(wo,r) — 2. Assume that, for all
w € WL, with wwo F > wy, we have

min’

o Wuayl #0 (sox € &5, \(P));

o M .x s locally free of rank my in the smooth locus of a neighbourhood of x € 58?1”)\@)'

We assume that one of the following two conditions holds:
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(1) there exists w € WL . such that

max
o w > wy and lg(w) = lg(wy) + 2;
—1
. dimgzjzy =dimjr, — 2;
e the Bruhat interval [wy, w] = {w'|w, < w' < w} is full in WL, i.e. there exist distinct
wy, wy € WL such that wy, < wi,wsy < w, lg(wy) = lg(ws) = lg(wy) + 1 (e.g. see [19,
Lemma 5.2.7]);

(2) there exists w € WL such that

o w > wy and Ig(w) = lg(wy) + 2;

e the Bruhat interval [wy,w] is not full in WL,

max’

Then [Nwywy p-ayl 7 0 (which implies x € EG wywo ~A(P), and M o por B8 locally free of rank
my at the point x. 7 ’

Before proving Lemma 7.2.14, we first give an easy lemma on the multiplicities by, .+ in The-
orem 5.4.11 (2).

Lemma 7.2.15. Let w,w' € %L,

max

(1) [f lg(w/) == lg(w) - 1, then bw’w/ =1.

such that w > w'.

1 [w,w] is full in #L,

(2) I lg(w') = lg(w) — 2, then by, = { | e

’ 0 otherwise.
Proof. We only prove (2), (1) following from similar (and easier) arguments. We only need to
prove a similar statement for a single GL,(E) (rather than G,). We let hence P C GL,, be a
parabolic subgroup, w,w’ € #,L,, C #, and by, . be the multiplicity of L(w'wy-0) in Mp(wwp-0).
Recall first that L(w'wq-0) has multiplicity one in the Verma module M (wwy-0) (see for instance
[57, Ex. 8.3(a)]). By [57, Thm. 9.4(b)], we have an exact sequence

Baesp M(sqwwg - 0) = M(wwg - 0) = Mp(wwy-0) =0 (7.24)

where Sp denotes the set of simple roots of Lp and s, denotes the corresponding simple reflection.
Note that for each a € Sp we have sqw < w and lg(sqw) = lg(w) — 1 (e.g. see the proof of
Proposition A.2.1).

We claim that there exists a unique o € Sp such that w'wg > s,wwy if and only if [w’, w]

is not full in #L . Indeed, we know there exist two, and only two, elements w; € # such that

w < w; < w (see [19, Lemma 5.2.7]) and by [11, Thm. 2.5.5], at least one of w;, say wi, lies in

WP I w'wy > sqwwp for some a € Sp, we then deduce w' < s,w < w, hence sow € [w',w).
However, sqw ¢ #,L so [w',w] is not full in #L . If [, w] is not full in #L_, there then exists

a unique element w” ¢ #,L such that w’ < w” < w. This implies

! ! ! 1/
w = w ™M <w’ <M <" = w.

As lg(w) = 1g(w’) + 2, this implies w”™a* = ™ = . Using lg(w) = lg(w”) + 1, it follows that
there exists s, € Sp such that w” = s w.
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So if [w',w] is full, L(w'wp - 0) does not appear in M (sqwwp - 0) for all s, € Sp. By (7.24)
and the discussion above it, we obtain by ., = 1. If [w',w] is not full, let & € Sp such that
w' < sqw < w. Then L(w'wp-0) has multiplicity one in M (sqwwq - 0) (and zero in M (s, wwy - 0)
for o € Sp, & # a). As M(sqwwg - 0) — M (wwy - 0), we deduce by counting the multiplicities
of L(w'wy - 0) in the first two terms of (7.24) that by, s = 0. O

Proof of Lemma 7.2.1/. Assume condition (1) holds. The proof is the same as Step 10 of the
proof of [19, Thm. 5.3.3]. As w,wi, ws > wy, by assumption, z € Eﬁf’wiwof,/\(ﬁ) for i € {1,2,0}.
Moreover, by Corollary 7.1.9 and Corollary 6.4.10, for ¢ € {1,2,0}, gﬁ?wiwo,p-/\(ﬁ) is smooth
at z. By Corollary 3.3.3 (3), i,
(7.22), using Corollary 7.1.12 (2) (applied to the completion of SS%?wiwo,F-A(p)O at x and to the

completion of ngwwof 2

ZIFHUMEE (B Y for i =1,2:

o 18 locally free of rank my at x. Similarly as for

(P)o at x), (7.18) and Lemma 7.2.15, we obtain equations of cycles in

[wawo,p-k,y] + [Nwiwo,p-k,y] = my €y, y + My, y, (7.25)

[wawO,F'/\yy]_'_[Nwle,F'/\vy]_'_[NWQ'LUO,F')H?J]_'_[NWWO,F')MQ] = my(e:wy,y+Q:wl,y‘FQ:wQ,y"‘Q:w,y)- (7'26)

If [Nwywo p-Ayl 7 0, then z is a smooth point of 5(%?wyw0,p-)\(ﬁ) (by Corollary 7.1.9 and Corollary
6.4.10) and Mg, . ..x is locally free at z (by Corollary 3.3.3 (3)). By Corollary 7.1.12 (2) and
(7.18), it follows [Ny, wo p-Ayl = [Muwywo rayl € Z€4y, 4. Note that [Nyyw, ] € ZEy, , obviously
holds if [Ny, wy »-ay] = 0. In summary, there exists m; € Z>q such that [Ny, w, z2y) = M€y y-
We then deduce from (7.25): [Nuwuwypdyl = MyCu;y + (my — my)&y, . By Theorem 5.4.11
(3) and Remark 5.3.5 (1), for w’,w” € #L., aw . = 0 if ' # w” and lg(w”) > lg(w') — 2.
Combined with (7.17) and using Lemma 7.1.10, it follows that, for w" € {wy, w1, w2, w}, we have
Cuwy = du'y # 0, and thus &,y , is irreducible. The equations (7.25) and (7.26) then imply:

[Nwiwo,pv\,y] = mQS’wi»y + (m;/ - my)Ewy,y,

[Nwwo,pv\,y] My 3w,y + (My — m;)Swy,y-

As 3., can only have non-negative coefficients in [Ny, ».ay] and [Ny,wy p-2y), We must have

m; = my. The proposition in this case follows.

Assume condition (2) holds. Let w; be the unique element in %L such that wy < wp < w.
Similarly as above, we have that €,y , = 3,7, # 0 (and €y, is irreducible) for w’ € {w,, w1, w},
that Eé‘fwlwo F_)\(ﬁ) is smooth at the point z, and that Mgwlwo - 18 locally free of rank m, at x.

We have as in (7.25):

[wawo,F-A,y] + [Nwlwo,pk,y] = my(¢wy,y + €y y) = my(Bwy,y + 3wy y)-

By the same argument as in the last paragraph, there exists mj, € Zxo such that [Ny, wy z2y) =
m’y§wy7y and [Nwlwo,pv\,y] = Mydw,y + (My — mg/)3wy,y (so my > m;) By Corollary 7.1.12 (1)
(applied with “A\ = wwg p - \” and 9, = 0), we have

~ . n(n+1) ~
[Specosgfwwofd(ﬁ)o,x]: Z C;U,w’Sw’,FEZ[ ©I=5 (Spec Ox y)- (7.27)
w/EWLP\WF
wysw/maxgw
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By the discussion on @~ in the last paragraph, we can deduce from Corollary 5.4.13 (1), (2)
that ¢y = by for w’ as in (the sum of) (7.27). Together with Lemma 7.2.15 (2), we see that
Cw,w, = 0, hence that ¢, ,, =0 by Lemma 5.4.13 (2). We can thus refine (7.27) as

~ . n(n+1) ~
[Spec Ogso Boz) = dw,F + Clpy Dun F € AR (Spec Oz y)- (7.28)

Q,wwO’F»)\

As the @xm7y—action on My, p-2y factors through Ogoo using (7.28) it follows that

Q’wwO,F'A(ﬁ)O”x’
[Mwwoypv)\,y] = aOBw,F + alswl,F

for some ag, a1 € Z>¢. Using (7.18) and Lemma 5.4.13 (2), we get

[-N’wlwo,F'A,y] + [Nwwo,F'Ny] = [Mwwo,F'%y] = GOSW,F + a13w17F’

hence
[Nwwmp-)\,y] + mySwl,y + (my - m;/)i?)wy,y = a05w,F + a13w1,F~ (729)

As 3w, F, 3w, F are distinct from 3,4, and as 3y, can only have non-negative coefficients in
WNowwo pAyls (7.29) implies (using my, > my,) my —my = 0, hence [N, wy p-ayl = My3uw,,y- This
concludes the proof. O

Remark 7.2.16. If none of the conditions (1) or (2) in Lemma 7.2.1/ hold, then for any
w € WL satisfying w > wy, and lg(w) = lg(wy) + 2, we have that [wy,w] is full in WL,
and dimgzjzy > dim 3z, — 2. We use the notation in the proof of Lemma 7.2.1/ assuming con-
dition (1). The main difference now is that we don’t know if Eg'szwo’F.A(ﬁ) is smooth at x (see
Remark 6./.11). Consequently (by Corollary 7.1.12 (1) and Lemma 7.2.15, and using similar
arguments as in the proof of Lemma 7.2.1/ in the case of condition (2)), the equation (7.26) has

to be replaced by an equation of the form (the other equations being unchanged):

[wawo,F'A,y] + [Nwlwo,F')\’y] + [Nw2w0,F'>\,y] + [Nwwo,F'Ny]
= a03w,y + a13w1,y + a23’u}27y + a33wy7y (730)
with a; € Z>o. Unfortunately, we do not have more control on these coefficients a;. The equations
(7.25) and (7.30) seem not enough to deduce [Ny,wy p-ryl = Myw,y 07 even [Nujwy pryl 7 0.

Note that, though we also don’t have much control on the coefficients ag, ay in the proof of Lemma
7.2.14 when condition (2) holds, the argument here can work as there are fewer terms.

Proposition 7.2.17. Let x = (y,z,1) € ¥ and w € Wnﬁn such that wwo p > wy. Assume that,

for allw' € #.E  such that w'wo p > wwo,F, one of the following properties holds

(1) lg(w'wo,rp) > 1g(wo r) — 1;

(2) one of the conditions (1), (2) in Lemma 7.2.1/ holds with w, replaced by w'wg .

Then [Ny.ayl # 0 (which implies x € £°,,(p)), and M@, is locally free of rank my in the
smooth locus of a sufficiently small neighbourhood of the point x.
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Proof. By Lemma 7.2.13, we are reduced to the case x € .7, (i.e. wy = wwp ). The case where
lg(wwo r) > 1g(wo,r) — 1 already follows from Lemma 7.2.12. Assume lg(wwp r) < lg(wo,r) — 2,
by Lemma 7.2.14 and the assumption in the proposition, we only need to prove

N ag) # 0 and Mg,y is locally free of rank my, in the
smooth locus of a sufficiently small neighbourhood of the point z (7.31)

for all w' € #L  with w'wor > wwor. To prove (7.31), again by Lemma 7.2.13, we only
need to show (7.31) for z € .%,,. By an obvious induction, we are finally reduced to the case

lg(wwo r) > 1g(wo,F) — 1, which follows from Lemma 7.2.12. O

Corollary 7.2.18. Let x = (y,z,1) € ~. Assume that, for any v € Sy, any two factors GLy;
in Lp, with ng; > 1 (if they exist) are not adjacent in the product Lp, = T2, GLy; ;. Then
Wyl # 0 forwe #L

nin U and only if wwo p > wy.

Proof. The “only if” part follows from Lemma 7.2.1 (which actually holds without the assumption
on the adjacent GLj;, in the statement). By Proposition A.3.3 in the appendix, under the
assumption in the statement, the condition in Corollary 7.2.17 holds for all w € Wnﬁn. The “if”
part then follows by Corollary 7.2.17. O

Remark 7.2.19. Without the assumption on the adjacent GLy , in Corollary 7.2.18 (for example,
when Py is mazimal with Lp, = GL,, X GL,, and ng1,n59 > 1), there may exist w, with
lg(wy) < lg(wo r)—2 such that none of the conditions (1) or (2) in Lemma 7.2.14 hold (see Remark
A.3.5). As discussed in Remark 7.2.16, in this case we don’t know how to deduce [N, wy -2yl 7 0
from [Nyay) # 0 forw € #E such that wwo p > wy. Using the method of [85], it may be possible

to obtain some cases where the Py don’t satisfy the assumption in Corollary 7.2.18, but it seems
that the maximal parabolic case mentioned above is still resisting.

Theorem 7.2.20. Assume we are in the setting of Conjecture 3.2.18. Assume moreover:

(1) Hypothesis 3.5.1;
(2) S(UP, E)*¥[mp) # 0;

(3) forallv € Sy, the condition in Corollary 7.2.18 holds for the parabolic subgroup Py associated
to yg.

Then Conjecture 3.2.18 holds.

Proof. We use the notation of § 3.2.5. Note that, by local-global compatibility in the classical local
Langlands correspondence ([25]), the assumption (2) in the statement is equivalent to the existence
of an embedding ®vesp0(1,ﬁ%) — §(UP,E)1alg[mp]. We let Q := Qz and z € (Spec Zq)"® be
the point associated to 7y, (7r, defined as in § 3.2.5). By the assumption (2) and the second
sentence, we have z = (n,,z,1) € £q(U?,p). By Proposition 3.3.8, z corresponds to a point
z=(y= (2P, 2p),2,1) € EF)\(p). We have [fee—an]m, | = §(UP,E)an[mp]. By similar arguments
as above [17, Lemma 4.6], 2P is a smooth point of X%,. By Corollary 7.2.18 and Lemma 7.1.6, it
follows that there is an embedding

Boes, Cwy, Fy) — MEx"0]m, | = S(UP, £)™[m,)]

if and only if wy < wg wo p, for all v € S, (noting that (wz,) = wy). O
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Remark 7.2.21. (1) By (the proof of) Theorem 7.2.9, the assumption (2) in Theorem 7.2.20
can also be replaced by the assumptions (2), (3), (4) in Theorem 7.2.9, the assumption (4) being
for P =T],cq, P5 associated to { F}.

(2) By the same argument but using Corollary 7.2.17 instead of Corollary 7.2.18, we can prove
Bves, C(wy, Fy) — M= m, ] 22 S(UP, )™ [m,)]

if wy <wg wo.p, for allv € S, and w = (wy) satisfies the conditions in Corollary 7.2.17.

In particular, we have the following special case of Theorem 7.2.20:

Corollary 7.2.22. Assume that we are in the setting of Conjecture 3.2.18, and that:

(1) Hypothesis 3.5.1 holds;

(2) S(UP, E)*¥[m) £ 0;

(3) for allv € S,, each r(py) has at most one irreducible constituent of dimension > 1.
For v € Sy, let F5 be a minimal parabolic filtration of r(py). Then Conjecture 3.2.18 holds for
F = (F).

Remark 7.2.23. The case where all irreducible constituents of r(pg) are 1-dimensional (i.e. the
(generic) crystabelline case) was proved in [19, Thm. 5.5.5].

A Appendix

A.1 Q-filtration in families

Generalizing [60, § 6.3] we show that Q-filtrations on (¢, I')-modules (cf. § 4.1.2) can interpolate in
p-adic families. The results in this section may be viewed as a parabolic analogue of the (so-called)
global triangulations.

The following theorem generalizes [60, Thm. 6.3.9].

Theorem A.1.1. Let n > r € Z>;. Let X be a reduced rigid analytic space over E, M a (p,I')-
module over Rx 1, of rank n, and A a (¢,I")-module over Rx 1, of rank r such that, for any point
x of X, Ay is irreducible and de Rham of constant Hodge-Tate weight 0. Let h = (h:);ex, =

(hir)i=1,..r be an integral positive strictly dominant weight (i.e. hir > hg s > -+ > hyr > 0 for
TEX]
all T € Xr). Assume that there exists a Zariski-dense subset X1, of points of X such that for all

x € Xalg-'

T

(1) ng r)(Az ®Ry(,) . M) is one-dimensional over k(z);

(2) Imn, is de Rham of Hodge-Tate weights h for 0 #n, € Hom, (Mg, Ay) =
H?@,F)(AJB ORpe(a).L M;/)

Then there exist
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e a proper birational surjective morphism f : X' — X;
e a unique homomorphism 1 : f*M — f*A (up to multiplication by O%,)
such that the following properties are satisfied:
(1) the set Z of closed points x € X' failing to have properties (a) and (b) below is Zariski-closed
and disjoint from f~1(Xag):

(a) Hom, 1y (M, Ay) is one-dimensional and generated by the pull-back 1, : My — Ay of
n;
(b) Tm(n,) is de Rham of Hodge-Tate weights h;

(2) the kernel of n is a (¢,T")-module over Rx 1, of rank n —r;
(3) the cokernel of n is locally t-torsion;

(4) Tmn|xnz is a (@,T)-module of rank v, and for all x € X'\ Z, the induced morphism
(Imn); — Aj) is injective.

Proof. The theorem follows by a variation of the proof of [60, Thm. 6.3.9]. We include a proof
for the convenience of the reader. One main difference from loc. cit. is that in our case, for any
x € X, Im(n,) is not saturated in A, except when r = 1. As in the first paragraph of loc. cit.,
we are reduced to the case where X is reduced, normal and connected (thus any coherent sheaf
over X has constant generic rank).

Step 1. By [60, Thm. 4.4.5 (1)] and [60, Thm ], the complex C¢, (A ®r,, MYV) is perfect
and concentrated in degree [0,2], i.e. is quasi-isomorphic to [Py — P; — P,] where the P; are
locally free Ox-modules of finite ranks. By [60, Cor. 6.3.6 (2)], we can obtain a proper birational
morphism fp : X} — X with X reduced and normal (and irreducible) such that

* H (fO (A DRy, Mv)) is flat;

) HZ (fo (A ®ry , M")) has Tor-dimension less than or equal to 1 for i =1,2.

Note that f5*(Xayg) is Zariski-dense in X{). Using the condition (1) and the above flatness, we see
that £ := H(Ocp r)(fg(A @Ry, MY)) is locally free of rank 1 over Ox;. We have thus a tautological

morphism of (¢, I')-modules over Ry 1,
n: foM B0y, L — foA. (A.1)

It is clear that, for any x € X{, the induced morphism n, : fiM; — f§A; is non-zero. We have
actually an exact sequence as in [60, (6.3.9.1)]:

0= Hip ) (58 sy, M) S0y kla) = iy (5(A By, M) S0y, k(@)
— TOI'l ( (v,F)(fo (A ®RX/’L Mv))7k(‘7})) -0

We deduce that the set Z of points « € X such that HO (fo (A®Ry MY))®o,, k(z) is not
isomorphic to H ( fi(A®r,, , M V) ®o,, k(z)) is Zarlskl closed in X|) (with its complement
given by the flat 1ocus of the coherent sheaf H1 (fo (A®ry MVY))).
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Step 2. Let @ be the cokernel of . For any point = € X{), since A, is irreducible and 7,
is non-zero, we deduce that @, = Cokerr, is t-torsion. Let Spm A be an affinoid open of X'.
By [60, Lemma 2.2.9], the base change of the morphism 7 via Spm A — Ry 1, admits a model
€ : My — A", and the cokernel Q") is a model of Q4 (the restriction of @ to R4 1) (where we
use the notation of [60, § 2] for M etc.). We have that Qg/ Pl s a finitely presented module
over R(X’/ff 1 Since Q. = Cokern, is t-torsion for all x € X', we see QEZ/ Pl

the zero locus of ¢ in Spm RX/LP ’T], which is a rigid analytic space finite over A. We deduce

that Qg/p’r} is annihilated by ¢V for some N € Z~(. Since Qg/pm’r/pmﬂ] = (gpmfl)*Qg/p’r], we
deduce that Q" = Hm€Z>1 Qg/ /e is also annihilated by ¢V (note that Q" is coadmissible
by [60, Lemma 2.1.4 (5)]). Applying [60, Cor. 6.3.6] to the finitely generated A-module Qg/p’ﬂ,
we obtain ¢ : Spm A’ — Spm A such that g*Qg/ P has Tor-dimension less than 1. Using the
p-action as above, we deduce that g*Qg/ /e also has Tor-dimension less than 1, and hence
that Q7 :== g"Q% = [1ez-, g*QX/pm’r/pm_l} has Tor-dimension less than 1 as A’-module (using
the fact that a direct product of flat A’-modules is flat, as A’ is noetherian). The morphisms
g: A" — A (with A varying) glue to a birational projective morphism g : X’ — X such that

Qx = ¢*Q has Tor-dimension less than 1, and we finally obtain f : X’ % X}, — X. By the
above discussion, @ x+ is locally ¢-torsion.

is supported on

Step 3. We have an exact sequence (by pulling-back (A.1) via g, and where we use £ to denote
the pull-back of £ in (A.1)):

"M ®o,, L 2 A = Qxr — 0.
Specializing to a point x € X’ and using the fact that Q x+ has Tor-dimension less than 1, we get
0 — Tori (Qx, k(x)) = Im(n)z = (f*A)s = Qxrz =0, (A-2)

and Tor;* (Im(n), k(z)) = 0 for i > 0. Then, specializing 0 — Ker(n) — (f*M ®oy, L) —
Im(n) — 0 to =, we get
0 — Ker(n)y — (f*M)y — Im(n), — 0. (A.3)

Since Qx- is locally t-torsion, both Tory (Qx,k(z)) and Qx', are annihilated by a certain
power of . We deduce that Im(7,) is a (¢,I')-module of rank 7 over Ry(,) 1, and Ker(n,)
is a (p,')-module of rank n — r over Ry, (recall that 7, denotes the induced morphism
(f*M)z — (f*A)z). We also deduce from (A.2) and (A.3):

0 — Ker(n), — Ker(n,) = Tory (Qx/, k(z)) — 0.

Since Tory (Qx-, k(z)) is t-torsion, it follows that Ker(n), is a (¢, T')-module of rank n — r for
all x € X’. By the same argument as in the last paragraph of the proof of [60, Thm. 6.3.9], we
deduce that Ker(n) is a (¢, I')-module of rank n — r (in the sense of [60, Def. 2.2.12]).

Step 4. We prove that U := {z € X' | Tory (Qx,k(z)) = 0} is Zariski-open and contains
f‘l(Xalg). Let Spm A be an affinoid in X’ and Q") be amodel of Q4 := Qx/|spm 4. For x € Spm A4,

by the same argument as in Step 2, we see that the following statements are equivalent:

. Qg/p’r] is flat over A at x;

e Q' is flat over A at .
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Since @ x has Tor-dimension less than 1 (by Step 2), U N Spm A is exactly the flat locus of
Qg/ Pl We deduce that U is Zariski-open. Now assume f~!(X,) N Spm A is Zariski-dense
in Spm A (noting that such Spm A can cover X’). For each z € f~1(Xag) N Spm A, by the
assumption (2) in the theorem, Im(n;) C Ay, is de Rham of Hodge-Tate weights h. We deduce

that Qg/ Pl @4 E(x) has constant dimension (determined by h). Indeed, using [6, Thm. A],
we can deduce that Q" ®4 k(z) = A;(I)/Im(nx)r admits a filtration by Ry ;-submodules

of graded pieces given by {R;(w) o/ s, t’Tli,r—hiH,T} where £, € Ry(p)p is the clement

defined in [60, Not. 6.2.7], and h,41,, := 0 for all 7. Since RZ(;L«),L is flat over RIS&;)’TL], we see that

QU /Pl ® 4 k(z) admits a filtration with graded pieces given by {R,(gzgz]/ [l es, t?iﬂ'_hH»l,T }z‘:l, .

Hence dimy,,) Q + Al/Prl @ 4 k(z) is constant for x € f~1(X,ye) NSpm A. Together with the fact

71 (Xag) N'Spm A is Zariski-dense in Spm A, we deduce that Q(X/p’r] is locally free at points in
1 (Xag) NSpm A. In particular, f~(X,,) NSpm A C U N Spm A.

1=1,...,r

Step 5. Consider the restriction D of Im7 on U (see Step 4). Specializing the exact sequence
0—=D—= (f"A)y —>Qu—0

at each point z € U, we get
0= D, — (ffA), — Q. — 0.

In particular, D, is a (¢,I')-module of rank r. By the same argument as in the last paragraph
of the proof of [60, Thm. 6.3.9], we deduce that D is a (¢,I')-module ([60, Def. 2.2.12]). For
x € U, since (f*A), is de Rham, D, is de Rham as well. Since f~!(X,)4) is Zariski-dense in U,
by interpolating the Sen weights (see for example [60, Def. 6.2.11]), D, has Sen weights h. In
summary, D, is de Rham of Hodge-Tate weights h for all z € U. The theorem follows by taking
Z to be the union of the complement of U and g~!(Z) (see in particular Step 3 for the properties
(2) and (3), Step 1 for (1)(a), and Step 4 & 5 for (1)(b) and (4)). O

Note that in Theorem A.1.1 f~1(X,) is Zariski-dense in X'\ Z.
Corollary A.1.2. Let X be a reduced rigid analytic space over E. Let n; € Z>1 for 1 <i <r
and n =Y., n;. Assume we have the following data:
(1) a (¢,T')-module M over Rx 1, of rank n;

(2) for each i, a (¢,I')-module A; over Rx 1 of rank n; such that for all x € X, A;, is
trreducible and de Rham of constant Hodge-Tate weight 0;

(3) for each i, a continuous character é; of L* over X;

(4) for each i, an integral positive strictly dominant weight hy = (h;)rex, = (hijr)j=1,...n; (i€
TEX]
hi7177 > > himi,r >0 forall T € EL),'

(5) a Zariski-dense subset Xa, of closed points of X such that for all v € X, My admits a
filtration 0 = Fily M, C Fily M, C --- C Fil, M, = M, satisfying

[ dlmk(x) Hom(%p) (Flll M,, Ai,x ®Rk(z),L Rk(x),L((sz,m)) =1
e for any non-zero morphism of (¢, I')-modules n; , : Fil; My — Ay ®r,, ) 1 Ri(a),2(0i2),
Imn, @Ry, . Rk($)7L(6;gcl) is de Rham of Hodge-Tate weights h;.

133



Then there exist

e a proper birational surjective morphism f : X' — X of reduced rigid analytic spaces;

a filtration 0 = Filp(f*M) C --- C Fil,(f*M) = f*M on f*M by (p,I')-submodules over
Rx'L;

line bundles L; over X' for 1 <i<r;

e unique morphisms n; : Fil;(f*M) ®o,, Li = f*(Ai ®rx, Rx,0(6:)) for 1 <i <r;

a Zariski-closed subset Z of X disjoint from Xgg
such that the following properties are satisfied

(1) for each i, the cokernel of n; is locally t-torsion and Kern; = Fil;_1(f*M) ®o,, Li;
(2) the (Fil’ f*M)|xnz are direct summands of f*M|xnz as Rxn z 1-modules;

(3) for all x € X'\ Z, the k(x)-vector space

Hom,, ry ((Fili f* M)z, A p(2) @Ry, Rik(a),L 03 f(2)))

is one dimensional generated by the pull-back of m;, and the (¢,T')-module Im(n;z) @, ,
Rk(x),L(di_kl(x)) is de Rham of Hodge-Tate weights h; for 1 <i <r.

Proof. The corollary follows from Theorem A.1.1 by induction. We first apply Theorem A.1.1 to
(M ®ry, Rx,0(6;1), Ay, X) (= the data (M, A, X) in the theorem) to obtain the data:

(f?“ : X7/~ — X, Z, C X7/~7 Tr - f:(M ®RX,L RX,L((SZI)) — f:Ar)

corresponding respectively to f, Z, n in Theorem A.1.1. Next we apply Theorem A.1.1 to
(Ker Mr ®RX7C,L RX;,L(dr(ST__ll)a f:Af,«_l,X;) to obtain (fr—l . le”—l — X{n, Zr—l C X;ﬂ_l, 777«_1). By

iterating this argument, we finally get f : X' := X EIN X,— =X Iy X and we put Z to
be the union of the pull-backs of the Z;’s. The corollary follows. O

Corollary A.1.3. Keep the setting of Corollary A.1.2 and let x € X'.

(1) We have that (f*M), = My, admits a filtration 0 = Filo Mg,y C Fily My C -+ C
Fil, My = Mgy by saturated (o,T')-submodules of My, such that gr; Mf(m)[%} = Az Op(a)
Ris(a), 2 (0ie) [$]-

(2) Let A € Art(E) and Spec A — X' be a morphism sending the only point of Spec A to
x. Let My denote the pullback of f*M along SpecA — X'. Then My = MA[%] admits a
filtration 0 = Fily My C Fily My € --- C Fil, My = M4 by (¢, I')-modules over RA,L[%] such that
gr; Ma = Aja @r,  Ran(6ia)[7].

Proof. Specializing the objects in Corollary A.1.2 at the point z, we have (¢, I')-modules over

Ri(w),L:
{(Fil; f*M )y = (Ker niy1)z pi=1,...0—1, {Kermizti=1,ry {8 f(@)ti=1,..r
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where (using the fact that Cokern; , is t-torsion):

7 i—1
kR, (o o (Fili f*M)y = 1kg, ) (Kerniy1), = an and rkg, ., Ker(n;;) = an,
j=1 j=1

We also have morphisms of (¢, I')-modules over Ry(y) 1.:

Ker(n;), — Ker(n; ) i=1,...,r
Ker(n;z) — (Fil; f*M), = Ker(nip1), i=1,...,r =1L

We have that Ker(n; ) is saturated in (Fil; f*M), for all i. Since Cokern; is locally t-torsion,
by similar arguments as in Step 3 of the proof of Theorem A.1.1, we see that the cokernel of the
morphism Ker(n;), — Ker(n; ;) is t-torsion, and hence this morphism is injective (as both source
and target have the same rank over Ry, 1). We take thus Fil, My, := My, and let Fil; My,
be the saturation of the image of the composition (note that some of the injections may not be
saturated, for example the first one):

(Fil; f*M)q = Ker(nit1)e < Ker(nit1,2) = (Filiyr f7M),
— Ker(m+27m) = Kel‘(ﬂnx) — Mf(m)

Since Ker(n;y1)z/ Ker(n; ) = (Fil; f*M),/ Ker(niz) < Ay ORp(a).1 Rk(x),L((si,z) with ¢-torsion
cokernel (both source and target having the same rank), we deduce

gr; My (g E} = Ker(ni41)a E} / Ker(niq) E] = Aip @Ry 1 Riv(a), 2 (0i0) E]

Part (1) follows. Part (2) follows by similar arguments. O

A.2 Characteristic cycles of parabolic Verma modules

We prove Proposition 5.4.8 by a generalization of Ginzburg’s method ([45, § 6.3]).

We let B C P C G be as in § 5, and we use without comment the notation there. For a
smooth algebraic variety X over E, we denote by Dx the sheaf of differential operators on X, see
for instance [54, § 1.1]. Recall that Ox is equipped with a canonical left Dx-module structure.
We will use below the notation of [54].

For w € #', we define C,, := BwB/B and C! := PwB/B, which are locally closed (smooth)
subschemes of G/B, and Cp,, := BwP/P, which is a locally closed (smooth) subscheme of G/P.
So CL (resp. Cpy) only depends on the image of # in #7,\# (resp. in # /#1,). Denote by
C., (resp. CP | resp. Cpy,) the Zariski closure of C,, (resp. CL, resp. Cp,,) in G/B (resp. G/B,
resp. G/P). We have

G/B = Uwer Cuw = Unen, ,\wCio and G/P =Uyeyp;,, Cruw

and we remark that all these schemes are over Spec E.

For w € #, consider j, : CI' < G/B. By an easy variation of [81, Lemma 5.1] and [81,
Rem. 5.2] to the case G/B, the open immersion CL — CF is affine, hence so is j,. Consider
the direct image fjw oF = R(jw)«(Da/peck ®%05 OF) € D!.(Dg/p) (cf. [54, § 1.5]). As jy is a
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locally closed immersion (i.e. the composition of an open immersion and a closed immersion), by
[54, Ex. 1.3.2] and [54, Ex. 1.5.12], we deduce that Dg g cr is locally free over Dgp. Together

with the fact that j,, is affine, we have fjw OF = (Juw)+(Dg/pecr ®D,p Ocr) =: ML, which is a
P-equivariant coherent D¢, p-module, hence by [54, Thm. 11.6.1 (i)] a P-equivariant holonomic

regular D,/ p-module. The following proposition is may-be well-known to experts, but we couldn’t
find a reference.

Proposition A.2.1. We have I'(G/B,NEY) = Mp(w™wq - 0)V where (—)¥ denotes the dual in
the BGG category O° (cf. [57, § 3.2]).

Proof. We have CL' = Uuewy, , Cuwmax. For w € W, we have lg(uw™) = lg(w™) — Ig(u).
Indeed, let ®* (resp. @) be the set of positive (resp. negative) roots with respect B, then
for w' € ¥, lg(w) = [{a € &7 | w'(a) € ®7}|. As w™* has maximal length in #7,w
WA (HF) N @fp = ) hence lg(w™™) = |w™™(®F) N (&~ \ @ZP)‘ + }@ZP‘. For uw € #1,,, u
preserves the sets @1 \ @JLFP and ¢\ @7, hence

lg(uw™™) = |uw™ (@) N~ = |uw™™(®T) N (P \ @ZP)‘ + |u(<I>ZP) N @ZP}
= W™ (@T) N (@T\ D@L )|+ DL, | — [w(@F )N | = lg(w™™) —lg(u).

Let d := [#1,,|. For k=0,...,d, denote by CF := Uuewy,, Ciymax and ZF := Uuews,, Cywmax. By
lg(u)<k lg(u)=Fk

the above discussion, it is clear that Z¥ is closed in CF and C¥~1 = CF \ ZF is open in CF, hence

open in CL'. Note that Z*% and C% are all smooth. Denote by iy, : Z{f, < OF, jp = Ck=1 s Ck|

and without ambiguity, we put i : Z¥ — C4 = CF j:CF < CP for all k. Applying [54, Prop.

1.7.1], for k = 1,...,d, we have distinguished triangles in DZC(D% ) (where we use the notation

of loc. cit., for instance see page 33 of [54] for iL, j,l):

-t -t +1
/i ZkOC{f, — (90112 — ; ]kOC{E —
k k

Applying fj = Rj, to (A.4) (for the open immersion j : CF < CF| cf. [54, Ex. 1.5.22]), we obtain
distinguished triangles in DSC(ch;):

J J J Y Ik

We have by definition ikOck = Oy [k]. Indeed, by the discussion below [54, Def. 1.3.1], we can
deduce that the derived inverse image of Ogr via i as Dor-module is the same as the derived

inverse image of O¢yx via i as Ogk-module (whlch is Ozk as Ocy is obviously flat over Ocy. ).
Using [54, Prop. 1.5. 21] and [54, Prop. 1.5. 24], we deduce

// il Ocy = /Ozfg[k] = 0(Depezy @b, Ozt K]
J Y 1

(A.4)

We a%so have [, [, j;i(’)q;z = :[jjliocff, = ijCffl. = Rj*Oq;ZTl (cf. [54, Ex. 1..5.22] for the I?Lst
equality and note that there is an abuse of notation here: j in the first term is the embedding
Ck < CF while j in the other terms is the embedding C¥~! < CF). In summary, we obtain
distinguished triangles in Dgo (Dep):

Z'*(D05<_Z5) ®D25 OZ{Z)[]{:] — R-]*OC'ff, — Rj*(’)ciq +—1> . <A5)
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By taking the long exact cohomology sequence of (A.5) in the case k = d (recall C¢ = CPF), it
follows:

ch l — O
Rj.Opar =24 [0z 1=d—1
0 otherwise.

Using induction and (A.5) with k decreasing, we can show for k > 2:

R'j.01 240 I=1,....k—2(if k> 2)
Rj.Ock 1>k+1,

and we have an exact sequence for k > 2
0— R*1.0pn-1 — / Oz = R*j.Ocs — R"j.0 -1 — 0. (A.6)
Since j : CY — CPF is affine, le*(’)cg =0 for all I > 0. By (A.5) for k = 1, we deduce
0= j.Oc1 (= Ocp) = juOco — /Ozllu — R'j.0c1 — 0 (A7)

and le*(’)c}U = 0 for [ > 2. This last fact together with le*OCJZ x~ le*ocﬁ)fl for Il > k+ 1 and
k > 2 imply le*OC{CU =0fori{>k+1and k€{0,...,d}. Hence (A.6) becomes (for k > 2)

0— Rk_lj*(’)cﬁ)f1 — /OZ]E — Rk]*OC{fJ — 0.
(2
These exact sequences together with (A.7) form a long exact sequence (noting that C9 = Z9):

0%005%/023—)/02%1—)”'—)/02{%—>0.

Applying fjw (which is exact, since j,, is an affine immersion, see the discussion above Proposi-

tion A.2.1), we finally obtain a long exact sequence (where we also use j,, to denote the affine
embeddings Z!, < G/B for all i)

()—>/ (’)05—>/ (’)Zg—>/ (921%—>---—>/ Oza — 0.
J Jw J J

Taking global sections (which is exact, cf. [54, Thm. 11.2.3]), and using [54, Prop. 12.3.2 (ii)]
(where D of loc. cit. is also referred to as the Verdier dual for coherent left D-modules) and [45,
Thm. 2.4 (ii)], we obtain a long exact sequence of g-modules

0 — I(G/B,NE) = M(w™>wq - 0)¥ — Buews,, M (vw™ wg - 0)Y — -
Ig(u)=1
o= M(w™wg - 0)Y — 0. (A.8)

By [57, Prop. 9.6], I'(G/B, ML) has the same formal character as Mp(w™™wq - 0)V. By [54,
Thm. 11.5.3], T(G/B, ML) € OP(0). Taking duals, we deduce from (A.8) a surjective morphism
M (w™wg - 0) — T'(G/B, ML)V which, by [57, Thm. 9.4 (c)], has to factor through Mp(w™*wy -
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0) — I'(G/B,ME)V. As both have the same formal character, It follows Mp(w™wyq - 0) =2

I'(G/B, ML)V, which concludes the proof. (Note that we cannot apply directly [57, Thm. 9.4 (b)]

to the dual of (A.8) to deduce this result as it is a priori not clear if the map Duey, M (uw™**wg -
Ig(u)=1

O

0) = M(w™*wy - 0) is the same as in loc. cit.).
Recall we have equivalences of categories (see the discussion above Proposition 5.4.7):

Mod(Dg/p, B) %) Modw(Dg/pxa/p: G) % Modw(Dg/, P)-

We remark that the equivalence of categories ¢ := i} o (z'*B)*l in general does not induce iso-

morphisms of U(g)-modules when taking global sections. For example, for P = B, we have
I'(G/B,u(L&(w-0))) = L(w™!-0).

For w € # and U, = G(w,1)B x P (seen in G/B x G/P), we have i5'(U,) = CL (resp.
ip (Uy) = Cpuw-1) and U, = G x¥ C (resp. Uy = G xB Cp,-1). We use j, to denote
the embeddings Cf < G/B, U, < G/B x G/P and Cpy < G/P. Let N, = [, Oy, €
MOdrh(DG/BXG/PaG)v and ‘ﬁgw = fjw OCP,w = (jU/)*(DG/P%Cp’w ®DCP,w OCP,w) (Where the
isomorphism follows from the fact that j, : Cp, — G/P is an affine locally closed immersion,
see the discussion below (A.9), see also [22, Prop. 1.4.5]). Similarly as in [54, (13.1.7)] (with one
B replaced by P, which does not cause any problem), we have i, = NE and ipNw = Np 1.

Recall from § 5.4 that M p(w™*wp - 0) € Mod,(Dg/pxa/p, G) satisties
Z'%Dﬁp(wmaxwo . 0) = Locgg (Mp(wmaxwo . O)) € Modrh(Dg/B, P)

By Proposition A.2.1, /M p(w™wy - 0) is isomorphic to the Verdier dual of 9 = i*B‘itw (for
example see [45, Thm. 2.4] and see [54, § 2.6] for the Verdier dual of coherent left D-modules).
From this, together with [54, Thm. 2.7.1] and the fact that i}; induces an equivalence of categories,
we deduce that 9 p(w™ wyq - 0) is isomorphic to the Verdier dual of ‘.Y‘(w.

We can now prove Proposition 5.4.8 by generalizing the proof of [45, Thm. 6.2].

Proof of Proposition 5.4.8. As Mp(w™ wq-0) is isomorphic to the Verdier dual of ‘fiw, both have

the same characteristic cycle (cf. [54, Prop. 2.6.12]). It is sufficient to show [X,, ] = [Ch(D,)].
Consider gp : G xT tpy — g. We have as in (5.2) Xp) = G xB q;i\(b). Similarly as in Remark
5.2.3 (2), we see that gp 5 (b) is equidimensional of dimension dim tp ) with irreducible components
given by {gp5(0)w wer /¥, Where 455 () denotes the Zariski closure of the preimage g5} (b)Y,
of Cp,y, in q;})\(b) (with the reduced subscheme structure) via the composition q;})\(b) — G/P x
g — G/P. We also have X, =G x B q}l)\(b)w. Let kp denote the morphism G x P = 3,
(9,%) = ¥ and g5} (0)w = gp5(0)w Xrprsx 10} (with the canonical scheme structure). Then we
have an isomorphism of schemes

Yw,)\ >~ G XB q];})\(b)w—l.

By Proposition 5.4.7, it is sufficient to show (as cycles in T*G/P)

475 (0)u 1] = [Ch(i5T)] = [Ch(ONpy, )] = [ ( [

Jw—

1 Ocy,1 )]
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By abuse of notation, we still denote X o detr,, by A, which is now a dominant weight of t (with
respect to B). Let y_) be the character of P (which factors through Lp) of weight —\ over
E. Put £_) := G x x_,, which is a line bundle over G/P. By the Borel-Weil-Bott theorem,
HY(G/P,L_)) = L~ (—\) (:= the finite dimensional algebraic representation of G of lowest weight
—\, i.e. L7(=A\)N" = E(—)) for the unipotent radical N~ of the Borel subgroup B~ opposite to
B). Indeed, we have by definition

H%(G/P,L_)) = {f : G — E algebraic functions | f(gp) = x_5(p)f(9), VP € P,g € G} (A.9)

with the G-action given by (gf)(¢') = f(¢7'¢’). Let L} C Lp be the kernel of x_» : Lp — E*.
Consider  : Y := G/(Lp»Np) — G/P. Each element in H(G/P,L_)) can be viewed as an
algebraic function on Y. Let ¢ be the highest weight vector of L(\) & L~ (—\)Y (which is the
finite dimensional algebraic representation of G of highest weight A with respect to B), i.e. Ne =¢
and fe = xa(B)e = xj\(ﬁ)e for all 8 € P where N C B is the unipotent radical. Let ¢* be the
lowest weight vector of L™ (—\). Put f1 : G — E, g — (¢*, ge) (with (—, —) the natural pairing
between L(A) and L™(—A)), which corresponds to ¢* via (A.9). Let

fo-1=wlfi = [g — (¢",wge)]

which corresponds to w~1e* via (A.9) and which we can and do view as an algebraic function
on Y. Applying [22, Prop. 1.4.5] (that easily generalizes to our connected split reductive group
G) and using the natural surjection G/B — G/P7, we can deduce that = '(0Cp,-1) (where

9Cp -1 = Cpyy-1 \ Cpyy-1) is exactly the zero locus of f,,-1 ‘n—l(ﬁ)'

Let U C G/P be (Zariski-open) complement of the zero locus of the (global) section f,,—1 of
the line bundle £_, over G/P. So x~1(U) =Y \ f;}l(O) and Cp,,—1 = Cp,,—1 NU, in particular
Cp,y-1 is Zariski-closed in Y. Denote by ¢ : Cp,,—1 — U the closed embedding, then we have (see
[54, Ex. 2.3.8] for the first isomorphism, the last isomorphism is induced by the Killing form)

Ch /(’)C =T U=TE  G/P—=TG/P=Gx"(g/p)" =G x"np.

where T, 5}3 _, G/ P denotes the conormal bundle of Cp,,-1 in G/P. Recall we have gp : T*G /P =

GxPnp =g, (g,¢) — Ad(g)1, and gp' (n)™d = Uuew /#5,, 1¢, .G/P — T*G/P (for example by
the same argument as in the proof of [31, Prop. 3.3.4]).

We now apply Ginzburg’s method in [45, § 6.3] to A := Ch(f,Oc, ,) and f := f,1 in
order to calculate Ch(fj . Oc, 1) = Ch(Np,-1) (don’t confuse j,-1 with the above ¢, and

note that j,-1 is not closed in general). We have T*G/(L»Np) = G x LpNp tp (identifying
g to gV via the Killing form). For x € Bw P, let df, € EX + np such that (z,df,) € df C
G xLpNP (EX +np) = T*G/(L»Np). As the map q : G xLeNP (EX +np) — g, (9,9) — Ad(g)
coincides with the moment map T*G/(LHNp) — ¢" (= g) (cf. [31, § 1.4]), we have for X € g the
equality (q(z,dfz))(X) = (¢*, w(—X)ze). By multiplying x on the right by an element of P, we
can and do assume that x has the form uw=! € Cpw—1 with u € B satisfying wuw~! € B~ Let
K(-,-) denote the Killing form on g, we can calculate:

Q(uwilv dfuwfl)(X) = ~Xw—1()) (U)K( Ad(uwil)()‘)v X) : (AlO)

"This surjection induces a surjection G' xZ x_x = G x¥ x_», and we have H°(G/B,G xZ x_») = L™(=)). We
can then deduce the desired results for Schubert cells in G/P from those for Schubert cells in G/B given in [22,
Prop. 1.4.5].
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Hence q(uw ™!, df 1) € EX Ad(uw~1)()\). By unwinding the definition of q(—, —), this implies
df -1 € E*)\.

It is clear that G/(LpNp) is a principal G,,-bundle over G/ P, and there is a natural induced
Gm-action on T*G/(LpNp) such that (T*G/(L}Np))/Gy =2 G xF tp)y. For a € E*, we claim
that we have by (A.10) an isomorphism of schemes:

(K*A+ adf ) /G, = q;’l)\(—aw_l()\) +n)N /ﬁ;,’l/\(—a)\). (A.11)

Indeed, by checking the formula at each closed point of Cp,,—1, we can obtain the equality after
taking the reduced subscheme structure on both sides. However, as in the proof of [45, Thm.
6.3], the left hand side is locally isomorphic to a translation of A = Tgp L G/P CT*G/P =

G xPnp c G xF tpy in G x P tp, hence is reduced. On the other hand, we have a closed
immersion

q;,’l)\(—aw_l()\) +n) X GxPrp, /ﬁ;’l)\(—a/\) — q]_jl(b) X GxPep H}l(—a)\), (A.12)

which is an equality on closed points. By Proposition 5.2.9 and its proof, ¢p' (b) XGxPep Kp'(—a))
is smooth and Zariski closed in qlzl(b). It is easy to see that the closed subschemes
Kp!(—al) XGxPepdp (0)w (for w' € # [/ W1,) of ' (0) X e K5 (—a)) are disjoint, hence each
is open and smooth (and reduced). We deduce

0" (0) XGurep Kp' (—aX) = Uy ppy  Kip (=) Xgupep dp' (0)ur.

Then one can check that (A.12) factors through a closed immersion
G (—aw ™ (N) + 1) Xgxre,, Fpn(—aA) = @5 (D)1 Xgyre, Kp' (—aX),

which is bijective on closed points hence is an isomorphism since the right hand side is reduced.
In particular, the right hand side of (A.11) is also reduced so (A.11) holds.

Let Af := q;i\(EXw_l()\) +1n)N 141_371/\(EX)\). By similar arguments as above, one can show
isomorphisms of reduced schemes

Aﬁ 1> q;71>\(b)w—1 XGXP‘CP)\ Iﬁ;]_%l)\(EX)\) l) q;l(b)w—l XGXPtp Hﬁl(EX)\).

We also have Af = QJ_Di\(b)w*l X GxPrp Kkp' (378 7%) (e.g. using the fact that both have the same
E-points and are reduced), hence A* is Zariski-open (and Zariski-dense) in q;’l)\(b)wq. Thus the
scheme theoretic image of A* in (T*G/(LpNp)) /Gy, =2 GxPrpy is just g5 (b),,-1. By Ginzburg’s
formula ([45, Thm. 6.3], see also [45, Thm. 3.2], and note that the theorem is “algebraic” so it can

be applied with C replaced by E) applied to the case where j is the open immersion U — G/P
and A is [,Oc, , (sogr. isjust Ch([,Oc, _,) and limso(gr.#)® in loc. cit. is the fibre of

the scheme theoretic image of A* at 0 via xp), we obtain:

[Ch (/] . OCP,wfl)} = [qlg,l)\(b)w—l XKPABA {0}]

The proposition follows. ]
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A.3 Bruhat intervals of length 2

We show some properties of Bruhat intervals of length 2 in certain parabolic quotient of S,,, that
are used in Corollary 7.2.18.

: : 1 2 n S
We write w € S, 1ntheformw—<wl(1) wl(2) - wl(n)).Forz;é]E{l,...,n},

L2 n>andz’<j,

we denote by ?;; the transposition exchanging i and j. If w = <
aq a9 PPN an,

| |

then t;;w = < n> Let » > 1, and n; € Z>; for 1 <4 < r such that

a/l PEEEEY aj PEEEEY aZ PR an
Yoiyni =n. Put s; = Z}zl n; and J; := {s;_1 +1,...,s;}. We have thus {1,...,n} = LI_,J;.
Let # be the subgroup of S,, generated by the t;;, for j,k € J;, i =1,...,7r (so #5 = [[i_; Sn,)-
Denote by #..  C S, the set of maximal length representatives of #7\S,,.

max

Lemma A.3.1. Wehavew:<1 2 n>€W‘]

o a a ax f and only if for any j =1,...,7 the
1 G2 - Gp

sequence (aj)jey, is decreasing.

Let [wy,ws] be a Bruhat interval of length 2, i.e. w; < wa, lg(w2) = lg(w1) + 2, and [wy, ws] =
{w' €8, | w1 <w < wsy}. Recall |[wy,ws]| =2 (cf. [19, Lemma 5.2.7]). Assume w1, ws € #,J .,
and denote by [wy,ws]; = {w' € Wl |wi < w' < wa}. Recall [wy,ws]; is called full if
[wy,wa]; = [w1,ws]. Aslg(we) = lg(wy) + 2, there exist reflections tqp, teq such that wo = t1tow;.
We call a full interval [wq,ws]; (of length 2) nice if the integers a, b, ¢, d cannot be contained in

two J;.

Remark A.3.2. Identifying S, with the Weyl group # of GL,, J corresponds to a parabolic
subgroup P of GL,, containing B such that #1,, = #j. It is easy to see that, if (w1, ws]y is full

wawy

and nice, then dimgLP =dimjz, — 2 (see Proposition 5.3.3 for the notation).
" 1 2 - n P
Proposition A.3.3. Let w = o a o) € Wiax With lg(w) <lg(wg) — 2. Assume that
L oas - ap

the partition {J;} satisfies: if |J;| > 1 then |Ji—1| =1 (ifi > 2) and |Jiz1| =1 (ifi <r—1). Then
there exists u € W), such that u > w, 1g(u) = lg(w) + 2 and one of the following two properties
18 satisfied:

(1) [w,u]s is full and nice;

(2) [w,u]y is not full.
We will frequently use the following easy lemma (see for example [11, Lemma 2.1.4]):

1 2 - n . . . )
€ Sy, and i < j. Then tjjw is a cover of w (i.e.
a]_ a2 o oee an

tiyw > w and 1g(t;;w) = lg(w) + 1) if and only if a; < a; and there does not exist i, j, k with
1< k < j such that a; < a, < a;.

Lemma A.3.4. Let w =

Proof of Proposition A.3.5. Let I := {j | aj < aj41}. Since w € #;),., for any j = 1,...,r, the
sequence (a;);eg, is decreasing. We have thus I C {s; | j = 1,...,r — 1}. Since w # wo, I # 0.

We prove the proposition by a (somewhat tedious) case-by-case discussion.
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Case (1): Assume there exist s, , sk, € I such that ko > k; + 1. In this case, we don’t need
the assumption on {J;}. For k;, consider the set I; := {(j1,J2) | j1 € Jk;»J2 € Jry41, a5, < Gjy }-
We have (s, 8,+1) € I;, so I; # 0. Let (jin1,ji2) € I; such that j; 1 —j; 2 is maximal. We have thus

Q-1 > a5 i jin —1 € Jy,

aj;, < aj;, and By Lemma A.3.4, tj, ,j,,w is a cover of w (in

ajy > ajt1 if Jo+ 1€ Jgqa-
fact, for any (j1,j2) € I;, tj,j,w is a cover of w). By the choice of (j; 1, j;2) and Lemma A.3.1, we
see that bji1ji oW € "//n{ax. As ko > k1 +1, iy 1o and g, 5, , commute. Put w =t 4 5t 1, W,
then it is easy to see that [w,u]; = [w,u] = w < tj j ,w,tj, 5, ,w < uis full and nice.

Case (2): There exists k such that I = {s;}. We have either ny = 1 or ng41 = 1. Note that
we cannot have ny = ngq1 = 1 since if so lg(w) = 1g(wg) — 1.

(2.1) Assume ny =1, let j € Jp41 be maximal such that ay, < aj. We have j > s, + 2 since
otherwise lg(w) = lg(wo) — 1. Put u := t,, (j_1)ts,jw, then lg(u) = lg(w) + 2 and [w,u] = w <
tsj W, ts, (1w < u. However ty, ;1) & #ilax- S0 [w,u]; is not full.

ax”*
(2.2) The case ng41 = 1 is parallel to (2.1).

Case (3): There exists k such that I = {sg, sp+1}. By our assumption on {J;}, we can further
divide this case into two cases: ngy1 =1 or ng = ng4o = 1.

(3.1) ng41 = 1: let j € Ji, be minimal such that a; < as,41 (note that s, + 1 = sy in this
case).

(3.1.1) If j < sp, put u = tjq1s,, tjse, W € iax. In Sy, the interval [w,u] is given by

W < tjs, W, tja1)s,,, W < u. However, t(; 1), . w ¢ W, .. So [w,u]y is not full.

(3.1.2) If j = sy, let j1 € Jrqo (vesp. j2 € Jpy2) be maximal such that aj; > as,,, (resp.
aj, > ag,) (vecalling that as,,,+1 > as,,, > as,). Note that jo > j1.

(3.1.2.1) If ag,,, > aj,, then put u =ty jytsesps W € #ilay- Then [w,uly = [w,u] = w <
Lspspir Wy tsjpw < u. Indeed, as as,, > aj,, ts 5w is a cover of w. It is also easy to see that

[w,u] s is nice.

(3.1.2.2) If as,,, < aj, (s0 j1 = ja2), put (again) u = ts,, jots,s, W € #lay. In this case we
have [w,u]; = [w,u] = w < tgq W, ts  jyw < u, and [w,u]; is nice (so the only difference with

(3.1.2.1) is that t,,j,w is replaced by tg, ,  j,w).
(3.2) ng, = ngyo = 1. Let j; € Jgy1 (resp. j2 € Jit1) be maximal (resp. minimal) such that
aj, > ag, (resp. aj, < as, )

(3.2.1) If j; > s+ 1 (resp. jo < sgy1 — 1), which implies ng41 > 1, then one can use the same
argument as in (2.1) (resp. (2.2)) to find u € #,J. . such that [w,u]; is not full.

max
(3.2.2) If j; = s+ 1 and jo = sgy1, and if ngyqy > 1 (so jo > j1), then put uw:=
tsk(5k+1)t5k+lsk+2w: tsk+lsk+2t5k(sk+1)w. It is easy to see [w,u]J =w < tsk(skﬂ)w,tskﬂsk”w <u
is full and nice.
(3.2.3) If ngy1 = 1, this is a special case of (3.1.2.2).

This concludes the proof. O

Remark A.3.5. Without the assumption on {J;} in Proposition A.3.3, it could happen that
for any v € W, u > w and lg(u) = lg(w) + 2, [w,u]; is full but not nice. For example,

max’

let n = 4, r = 2, J1 = {1,2}, JQ = {3,4}, and w = t12t34t03 = (é ? i ;) S Wrﬁ]ax'
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1 2 3 4
4 2 31

lg(u) = lg(w) + 2. One can check [w,ul; = [w,u] = { (i ? 2 ;l> , <?1) ; 2 éll> } hence is

full. However, in this case, any full interval (of length 2) is not nice.

such that v > w and

max

Then u = tgatostiotostss = < ) is the only element in W,/

A.4 Errata to [19]

e It turns out that the conjecture [19, Conj. 2.3.7] (describing X,, NV, for w’ < w) is wrong,
some counter-examples were found by Seginus Mowlavi. It is however true for most pairs v’ < w,
see his forthcoming PhD. thesis [71].

e In the equality following the definition of the scheme Z in [19, (2.11)], N xx N should be re-
placed by (N xy N (in fact, it is possible that N xxy N = (N x N4, but we don’t need it).

e The following erratum is due to Benjamin Schraen and Zhixiang Wu and corrects a mistake in
the proof of [19, Prop. 3.7.2]. We use below the notation of loc. cit. It is stated there that the
map f : ‘755 — l?gc induces an injection on global sections, which is false in general. Fortunately
this can be corrected.

Let us recall the context of the proof of [19, Prop. 3.7.2}.AWe have a reduced affinoid space U
over L, x € U a point and a morphism of formal schemes U, — X, where X, = Spf R, and R,
is a (framed) deformation ring. We construct a proper birational morphism f : U — U which is
obtained as a composition of normalizations and blowing up. It is proved in the first part of the
proof of [19, Prop. 3.7.2] that if x € U maps to x € U, the composite morphism of formal schemes

(75—>l7$—>XT

factors through a closed formal subscheme X, ¢, = Spf R, pmq, C X,. Now, the actual proof
diverges from [19, Prop. 3.7.2].

Note that, f being a composition of normalizations and blowing up, is projective locally on
U. Up to refining U, we can assume that U is a closed rigid analytic subspace of Pf; for some
n > 1. By [12, Cor. 5.4 (c)], up to further refining U, we can assume that there exists a p-adically
complete topologically finitely generated Op-algebra Ay and a closed formal scheme 2y C PSot A,
such that U = (Spf Ag)"® and U= Qngig. As Ag is a p-adically complete ring, it follows from
[46, Cor. 5.1.8] that there exists a projective scheme Wy over Spec Ay whose p-adic completion is
isomorphic to 2. Let W := Wy[p~!], this is a projective scheme over Spec A where A := Ag [p~1].
We can identify the closed points of U and Spec A and the closed points of U and W. As the
completion of Spec A (resp. of W) and U (resp. U) at x (resp. ) are isomorphic, it is sufficient
to prove the statement with U replaced by Spec A and U replaced by W.

Note that the map W — Spec A is proper dominant. It is proper since it is projective. The
dominance follows from the fact that the map f : U—Udis surjective so that all the closed points
of Spec A are in the image of W — Spec A.

Let I be an ideal of A such that VI = m,. Let W; := W Xspec A Spec(A/I) and (71 =
U X (spf Ag)ris (SPf(Ao/1 N Ag))™i8 so that U; is isomorphic to the rigid analytic space associated
to the projective k(x)-scheme W7j.
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The map Spec(A/I) — Spec A gives rise to an A/I-point of the formal scheme SpffT\mz
and to a morphism of formal schemes Spf(A/I) < Spf R,. Let us prove that the composition
R, — AJI — H°(Wy, O) factors through R, q,. Namely we have a map

HO(W[,O)‘—) H Owhy‘—) H @Wl,y
ye|Wr| ye|Wry|

where |AWI\ is the set of closed points of Wy, and the assertion follows from the fact that each
R, — Ow, 4 factors through R, r¢,. This being true for all /, the map

R, — lim HY(Wr, 0)
I

factors through R, 4,

Since the map W — Spec A is dominant and A is reduced, the map A — H°(W, O) is injective.
As Jim, HO(W7;, O) is the completion of H(W, O) for the m,-adic topology (see [46, Thm. 4.1.5])

and Zm\z is a flat A-module, the map Zm\z — lim, HO(U;, 0) is injective. This proves that the
map R, — Zm: factors through R, a4, , which gives the desired statement in [19, Prop. 3.7.2].

e In [19, § 4.3], all [K : Qp]w should be replaced by n + [K : @p]%.

e In [19, § 5], the BGG category O should be replaced by its full subcategory O, of objects with
integral weights (see [74]).
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