Change of weights for locally analytic representations of GLo(Q),)
Yiwen Ding

Abstract

Let D1 C D3 be (p,T')-modules of rank 2 over the Robba ring, and 7(D;), 7(Dz) be the
associated locally analytic representations of GL2(Q)) via the p-adic local Langlands corre-
spondence. We describe the relation between 7(D;) and 7(D3).
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1 Introduction and notation

Let E be a finite extension of Q,, Rr be the Robba ring of Q, with E-coefficients. Let D be
an indecomposable (¢,I')-module of rank 2 over Rg. By [5, Thm. 0.1], the (locally analytic)
p-adic Langlands correspondence associates to D a locally analytic representation of GL2(Q))
over E. One phenomenon on the Galois side is that the (¢, I')-module D has (infinitely) many
(¢, T)-submodules D', including trivial ones {t! D};cz. , and some non-trivial ones discussed below.

In this note, we describe the relation between 7(D) and 7(D’). Note that the correspondence

D s 7(D) is compatible with twisiting by characters. In particular, if D' = ¢'D, then 7(D’) &
7(D) ®g 2* o det (and we ignore det when there is no ambiguity).



Twisting by a certain character, we can and do assume D has Sen weights (0, «) with « €
E\ Z«y. For k € Z>1, denote by Vi := Sym” E? the k-th symmetric product of the standard
representation of GL2(Q)). For a locally analytic representation V', we use V* to denote its strong
continuous dual. Let ¢ € U(gly) be the Casimir operator.

Theorem 1.1. (1) Assume End(D) = E. Assume a # 0, or a« =0 and D not de Rham, then D
admits a unique (¢, T")-submodule D g oty of Sen weights (0,a + k) and we have (|—] denoting
the eigenspace)

T(Dio,atr)” = (7(D)* ®p Vi)le = (o + k)* — 1.

(2) Assume o = 0 and D is de Rham non-trianguline, then (w(D)* ®p Vi)[c = k* — 1] =
m(D,k)* and we have an exact sequence ({—} denoting the generalized eigenspace)

0 — 7(D,k)* — (n(D)* ®@p Vi){c =k* -1} = n(D, —k)* = 0
where w(D, i) denotes Colmez’s representations in [6] (for D = A of loc. cit.).

Remark 1.2. (1) Some parts of Theorem 1.1 (1) in trianguline case were obtained in [12,
Thm. 5.2.11].

(2) A similar statement in Theorem (2) also holds in trianguline case, see Remark 3.7 (3).

(3) Suppose we are in the case (2), and let moo(D) be the smooth representation of GLa(Qp)
associated to D wia the classical local Langlands correspondence. By [6, Thm. 0.6 (iii)], for any
(p,T)-submodule D' of D of Sen weights (0, k), we have

0— m(D")* — 7(D, k)" = (meo(D) ®g Vi)* — 0.

And the map D' — 7(D")* gives a one-to-one correspondence between the (o, T')-submodules of D
of Sen weights (0, k) and the subrepresentations of w(D, k)* of quotient (1(D) ®@p Vi)*.

(4) Assume D is not trianguline, the theorem allows to reconstruct Colmez’s magical operator
0 in [6, Thm. 0.8] and generalize it to the general (irreducible) setting. Indeed, when D is as
in Theorem 1.1 (2), the composition (where the second map is induced by the map Vi — E,
Zf:o ael @ e ag)

(m(D, k)* @5 Vi)[c = k* — 1] — n(D)* ®p Vp — ©(D)*

is an isomorphism of topological vector spaces. The GLa(Qy)-action on (n(D)* @ Vi.)[c = k? —1]
induces then a twisted GLa(Qp)-action on the space w(D)*, and gives Colmez’s formulas in the
construction of w(D, k)*. See § 3.4 for more details.

Recall that a key ingredient in the construction of 7(D) is a delicate involution wp on D¥=0.
When D is irreducible, wp was obtained by continuously extending an involution on (D™)¥=0
where D™ is the associated (i, I')-module over T\’,igt = Bg}p ®q, E. Let D" C D be a submodule
of weight (0, a+k). Then Vy := (V—k+1)---(V—1)VD' C t* D, and we denote by % :D' = D
the map sending 2 to t~*Vj(x). The involutions wp and wps have the following simple relation
(though they are in general not comparable when restricted to D™ and (D')™):

Corollary 1.3. We have wpr = wp o %.



We give a sketch of the proof of Theorem 1.1. The key ingredient is an operation, that we

call translation, on (p,T")-modules. The (ZP \O{O} Zip

structure on Vj, together with a semi-linear (i, T')-action. In fact, we have Vj, & R%/X* 1. For a
(¢,T)-module D over R, consider D ®f Vi, equipped with the diagonal R L-action and (p,I')-
action (noting RE has a natural coalgebra structure). One shows that the RJEF-action on D®gp Vy,
uniquely extends to an R pg-action. In particular D @ Vj is also a (@, I')-module over Rg.

)—action on Vi induces an R'g—module

Now let D be as in Theorem 1.1, then D is naturally equipped with a gl,-action. We equip
D ®pg Vi with a diagonal gly-action. The Casimir ¢ turns out to be an endomorphism of (p,T')-
modules of D ®g Vi. In particular, we can decompose D Qg V. into generalized eigenspaces of
¢, which are (¢, T')-submodules over Rp. We study the decomposition in § 2.2. For example, we
show that if D is as in Theorem 1.1 (1), then Do o4p) = (D ®p Vi)[e = (o + k)* — 1].

By [5, Thm. 0.1], there is a unique GLy(Q,)-sheaf over P1(Q,) of central character §p (which
satisfies dpe = A?D, ¢ being the cyclotomic character), associated to D, whose global sections
D s, P1(Q,) sit in an exact sequence

0 — 7(D)* ®g 6p — D K, PH(Q,) — 7(D) — 0. (1)

It turns out that this construction is quite compatible with translations. Namely, to D Qg V4,
one can naturally associate a GL2(Q,)-sheaf over P*(Q,) (of central character 6pz*) whose global
sections (D ®p Vi) K5, .« P1(Qp) are GLa(Qp)-equivariantly isomorphic to (D Xy, P1(Q,)) @ g Vi.
Suppose D is as in Theorem 1.1 (1), we then have (noting dpz* = 0D arry)

(DR, PH(Qp)) ®p Vi)l = (a+k)> = 1] = (D @p Vi)[c = (o + k)* — 1]) K5, P1(Qy)
= Do,a+k) X PY(Qp). (2)

OD(0,04 k)

Using the isomorphism and (1), one can deduce Theorem 1.1 (1). Theorem 1.1 (2) follows by
similar arguments. A main difference is that in this case, the translations can only produce (¢, T')-
submodules #'D. For example, (D ®p Vi)[c = k* — 1] 2 D (noting the gly-actions are however
different), and (D ®g Vi,){c = k? — 1} = D @ t* D (again, just as (p,T')-module). Similarly as in
(2), we deduce

((D ®s), PI(QP)) ®E Vi)c = K — 1]=D IX(SDzk Pl(@p)

and an exact sequence
0 — D&, PHQ,) = (D Ky, PY(Qp)) ®p Vi){c = k* — 1} = t* D R, _« P(Q,) — 0.

Theorem 1.1 (2) follows then from these together with results in [6]. We refer to the context for
details.

Notation
Let € be the cyclotomic character of Galg, and of Q).

We use the following notation for the Lie algebra gly of GL2(Qp): b := <(1) _01>, at = <[1) 8>,

- ._ (00 +._ (01 - ._ (00 e ot - — B2 _ o= —
a .—(O 1),u = <0 0>,u .—<0 1>,5.—a +a,and ¢ := b 2h +4duTuT =

h2 + 2 + 4u~ut € U(gly) be the Casimir element.



Let R be the E-coefficient Robba ring of Q,, and R} := {f = 3.0 a, X" | f € Rg}. Note R},
is naturally isomorphic to the distribution algebra D(Z,, E) on Z,. Let t = log(1+X) € R}, C RE.

We use ¢ — —e (resp. e — @) to denote a possibly split extension (resp. a non-split extension),
with the left object the sub and the right object the quotient.
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2 Translations of (p,I')-modules

We discuss some properties of translations on (¢, I')-modules.

2.1 Generalities

Let k € Z>o, let V}, := Sym” E? be the algebraic representation of GL2(Q,) of highest weight (0, k)
(with respect to B(Qp)). On Vi, we have 3 = k and ¢ = k(k + 2). The P* := (Zp \0{0} Zi”)—
action induces an Rg—structure on Vi, together with a semi-linear (¢, I')-action given by (1+X)v =

<(1) 1) v, (v) = <€ ?) v, y(v) = <g ?) v. Let e be the lowest weight vector of Vj, then we

have a (¢, I')-equivariant isomorphism of Rg—modules: RE /X D Ve, o ae.

Let D be a (¢,I')-module over Rp. Consider D ®p Vi. We equip D ®g Vi with a diagonal
R L-action (using the coalgebra structure RY, — RE ®pRE, (1+X) — (1+X) ® (1+ X)), and
with a diagonal (p,I')-action. It is clear that the resulting (¢,T)-action is Rj-semi-linear. We
also equip D ®p Vj, with the natural topology so that D ®p Vj, = DP*+1 as topological E-vector
space.

Proposition 2.1. The Rg—action on D Qg Vi uniquely extends to a continuous Rg-action. With

this action, D @ Vi is a (p,I')-module over R and is isomorphic to a successive extension:
t*D— —th-'D— —...— —tD — —D.

Proof. We first prove the proposition for the case k = 1. Let eg be the lowest weight vector in V7,
and e := Xeg (so Xep =0). Forv =vg®eg+v1®e1, Xv = Xvg®ey+ (vo+ Xvg+ Xv)®ey. It
is clear that X is invertible on D ®g Vi, and X " H(vg®eg+v1 ®e1) = (X tvg) @ e+ (—X ~Lvg —
X209 + X 1) ® e;. For f(T) € E[T], f(X H(vo® ey +v1 ®e1) = (F(X Hug) @ eg +
(—( X2+ X H (X Yoo+ f(X1)v1) ®er. As Rg acts on D, by the formula we see R 5[1/X]-
action uniquely extends to a continuous Rpg-action. The proposition in this case follows. Using
induction, we see the R}S—action on D ®pg Vl®k uniquely extends to a continuous R pg-action. As
D®gV; is a (closed) direct summand of D ®g V¥ stable by R, it is also stabilized by R5[1/X]
hence by Rg.

Each D ®pg (XiRE/XkH), fori =0,---,k—1, is clearly a (¢, I')-equivariant R'g—submodule.
Using induction and the easy fact that X is invertible on the graded pieces D ®p (XIR L/ X7T1)



(noting that the RE—action on the graded pieces is the same as acting only on D), one easily sees
that X is invertible on D ®p (X*RE/X*1). Hence D®@p (X'RE/X*1) is a (¢, T')-submodule of
D®gVy over Rg. On the graded piece, the induced R g-action is the unique one that extends the
R L-action, hence coincides with the R g-action on D. We then easily see that D® g (X'RE/X)
isomorphic to t*D. This concludes the proof. ]

Remark 2.2. In particular, we have the following morphisms of (p,I")-modules over Rg:

k

DV, — D, Z%’@ti@’—)UOa (3)
=0

D— D®gV, v|—>v®tke. (4)

Example 2.3. We have R Qp V1 = Ry ®tRg. Indeed, the element 1 ® e € H&) r) (Re®gp V).
This induces a morphism R — Rg @ Vi, whose composition with (3) (for D = Rg) is clearly

an isomorphism. We see the extension in the proposition for D = Rg and k = 1 splits. See
Remark 2.18 (1) for a non-split case.

Remark 2.4. Suppose D is de Rham, then D Qg Vi is also de Rham. This easily follows from
Proposition 2.21 (1) below (which is obtained by using certain gly-action). One can also directly
prove it as follows. Indeed, by induction, it is sufficient to show D ®g V1 is de Rham. Let A be
the p-adic differential equation associated to D (of constant Hodge-Tate weight 0), and n € Z>q
such that t"A C D. We see t"A @p V1 is a (p,T')-submodule of D ®@p Vi, and the both have
the same rank. It suffices to show A ®@g Vi is de Rham. But we have (e.g. by [7, Lem. 1.11])
H)(tA ®@py AY) = HY(tA @ry AY), hence any extension of A by tA is de Rham.

Lemma 2.5. For v®@w € D ®g Vi, we have (v @ w) = (v) @ ¢~ H(w)

Proof. Write v = Zf:_ol(l + X)¥p(v;) (so ¥(v) = vg). We have (using ¢ is invertible on V}):

p—1 pe1
V@ W= 3 (1+ X)) @ (14+X)w) = Y (1+ X)'p(vi® ¢~ (L+ X) ).
i=0 P
The lemma follows. .

A (p,T)-module D is naturally equipped with a locally analytic action of PT, where <(1) D
X

acts via (1+ X) € Rp, <§ (1)) via ¢, and (Zé’ (1)> via I". Moreover, by [5, § 1.3], D corresponds

to a PT-sheaf .Zp of analytic type over Z,, with the sections .#p (i + p"Z,) over i + p"Z,, which
we also denote by D X (i 4+ p"Zp) as in loc. cit., given by

(1+X)'"" (1 + X)"v) =: Resiypnz, (v) ()

for v € D. In particular, we have D X Z} = DY¥=0,

For a P*-sheaf .# of analytic type over Z,, it is direct to check the following data defines a
PT-sheaf of analytic type .# ®@p Vi, over Zy:

o (ZFRpVi)(U):=FU)®p Vs,



1% — RedV -
e Resyy |z, = Resf; |z ®id,

. 9U|(,¢§Evk)(U) = gulzw) ® 9 (F @8 Vi)(U) = (F @ Vi)(g(U)) = Z(9(U)) @ V4 for
ge P,

Lemma 2.6. The identity map on DR gV}, induces a natural PT -equivariant isomorphism Fp®g
Vi, = e97D®E\/k .

Proof. Let i € Z,, and n € Z>q. For x ® w € D @g V}, using Lemma 2.5 and the formula in (5),
we have
Res;iprz, (r @ w) = Res;ypnz, (1) @ w.

The identity map induces then an isomorphism of sheaves on Z,: ZFp ®g Vi = Fpgyv,. It is
straightforward to check the isomorphism is PT-equivariant, as the both are equipped with the
diagonal PT-action. O

The following lemma is a direct consequence of Lemma 2.6.

Lemma 2.7. We have (D ®p V;,)¥=" = D¥=0 @ Vi (as subspace of D ®g Vi.). Moreover,
ResZ; |D®EVk = ReSZZ ‘D ® id.

2.2 Translations of (¢, [')-modules of rank 2

For a (¢,T')-module D with an extra gly-action, we study the (¢, I')-module structure together
with the (diagonal) gly-action of the translation D ®@g V.

2.2.1 A digression on (p,I')-submodules

Let D be a (p,I')-module of rank 2 over Rp. We briefly discuss the (¢, I')-submodules of D and
introduce some notation. Twisting D by a rank one (¢, I')-module, we can and do assume that
the Sen weights of D are given by 0 and o € E \ Z~. Let D’ be a (¢,T')-submodule of D, by
[13, Prop. 4.1], there exists n such that D’ D ¢"D. We are led to study the torsion (¢, I')-module
D/t"D.

Lemma 2.8. (1) If a ¢ Z, then there exists a locally analytic character of Q; of weight o such
that D/t"D 2 Rp/t" & Rp(xa)/t".

(2) If o € Z>p and D is not de Rham, then D /t"D is isomorphic to a non-split extension of
RE/t" by Re(z*)/t".

(3) If « € Z>o and D is de Rham, then D/t"D = Rg(z*)/t" & Rg/t".

Proof. The lemma follows from Fontaine’s classification of Bgr-representations [11, Thm. 3.19],
and [3, Lem. 5.1.1]. O

The following two propositions follow easily from the lemma.

Proposition 2.9 (Non-de Rham case). (1) If o ¢ Z, for any ni,ne € Z>o, there exists a unique
(¢, T')-submodule of D of Sen weights (n1,a + na), denoted by Dy, a4ny)- Moreover, any (p,1')-
submodule of D of rank 2 has this form.



(2) If o« € Z>0 and D is not de Rham, for ni,ny € Z>o, n1 < ng + «, there ezists a unique
(¢, I')-submodule of D of Sen weights (n1,a + na), denoted by Dy, ayny)- Moreover, any (p,1')-
submodule of D of rank 2 has this form.

Remark 2.10. When ny = ny = n, then the (p,T')-submodule of D of weights (n, o+ n) is just
t"D.

Proposition 2.11 (De Rham case). Assume D is de Rham.

(1) For each n € Z, n > «, there exists a unique (¢, I')-submodule of D of Sen weights (n,n).

(2) If & € Z>1, for n1 € Z>p, n1 < « (resp. nay € Z>o, there exist a unique (p,I")-submodule
of D of Sen weights (n1,a) (resp. (0, + n2)), which we denote by Dy, o) (Tesp. D asns))-

(3) If « =0, let n > 1, the (¢,T')-submodules of D of Sen weights (0,n) are parametrized by
lines £ C Dgr (D), each denoted by D,, .

Remark 2.12. (1) By the proposition, one easily gets a full description of (¢, I")-submodules of
D in de Rham case. Note also that in case (3), Dy, & can be isomorphic for different £ .

(2) Assume D is de Rham and o > 1. For ny,ng € Z>o, n1 < ng + «, by (2) there exists
a unique (p,1')-submodule, denoted by D(,, ainy), of D of Sen weights (ni,a + na) such that
Dny,atnz) C D0,atny)- We have Dy oyqy = t"D. Recall there is an equivalence of categories
between de Rham (p,T')-modules and filtered Deligne-Fontaine modules (cf. [1, Thm. AJ). The
associated Deligne-Fontaine modules (igonring the Hodge filtration) of Dy, o4n,) are all the same
and isomorphic to that of D. For the Hodge filtration, to go from D to Dy, q4n,) withny < a+na,
one just shifts the degree of the filtration respectively.

2.2.2 Translations

For a (¢,T')-module D over R, by differentiating the P*-action, we obtain an action of its Lie
algebra p™ on D, where a™ acts via the operator V (given by differentiating the I'-action), and
ut acts via t. We assume D is of rank 2 and has Sen weights (0, ap), with ap € E \ Z<g. Let
P(T') € E[T] be the monic Sen polynomial of D, hence P(V)(D) C tD (e.g. see [6, Lem. 1.6]).
For an operator V' such that V/(D) C ¢tD, we use VTI to denote the operator mapping x to %V’(az).
In particular, we have the operator P(tV) on D. We recall the gly-actions on D, and we refer to
[5, § 3.2.1] for details. We restrict to the case with infinitesimal character for our applications.

Proposition 2.13. (1) If deg P(T) = 2 (so is equal to T(T — ap)), then there exists a unique
gly-action on D extending the p™-action satisfying that D has infinitesimal character. The action
P(V)

is given by v~ = ——;—= and 3 = ap — 1. Consequently, ¢ acts via a2D —1.

(2) If degP =1 (so ap =0 and P(T) =T), for a € E, there exists a unique gly-action on
D extending the pT-action satifying that D has infinitesimal character and 3 acts via o — 1. The
action is given by u~ = —M. Consequently, ¢ = o — 1.

Remark 2.14. (1) By [5, Prop. 3.4/, if D does not contain a pathological (¢,T')-submodule (cf.
[5, Rem. 3.5]), then the uniqueness in the proposition already holds with the condition having
infinitesimal character replaced by having central character (for 3). If D contains a pathologi-
cal (¢, T)-submodule, then the p*-action on D can extend to a gly-action without infinitesimal
character (but with central character).



(2) For a general rank two (p,T')-module D', there exist D as above and a continuous character
x such that D' = D @z, Re(x). The gly-action on D' is then given by twisting the one on D by
dx o det.

In the sequel, we let o« € E such that D is equipped with the gly-action with v~ = —M,
3 = a — 1. For example, « = ap (hence a ¢ Z in this case) if deg P(T) =2. f P(T) =T, «
can be arbitrary. We equip D ®pg Vi with a natural (diagonal) gly-action. Note that on D ®pg V4,
3=a+k—1

Lemma 2.15. The Casimir operator ¢ on D ®p Vi, defines an endomorphism of (¢,T')-modules
over Rg.

Proof. The operator ¢ commutes with the adjoint action of PT. Hence ¢ is RE—linear and com-

mutes with ¢ and I'. The lemma follows from Endg , (, r)(D®g Vi) = Endng,(%r) (DepVy). O

By the lemma, we can decompose D ®p V) into a direct sum of generalized eigenspaces
(D ®g Vi){c = u}, each being a saturated (¢, I')-submodule of D ®g V.

Lemma 2.16. For any pn € E, the composition (D ®@g Vi)[c = p] = D ®@p Vi, D p s injective.

Proof. Let e; =tlefori=0,--- ,k, and v = Zf:o v; ® e;. We have (letting v_1 = v = 0)

k k+1 k
w = Z(cvi) ®e; + Z v; @ (ce;) + Z(4u*vi_1 +4(i + 1) (k — i)uTvip1 +2(2i — k)hv;) @ e;. (6)
i=0 =0 =0

If cv = pw and vg = 0, comparing the ey terms on both sides and using u™ is injective on D, we
easily see v; = 0. Using induction and similar argument (comparing the e;_; term), we see v; = 0
for all ¢ hence v = 0. The lemma follows. O

Now consider the k = 1 case.

Lemma 2.17. (1) Suppose ap ¢ Z or ap € Z>1, then we have a gly(Qp)-equivariant isomorphism
of (p,I')-modules over Rg:

DepVi=(DepVi)c=(a+1)*—1]& (Do V)= (a—1)*> =1 = Digat1) & D10

(2) Suppose ap = 0 and D is not de Rham, then D @ Vi = (D ®g Vi){c = 0} which, as
(¢, T')-module or gly-module, is isomorphic to a non-split self-extension of (D®@Vi)[c = 0] = Dq 1.

(8) Suppose ap =0 and D is de Rham. Then D @p Vy = D & tD. And we have

(a) Ifa #0, then DoV = (DepVi)c= (a+1)?-1]e(DepVi)c= (a—1)2-1] = D&tD.
(b) Ifa =0, then DR Vi = (D@ Vi){c =0} = (D®g V1) =0], and (D@ V4)[c = 0] = D.
Proof. Let eg = e and e =te. For v =19 ®eg+v1 ®e; € D ®@p V1, by (6)

c(v) = (oz2 + 2)v + (—2bvg + 4utvr) ® eg + (4u"vg + 2bvy) ® ey.



Suppose ¢(v) = (a? 4+ 2 + \)v, then (noting h =2V — a + 1):

(4V = 20 + 2 4+ N)vg = 4ty
(4V — 2a + 2 — Ny = =)y,

As V(tz) = t(V + 1)z for z € D, we deduce
AV(V —a)yg = (4V — 20 — 2 — Nty = i(w — 200 —2—X\)(4V — 2a + 2 + M.

If v # 0 (hence vy # 0), A = £2a — 2. We also see

V—-a/2a+a/2

(DeEV1)[c = (at1)? 1] = {vy@ep+ :

vo®er |vg € D, (V—a/2+a/2)vy C tD}.

(7)
It is clear that the image of (D ®pg Vi)[c = (a £1)? — 1] — D contains ¢tD. In particular,
(D ®r V1)[c = (a+1)?2 —1]is a (p,I')-submodule of D of rank 2. If a # 0, we have then

(DopWV)ic=(a+1)? 1@ DopW)c=(a-1)? -1 > Dop V. (8)

If « =0, we have D ®@g Vi = (D ®g V1){c = 0}. Moreover, by direct calculation, we have
(D ®p Vi){c=0} = (D g Vi)[c* = 0].

Next we describe the (p,T')-module (D ®g Vi)[c = (o £ 1) — 1]. We will use the gly-action
(although one can directly describe it using (7)). For 2 € (D ®g V1)[c = (a + 1)? — 1], using
¢ =02 —2h+4utu, we have V(V —a — 1)(x) € t((D ®g V1)[c = (a + 1)? — 1]). Hence the Sen
polynomial of (D ®p V1)[c = (o +1)? — 1] divides T(T — o — 1). Similarly, the Sen polynomial of
(D®p V1)[c = (a—1)% — 1] divides (T — 1)(T — a).

If D is not de Rham, then (D ®g V1)[c = (o + 1)? — 1] twisted by any character is also not
de Rham. Hence its Sen polynomial has to be of degree 2. Together with the above discussion,
we easily deduce (D ®p V1)[c = (a+1)? — 1] = D(g 4+1), and if moreover o # 0, (D ®p V1)[¢c =
(=12 =1] = Dy o). If a =0, we see (D®p V1)/(D ®g Vi)[c = 0] is also a (¢, T)-module of
rank 2 of Sen weights (0,1). Consider the composition

tD Y DepVi - (DegV)/(Dog V)= 0. (9)
By Lemma 2.16, tDN (D ®pg V1)[c = 0] = 0 (as submodules of D®p V1), hence (9) is also injective.
We deduce (D KF Vl)/(D RF Vl)[c = 0] = D(071). If Dog Vi = D(O,l) D D(O,l): then D ®g V3
is Hodge-Tate, which is impossible as its saturated (¢, I')-submodule ¢D is not Hodge-Tate. So
D ®p V1 is a non-split self-extension of D 1y. This finishes (2) (and (1) for non-de Rham case).

Assume now D is de Rham, and suppose first D has distinct Sen weights. Then the gl,-action
on D is unique and o = ap € Z>1. The Sen weights of (D ®g Vi)[c = (a+ 1)2 — 1] are (0, + 1)
or (0,0) or (a+ 1, + 1). However, (D ®g Vi)[c = (o + 1)? — 1] is a submodule of D (resp. a
saturated submodule of D ®f V1), so it can not have Sen weights (0,0) (resp. (a+1,a+1)). We
deduce hence (D ®p Vi)[c = (a + 1)* = 1] = D(g 441y- As (D ®p V1)[c = (o — 1) — 1] has Sen
weights (1, ) and contains tD, we see (D ®g Vi)[c = (o — 1)? — 1] = Dy o).

Finally, suppose D is de Rham of weights (0,0). By (7) and VD C tD, the composition
(DopVi)c= (a+1)2—1] < D®g Vi — D is surjective. We have thus D ®@g V3 = D@ tD. By
comparing the Sen weights, the injection tD — (D ®g V1)/(D ®g V1)[c = (a+ 1)? — 1] (obtained
as in (9)) is also an isomorphism. (3) follows. O



Remark 2.18. (1) Assume ap # 0, then we obtain two filtrations on D Qg V;:
D@ Vi = Dpat1)®Daa = [tD ——D].

If D is not trianguline, then Hom(%p)(D,D(QaH)) Hom(, 1y(D, D(1,4)) = 0, so the extension
tD — —D 1is non-split.

(2) The induced gly-action on (D@gVi)[c = (a£1)2—1], and (D@ Vi){c =0}/(D®pVi)[c =
0] (when o =0) coincides with the one in Proposition 2.13 and Remark 2.2.2 (2).

Proposition 2.19. (1) Suppose ap ¢ 7 or ap € Z and ap > k, then we have a gly-equivariant
isomorphism of (¢, T')-modules over Rg:

D@p Vi 2l o(Dop Vi)l = (a+k—2i)* — 1] = & D arh_iy-

(2) Suppose ap # 0, then (D@pVi){c = (a+k)*—1} = (D@ Vi)[c = (a+k)?—=1] = Do o 1k)-

(3) Suppose ap = 0 and D is not de Rham, (D®g Vi){c = k*—1} is a non-split self-extension
of (D ®p Vi)[c = k* = 1] = D(g 1.

(4) Suppose ap = 0 and D is de Rham. If « € E\Zg, then (D®gVi)[c = (a+k)2—1] = D,
and if « =0, (D@p Vi){c=k*—1} = (D@ Vi)[(c—k*+ 1) =0 = D@ t*D.

Proof. By Lemma 2.17 (and the proof) and an easy induction argument (see also Remark 2.18
(2)), we have

k
D®EV1®’“%ZD®EV1®’“ {e=(a+k—2i)? -1} (10)
=0
Andifa ¢ Z or a € Z, « > k, by Lemma 2.17 (1) and induction, we have (where the factors in
the direct sum can have rank bigger than 2)

Dep VP =gl (Do VEN)[c=(a+k—2i) 1] (11)

The first isomorphism in (1) follows. By Lemma 6, (D ®g Vi)[c = (o + k — 2i)2 — 1] is a (¢, T)-
submodule of D of rank at most 2. By similar arguments as in the proof of Lemma 2.17, the Sen
polynomial of (D ®g Vi)[c = (o + k — 2i)? — 1] divides (X —i)(X — (o + k —i)). As the Sen
weights of D ®p Vi are given by (0,--- ,k,«, -+ ,«a + k), by comparing the weights, we see the
Sen weights of (D ®p Vi)[c = (a + k — 2i)% — 1] are exactly (i, + k — 7). It rests to show

(D ®p Vi)le = (a4 k — 20)* = 1] = D(; o k—i)- (12)

The k = 1 case was proved in Lemma 2.17 (1). Assume k£ > 2. We use induction and assume hence
(1) holds for k" < k. For i = 0 (resp. i = k), (12) holds as Dg q1k) (resp. D q)) is the unique
submodule of D of Sen weights (0,« + k) (resp. (k,«)). Assume 1 <14 < k — 1, it is easy to see
(D®g Vi)[c = (a+k—2i)%2 —1] is a direct summand of ((D®g Vi_1) ®@r V1)[c = (a+k—2i)% —1].
As (1) holds fo k — 1, it is not difficult to see the latter is isomorphic to

(Diiatk1-0@pV1)le = (@+k—=20)? = 1)@ (D1 0k @ Vi)[e = (a+k—=20)*~1]= D% ..

(13)
By Clebsh-Gordan rule, we have V;_o ®p (A?V7) < Vi1 ®g V4 — Vj, and the composition is
zero. By the induction hypothesis for £ — 2, we have

(D ®p Via @ (A*V1))[e = (a4 k — 20)* = 1] Z D 1 grh-1-1) = Diiath—iy-

10



Together with (13) and the fact (D ®g Vi)[c = (o + k — 2i)? — 1] has Sen weights (i, + k — 1), it
is not difficult to deduce (12). This finishes the proof of (1).

(2) By (10), one can easily show that (D ®g V;?"){c = (a+k)?> =1} = 0 for i < k (note in this
case o ¢ Z ). Using Lemma 2.17 (1) and induction, we also have (D®@g V%) {c = (a+k)?>—1} =
(DR V) c=(a+k)?—-1]= D(o,a+k)- (2) follows.

(3) By (10), (D ®g VE){c = k> — 1} = 0 for i < k. Tt suffices to show the same statement
with Vj replaced by V1®k. By Lemma 2.16 and an induction argument using Lemma 2.17 (1), we
get (D @p VIEF)e = k? — 1] = D(o,r)- By Lemma 2.17 (2) and induction, it is not difficult to see
(DREVER){c = k>—1} is a self-extension of (DR V¥ [c = k2 —1] = Do,r)- We see the statement
in (3) except the non-split property holds. If the extension splits, the multiplicity of (7'— k) in the
Sen polynomial of D® gV}, is one (noting k is not a Sen weight of (D®gV;)/(DRpVi){c = k*—1})
by (10) and the discussion in the first paragraph), however the saturated (¢, T")-submodule t*D
of D ®g Vi is not Hodge-Tate, a contradiction.

(4) Again by (10), if a ¢ Zo, (D ®p V{¥){c = (a + k)?> — 1} = 0 for i < k, hence it suffices
to prove the same statement for V;**. By Lemma 2.16 and Lemma 2.17 (3) with an induction
argument, we have (D @g V)¢ = (a + k)2 — 1] = D. Assume now a = 0, by Lemma 2.17 (3),
we have an exact sequence (which splits as (p,I')-module)

0o DopVP" N{c=k-1} 5 (DepVE )=k -1} > tDeg V¥ D=k -1} >0,

where the gly-action on D in the left term (resp. on tD in the right term) fits into Lemma 2.17
(3)(a) for @« = 1 (resp. for a = —1, after an appropriate twist). By (10) and an induction
argument using (8), we have (D ®p V1®(k_1)){c =k2-1} =2 (D®g V1®(k_1))[c =k*2-1]= D, and
(tD®g V1®(k_1)){c =k2-1} = (tD®g V1®(k_1))[c = (—k)2—1] is a (¢, T')-submodule of rank 2 of
tD, and has Sen polynomial dividing T'(T — k) (by similar arguments as in the proof of Lemma
2.17). As (D @p V) {c=k*> -1} =2 (D ®p Vi){c = k* — 1} is saturated in D ®@g V4, we easily
deduce (tD ®p V1®(k_1) )[¢ = k2 — 1] has constant Sen weight k, hence is isomorphic to t*D. This
concludes the proof. O

Remark 2.20. We will frequently use the following special case:

a=0 and D is de Rham

D
(D @p Vi)le = (a+ k)2 — 1] = .
Dotk  otherwise

Note that by induction, we also have
(DopVi)lc=(a+k)?—1]=2(Dop VEH)c= (a+k)* 1]
>~ (Do V¥ Ne=(a+k-12 -1 Vi)c=(a+k?>—-1]. (15)

From this and (7), we have the following uniform description of (D ®g Vi)[c = (o + k)% — 1] as
submodule of D (which can also be directly deduced from (14))

(DopVi)e=(a+k?—1={zeD|Vix)etD, Vi=1,-- k)

where Vi := (V—i+1)---(V—-1)V.

11



Finally we quickly discuss the translation on general p-adic differential equations, where every-
thing is essentially the same as the rank two case. Let A be a de Rham (¢, I')-module of constant
Hodge-Tate weight 0. For o € E, by [5, Prop. 3.6], we equip V with a gly-action extending the
natural pT-action such that 3 =a—1 and u~ = —M (so ¢ = a? —1). Note that Lemma 2.16

still holds with D replaced by V.

Proposition 2.21. (1) A®p Vi = ok tA.
(2) If o & Zco, (A@p Vi)l = (a+ k)P —1] 2 A,
(3) Ifa = 0, (A XRE Vk){c = k‘2 — 1} ~A EBtkA.

Proof. (1) We consider the case where A is equipped with the above gly-action with o ¢ Z. By
similar argument in the proof of Lemma 2.17 and induction, we have a similar decomposition as
in (11) for A (which holds with V1®k replaced by V). By considering the Sen weights, the Sen
weights of (A ®p Vi)[(a + k — 2i)2 — 1] has to be the constant i. Similarly as in Lemma 2.16,
(A ®g Vi)[(a 4+ k — 2i)? — 1] is a submodule of A, hence is isomorphic to t*A.

(2) (3) follows by similar argument as for Lemma 2.17 (3) and Proposition 2.19 (4). O
Remark 2.22. For a general de Rham (¢,I")-module D, let DF := Dys (D) (ignoring the Hodge

filtration) be the Deligne-Fontaine module associated to D. By Proposition 2.21 (1), the Deligne-
Fontaine module associated to D @ Vj, is isomorphic to DFEFL,

3 Locally analytic representations of GLy(Q,)

We show the compatibility of the translations on (¢, I')-modules and the translations on GL2(Q,)-
representations.

3.1 Translations of GLy(Q,)-sheaves on P*(Q,)

Let .# be a GLa(Q,)-sheaf of analytic type over P*(Q,) (cf. [5, § 1.3.1]). For k > 1, the following
data defines a GL2(Qj)-sheaf, denoted by . ®@p Vi, of analytic type over P1(Q,): for compact
opens U, V of PL(Q,),

o (F@pWV)U)=FU)®g V,
. Resg | 7o RV, = Resg |z ®id,

* gul(Fesvi)W) = 9ulzw) ® g for g € GL2(Qp).

0 1
Note that w = <1 0

M } gives rise to a PT-sheaf of analytic type over Z,, and w induces an involution on ResZ; (M ;C)
We have . (P1(Q,)) = {(z,y) € M x M7 | w(ResZ; () = Res; x (y)}. We refer to [5, § 3.1.1]
for more discussion on the relation of GL2(Q,)-sheaves and P*-sheaves. Finally remark that the

involution w on Reszg (M;®Evk) = ReSZ; (M}) ®pg Vi is given by the diagonal action of w.

) induces an isomorphism M} = F(Z,) = Z (P} (Qp)\Z,). It is clear that

12



For € E, define .#[c = p] (resp. .#{c = pu}) to be the subsheaf of (¢ = p)-eigenspace (resp.
generalized (¢ = p)-eigenspace). It is clear that these are GL2(Q))-subsheaves of .7 over P1(Q),).

Let D be a (p,I')-module over Rg. Assume there is an involution w on D¥=0 = DK Zy.
Let 0 : Qy — E* be a continuous character. Assume that (D,d,w) is compatible in the sense
of [5, § 3.1.2]. Let ¥p 5., be the associated GL2(Q))-sheaf of analytic type over P!(Q,). We will
frequently use Colmez’s notation D X5, U := ¥p 5.,(U) for U C P! (Qp).

0 1), which is an involution on (D ®g Vi) KZ) = (DX Z)) @F Vi.

Let wip (= w® <1 0

Proposition 3.1. If (D,§,w) is compatible, then (D ®g Vi, 286, wy) is compatible, and there is
a natural isomorphism of GLa(Qy)-sheaves over P1(Qy):

YID& ki o2k, — ID6w OF V-

In particular, we have a GL2(Q,)-equivariant isomorphism (D &g Vi) k5 0 P! (Qp) = (D Ky
PY(Qp) ®F Vi-

Proof. From the data (D ®p Vj, 2%6,wy,), we can construct a sheaf ¢’ over P1(Q,) as in [5, § 3.1.1]
with ¢'(P1(Q,)) = {(z,y) € (D ®g Vi) x (D ®g Vi) | wk(ReSZ; (x)) = Res; (y)}, which is
equipped with an action of the group G in [5, Rem. 3.1] using the formulas in [5, § 3.1.1]. It
is then straightforward to check (¥p s ®g Vi) (P (Qp)) — 9 (P (Qp)), (z,y) — (z,y) induces an

isomorphism of sheaves over P1(Q,), which is equivariant under the G-action. As ¥p s ®@pg Vi is a
GL2(Q,)-sheaf, the G-action on ¢’ factors through GL2(Q)). The proposition follows. O

Corollary 3.2. Suppose (D, d,w) is compatible. Let u € E such that (D®pgVi)[c = p] #0. Then
(D ®g Vi)e = pl, 26, wy) and (D @g Vi){c = u}, 256, wy,) are compatible. And we have natural
isomorphisms of GL2(Qy)-sheaves over P1(Qy):

Do Vilempl o, — (DDsw QB Vi)le = 1], Dpepvifempt st wy — (IDsw @8 Vi){c = p}.

In particular, we have GLa(Q))-equivariant isomorphisms

(D ) Vk)[c = M] &zk&wk P! (Qp) = (D &5,11) P! (Qp))[c = M]a
(D @5 Vi) (& = 1} Bng g BHQp) 2 (D By B(Qp)){c = s}

Proof. By the above proposition, the involution wy, comes from the w-action on 9pg v; 525w, (Zy )
hence commutes with ¢. We see in particular wy, stabilizes (D®gVy)[c = p|XZ) and (D®gVi){c =
p}RZy. The restriction maps also commute with ¢, hence (D®g Vi.)[c = 1] = (Ypg v, o2k 1wy, [€ =
) (Zy) (resp. (D @ Vi){c = u} = (Ype v, 2k w, 1€ = 1})(Zp)). The corollary then follows by
the same argument as in Proposition 3.1. ]

3.2 p-adic local Langlands correspondence for GLy(Q,)

Let 6p : QF — E* be the character such that A2D = Rp(dpe). Recall that by [5, Thm. 0.1],
if D is indecomposable, there exists a unique involution wp such that (D,dp,wp) is compatible.
We briefly recall the construction and some properties of wp.

(1) When D is irreducible, then there exist a continuous character y and an étale (p,I')-
module Dy such that D = Dy ®r, Rr(x). Let Dy be the continuous étale (¢, I')-module over
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B, ®q, E associated to Dg. One defines first an involution wp, on Dg =0 (see [4, Rem. IL.1.3)).

Then the restriction of wp, on (Dg)d’zo extends uniquely to an involution wp, on Dy such that
(Do, dp,,wp,) is compatible.(cf. [4, § V.2]). Let wp := wp, ® x(—1). It is straightforward to
check that (D, dp,wp) is also compatible and DXs, ., P*(Q,) = (Do X5, 0, PY(Q,)) ®E xodet.

(2) When D is a non-split extension of Rg(d2) by Rg(d1). On each Rp(5;)¥=0, there is a
unique involution w; such that (Rg(0;),d;,w;) is compatible (cf. [5, Rem. 3.8 (i), § 4.3]), and
there is an exact sequence (cf. [5, Thm. 6.8]):

0— RE((SI) IZ(SD/UH P! (Qp) — D IZ(SDJUD p! (@P) — RE(62) g(SD,wz P! (Qp> — 0.

Remark 3.3. (1) If D contains a pathological submodule, i.e. up to twist D is isomorphic to
a non-de Rham extension Rg — t"Rg with n € Z>q, then by [5, § 6.5.1, 6.5.2], the c-action on
D X5, wp, PHQp) is not scalar. While for other cases, ¢ is scalar.

(2) Suppose D does not have pathological submodules, and assume D has Sen weights (0, ap)
with ap € E\ Z<y. The gly-action on D induced from D X5, ., P! (Qp) coincides with the one
given in § 2.2.2 with o = 0 when ap = 0.

We write DX;, P*(Q,) := DXy, wp P1(Qp). Recall that we have a GLy(Q,)-equivariant exact
sequence (cf. [5, Thm. 0.1])

0 — 7(D)* ®g 6p o det — D Ks, P1(Q,) — 7(D) — 0, (16)

where 7(D) is the locally analytic representation of GL2(Q)) (of central character ép) correspond-
ing to D in the p-adic local Langlands correspondence. Note that if D' = D ®g, Rg(x), then
D' R , PHQp) = (D K, PY(Q,)) ®E x o det, hence m(D') = 7(D) ®@p x o det.

3.3 Change of weights

Twisting D by a continuous character, we assume D has Sen weights (0, ap) with ap € E'\ Z«o.
Let k € Z>1. We deduce from (16) an exact sequence

0= (D) ®p Vi ®p dp odet — (D ®p Vi) M5, ¢ P! - 7(D)®p Vi, — 0.

YWD k

Let € E, we have two exact sequences:

0= (7(D)*@pVi@rdp){c = p} = (DREVi){c = 1} Ry, k4, P = (1(D) @£ Vi){c = u} =0,

s WD K

0= (m(D)* @p Vi ®pdp)[c = p] = (D&p Vi)lc = W] K5, i o P = (1(D) @5 Vi) e = p]. (17)

WDk
Theorem 3.4. Assume D is indecomposible and D does not have pathological submodules.
(1) Assume ap ¢ Z or ap € Z and a > k. Fori=0,--- ,k, D(; otk ®5D<m+k7i) PHQ,) =
(D Ry, PHQp))[e = (a + & = 20)* = 1] and (D ki) = (1(D) ®p Vi)le = (e + k — 20)* — 1.
(2) Assume ap # 0 or D not de Rham, then D g o) &;D(O’QM) PHQ,) = (D Ks, PHQp)[c =
(a+k)?—1] and T(Do,a4k)) = (1(D) @p Vi)[c = (a + k)2 —1].

Proof. The first isomorphisms in (1) and (2) follow directly from Corollary 3.2, Proposition 2.19
and the uniqueness of the compatible involution (cf. [5, Prop. 3.17, Rem. 3.8], noting d Dotk

i
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2#6p). For the second isomorphisms, we only prove (1), (2) following by similar arguments. We
have an exact sequence

0= m(D(iatk—i) @B 0D, 0insy = Diiark—i) B PY(Qp) = 7(Dgiatk—i)) = 0.

6D(i,a+k—i)

By (16), the same argument as in [6, Lem. 3.21] and the fact m(D(; o4x—i)) does not have finite
dimensional subrepresentations, we see the injection

(m(D)* ®@p Vi ®50p)[c = (a+ k —2i)> = 1] = D(; g1y X P (Qp)

6D(i,a+k—i)

factors through 7(D(; a4k—i))" ®F 6D, oyp_y- The quotient of 7(D; ak—i))* @ 6D 0yp_sy PY
(7(D)* ®p Vi ®p 6p)[c = (o + k — 2i)? — 1] injects into the E-space of compact type (7(D) ®f
Vi)[e = (a + k — 2i)? — 1], which, by the same argument as in [6, Lem. 3.21], has to be finite
dimensional. As (D(; o1k—s)) does not have finite dimensional subrepresentations, we deduce the
second isomorphism in (1). O

Remark 3.5. (1) When D is trianguline, certain cases (concerning m(D)) were also obtained in
[12, Thm. 5.2.11].

(2) Suppose ap = 0 and D is not de Rham. By Theorem 3./ (2), one easily sees the right
map in (17) for such D and p = k% — 1 is surjective.

We move to @ = 0 and de Rham case. This case is different, as the translation in this case
does not directly give non-trivial (¢, I')-submodules (i.e. submodules other than ¢*D). If D is
moreover non-trianguline, we let w(D, 1) for i € Z be Colmez’s representations in [6] (for D = V
of loc. cit.).

Theorem 3.6. Assume D is indecomposable, de Rham of Hodge-Tate weights (0,0). Then
(D,zkép,wak) and (tkD,zkép,wD,k) are compatible. We have

D ®ksp 00, PH(Qp) 22 (D Ry, PHQy))[e = K — 1],
and an exact sequence
0—=D &Zk(stwD,k P! <Q’P) = ((D X5, P! (@’p)) @p Vi){c= K — 1} — t*D gzk(SDﬂUD,k P! (Q’p) — 0.

If D is moreover non-trianguline, then (m(D)* @p Vi)[c = k? — 1] = 7(D, k)*, and we have an
exact sequence

0 — (D, k)" — (n(D)* ®@p Vi){c = k* — 1} = n(D, —k)* — 0. (18)

Proof. The first part of the theorem follows directly from Proposition 2.19 (4) and Corollary 3.2.
Assume D is non-trianguline, by the uniqueness of the involution ([5, Prop. 3.17]) D Xok5p w0
P(Q,) (resp. t*D X.kspw0p P(Qp)) is just the representation DX s, P'(Q,) (resp. tkD X
P1(Q,)) of [6, § 3.3]. Similarly as in the proof of Theorem 3.4, using the same argument as in
[6, Lem. 3.21] by comparing (17) and the exact sequence in [6, Rem. 3.20], we deduce (7(D)* ®g
Vi)[e = k? — 1] =2 n(D, k)*. By [6, Prop. 3.23], we have

zk8p

0 — (D, ~k)* ® 6p — t* D B_s, P (Q,) — m(D, k) — 0.
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Again by similar arguments in [6, Lem. 3.21], the composition
(m(D)* ®p Vi ®p dp){c = k* — 1} = (D B, PY(Qy)) ®p Vi){c = k* — 1} - t*D Rz, P1(Qy)
factors through & : (7(D)* @ Vi){c = k? — 1} — 7(D, —k)*. Similarly, the composition

m(D,~k)" ®F 6p — (D Ks, PY(Qy)) @5 Vi){c = k? — 1}/D R.x5, PY(Qy)
— (7(D) @ Vi){c =k* —1}/n(D,—k) (19)
has to be zero, so k is surjective. This concludes the proof. O

Remark 3.7. (1) We have t’iD Mg wp e PH(Qp) = (D R,-ks, PH(Qp)) ®F 2 0 det = (D X ks,
PY(Q,))Y ®g 2* o det, where D := DV ®p ¢, see [5, Prop. 3.2] for the last isomorphism.

(2) As w(D,—k)* C w(D,k)*, we see that the right map in (17) is not surjective in the case
(for u=k? —1), in contrast to Remark 3.5 (2).

(3) The second part of the theorem also holds in the trianguline case. We discuss the repre-

sentations 7(D, 1) in the corresponding cases. Twisting by smooth characters, there are only two
cases (noting D is indecomposable):

(¢) D=[Re(]-]) - Rel,

(b) D = [Rg — REg]|, is the unique de Rham non-split extension.

For the case (a), we let n(D,—i) := II;, w(D,i) := II} be as in [5, Prop. 6.13] for i € Zsy.
The second part of Theorem 3.6 for such D follows by similar arguments in the proof and [5,
Prop. 6.13].

For the case (b), let val, := Q) — E be the smooth character sending p to 1, to which we associate
a smooth character n : Q) — Ele]/€*, a — 1+ val,(a)e. Note n is a two dimensional smooth

2((8%13) E—lzin ® 1)an

(resp. m(D,i) := (Indgliz)(((@%) e @12 @p 2~ odet) (which has central character e~211). By
discussions in [5, § 6.5.1], the second part of Theorem 3.6 in this case similarly follows.

representation of Q over E. Fori € Z>q (resp. i € Z<o), let m(D, i) = (Indgli

(4) In all cases, let moo(D) be the smooth representation of GL2(Qp) associated to D via the
classical local Langlands correspondence. Let D' C D be a (p,T")-submodule of Sen weights (0, k),
and assume D’ is indecomposable. By [6, Prop. 2.4, Rem. 2.5], we have (note dp, = zkép)

D/ IZ&D, PI(QIJ) — D IEZk(;D,’wD’k ]P)I(QP)?
which induces w(D')* < w(D, k)*. Moreover, we have
m(D,=k)" C m(D')" C w(D, k)",

with ©(D,k)*/m(D")* = n(D")*/n(D,—k)* = (1eo(D) ®g Vi)*. When D is irreducible or be
as in case (3)(a), 7(D,k)*/m(D,—k)* = ((1eo(D) @ Vi)*)¥2.  Moreover, by [5, Thm. 6.15]
[6, Thm. 0.6(iii)], the map D' — w(D')* is a one-to-one correspondence between the (p,T')-
submodules of Sen weights (0,k) to the subrepresentation of w(D,k)* of quotient isomorphic to
(Moo (D) ®g Vi)* (which also corresponds to non-split extensions of (7o (D) @5 Vi)* by w(D, —k)*,
cf. [2, Lem. 3.1.8][8, Thm. 2.5]). When D is as in (3)(b), then D admits a unique indecomposible
(o, T)-submodule of weights (0, k), which has the form [t*Rg —Rg|. Correspondingly, in this case
7(D,k)*/m(D, —k)* is a non-split self-extension of (7eo(D) @p Vi)*, and w(D')* is the (unique)
subrepresentation of w(D,k)* of quotient (mo(D) @ Vi)*.
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We finally discuss the translations on the GL2(Q))-sheaves associated to rank one (¢,I')-
modules. Twisting by characters, it suffices to consider R X5 P!(Q,) for a continuous character
6 of Q. Let a := wt(d) + 1, the corresponding gly-action on Rp satisfies 3 = wt(d), and

u = Y9 We have by [5, Prop. 4.14], (Rg K; P1(Q,))Y = Ry(e) Ky-1 PY(Q)) = (RpRs1,
PY(Q,)) ®g € odet. So it suffices to consider the case a € E \ Z.g, and we assume this is so. The
following theorem follows easily from Proposition 2.21 (applied to A = Rp) and Corollary 3.2.

Theorem 3.8. We have ((Rg K5 PH(Q,)) ®r Vi)[c = (o + k)? — 1] 2 R K5 PL(Q,), and an
exact sequence

0= Rp Bis PH(Qy) = (Re B PH(Qy)) ®p Vid{e = (a+k)* = 1} = t"Rp Bis P(Qy) — 0.
Remark 3.9. By [5, Prop. 4.12], we have an exact sequence

0 (2% 5. 1)™) ©p 5 o det — Ry 8 P (@) — (Ind 520 = @ 6e)" 0.

We refer to [12] for a detailed study of translations on locally analytic principal series.

3.4 Some complements
In this section, let D be an indecomposible (¢, I')-module of rank 2, equipped with the induced
gly-action from DX, P1(Q,). We assume moreover D does not contain pathological submodules.

Suppose D is not trianguline. We reveal and generalize Colmez’s operator 0 on w(D)* [6]. By
[9, Cor. 2.7], u™ is injective on 7(D)*. By the same argument as in Lemma 2.16, we have

Lemma 3.10. Assume D is not trianguline, the P'-equivariant composition
Ik (m(D)* @ Vi)[c = u| — m(D)* @ Vi, —» w(D)* (20)
18 injective.
The following lemma follows by direct calculation.

Lemma 3.11. Let M be an E-vector space equipped with a gly-action. Let o € E, assume on M,

c=a’—1and3=a—1. Then for g = CCL Z , we have on M:

ut Ady(u™) = (—ca® + auT)(—c(at — @) + au™).

In particular, if u*, and Adg(u™) are injective on M, so are the operators (—ca™ + au™) and
(—c(at — @) + aut).

Consider the k& = 1 case. By the same argument as in the proof of Lemma 2.17 (with D
replaced by 7(D)*), (7(D)* ®g V1)[c = (a + 1)? — 1] has the form v = vg ® eg + v1 ® e; with
vy € w(D)* satisfying a™*(vg) € utm(D)* and v; = Z—ivg (well-defined as u™ is injective). The
map 71 : (7(D)* @ V)[¢c = (e +1)2 = 1] — 7(D)* ® Vi — 7(D)* sends v to vg. We let

CL+ *
0:= &% :Im(n) — m(D)*.

b
d

Moreover, 51(g(v)) = det(g)(—cd +a)"'g(51(v)) for v € (7(D)* ®p Vi)[c = (a + 1) — 1].

Lemma 3.12. For g = <Z > € GL2(Qp), and u € Im(y1), we have g(u) € (—cd + a)Im(y1).

17



Proof. Write v = vg ® eg + v1 @ e1. Hence 71(g(v)) = cg(v1) + dg(vg). As a™(vg) = u™(v1), we
have Adgy(a™)g(vo) = Adg(uT)g(v1). So ut Adg(u™)s(g(v)) = ut Adg(ca™ + dut)g(vg). By a
direct calculation, Ad,(ca™ + dut) = det(g)(—c(a™ —a+ 1) + au™). Together with Lemma 3.11,

(—ca™ + au™)71(g(v)) = uTg(y3(v)). The lemma follows. O

_l’_

Let 70 be the similar map with (7(D)* ®g Vi—1)[c = (a + i — 1) — 1] replacing 7(D)*. Tt is
easy to see by induction that (15) holds with D replaced by m(D)*. We have g, = j¥ o8 1. 01,

and operators:

0 0 0 *

() % (A1) % 5 Im(3) % n(D)" (21)

By Lemma 3.12 and induction (with an analogue of (15)), we have:

Proposition 3.13. For g = <CCL Z) € GL2(Qp), and v € Im(y;), we have g(u) € (—cO +

a)kIm(g;). Moreover, 31.(g(v)) = det(g)*(—cd + a)*g(jr(v)).

Remark 3.14. (1) In particular, one can construct the representation (w(D)* ®@p Vi)[c = (o +
k)2 — 1] from n(D)*: Let M be the subspace of m(D)* consisting of vectors v such that V;(v) €
(uT)im(D)* fori=1,--- ,k—1, where V; := (a™ —i+1)---at. For g € GL2(Q,) and v € M,
one can show that g(v) lies in (—cd + a)*M. The formula

g ¥ U= det(g)k(—ca + a)kg(v)

defines a GL2(Qp)-action on M. The topology on M is a bit subtle. If M is closed in m(D)*
(for example when D is de Rham, by [10, Prop. 9.1]), we equip M with the induced topology. In
general, using (6), from vy := v € M, we inductively construct {v;}i—o,...  with v; € 7(D)*, and
obtain an injection M — w(D)*®@p Vi, v +— Zf:() v;®e;. The image is closed with m(D)*®@p Vj =
(m(D)*)®*+1 as topological vector space (as it is exvactly the ¢ = (o + k)? — 1 eigenspace), and we
equip M with the induced topology. It is then clear M = (7(D)* ®p Vi)[c = (a + k)% — 1]. When
D is de Rham of constant Sen weights (0,0), Im(yx) = D, this reveals Colmez’s construction of
w(D, k)" (2 (x(D)* ©p Vi)le = ¥ — 1)).

(2) If ut is mot injective or equivalently D is trianguline, the kernel of 31 consists exactly of
v1 ® ey with vy € T(D)*[ut = 0], and is not stabilized by GL2(Qyp). So in this case, we can not
directly construct (m(D)* ®@g V1)[c = (a+1)%2 —1] from certain subspaces of w(D)* using a twisted
GL2(Qp)-action.

Finally, we discuss the relation of involutions. We keep the assumption on D in the first
paragraph of the section (while D can be trianguline). Let D’ C D be a (p,I')-submodule of Sen
weights (0, + k). If a # 0 or @ = 0 and D is not de Rham, then D" = D(q o). Similarly, as in
(21), we have operators

7] 9] 7] 7]
8k : D(O,aJrk) — D(O,a+k71) — D(O,a+1) — D.

If a= O and D is de Rham, then similarly as in (21) we have 0¥ : D — D. In any case, we have

oF = tk . We have the following relation on the involutions.

Proposition 3.15. We have wpr = wp o % = wp o OF.
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Proof. We only prove the case for k = 1, the general case following by an induction argument.

3.4,

Assume first a # 0 or @ = 0 and D is not de Rham. We have D’ = D( o41). By Theorem

we see wp = wp @ with (D)¥=0 — D¥=0@p Vj. For v = vy ® eg + v1 ® e,

0 1
10

J(wpr(v)) = wp(v1) = wp(d(vo)) = wp(9(51(v))).

Assume now o = 0 and D de Rham, by the same argument we have wp ; = wp o0 as operator

on D¥=Y. By [6, Prop. 2.4, Rem. 2.5, wp = wp 1| (prye=0. The proposition follows. O
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