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Abstract. 4D computed tomography (4D-CT) is an important modal-
ity in medical imaging due to its ability to resolve patient anatomy mo-
tion in each respiratory phase. Conventionally 4D-CT is accomplished by
performing the reconstruction for each phase independently as in a CT
reconstruction problem. We propose a new 4D-CT reconstruction algo-
rithm that explicitly takes into account the temporal regularization in a
non-local fashion. By imposing a regularization of a temporal non-local
means (TNLM) form, 4D-CT images at all phases can be reconstructed
simultaneously based on extremely under-sampled x-ray projections. Our
algorithm is validated in one digital NCAT thorax phantom and two
real patient cases. It is found that our TNLM algorithm is capable of
reconstructing the 4D-CT images with great accuracy. The experiments
also show that our approach outperforms standard 4D-CT reconstruction
methods with spatial regularization of total variation or tight frames.

1 Introduction

Four-dimensional Computed Tomography (4D-CT) is one of the most impor-
tant topics in medical imaging field that attract tremendous interests nowadays.
In addition to providing three dimensional volumetric anatomical information
as in conventional CT, 4D-CT is capable of resolving organ motions due to, for
example, patient respiration by reconstructing a set of CT images corresponding
to different respiratory phases in a breathing cycle. Such an imaging modality
is particularly of use in many clinical applications regarding thorax or upper
abdomen area, where a considerable amount of blurring artifacts would appear,
if conventional CT is used instead.

In 4D-CT acquisition, x-ray projection data are usually extensively over-
sampled. Those projections are then grouped according to their associated res-
piratory phase information and 4D-CT are accomplished by reconstructing to-
mography images corresponding to different phases independently [1] as in a
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conventional CT reconstruction problem. Since the current commercial standard
Filtered Back Projection (FBP) algorithm [2] used to reconstruct each individ-
ual phase usually requires hundreds of projections to achieve decent quality, the
4D-CT reconstruction scheme demands an extremely large number of x-ray pro-
jections. The consequent long acquisition process therefore leads to an excess
amount of radiation dose to the patient, potentially elevating cancer risks.

One obvious way of reducing the imaging dose in 4D-CT is to reconstruct the
CT images of each breathing phase from fewer x-ray projections. However, the
images reconstructed by conventional FBP-type algorithms would be severely
degraded due to insufficient sampling. Recently, a bloom of vast and exciting re-
search in compressed sensing [3, 4] has demonstrated the feasibility of recovering
signals from incomplete measurements through optimization methods, providing
us new perspectives of solving the CT reconstruction problem. Though this ap-
proach allows us to retrieve CT images in each phase with only a few number of
projections, the total number of projections used for an entire 4D-CT reconstruc-
tion is still large due to many breathing phases to be considered. Therefore, it is
highly desirable to develop new techniques to reconstruct 4D-CT with a greatly
reduced number of projections, while image quality can still be well maintained.

One idea deeply buried in all approaches currently applied to the 4D-CT
reconstruction is that images at different respiratory phases are reconstructed
individually. Nevertheless, 4D-CT images in a breathing cycle are never indepen-
dent of each other due to the smooth breathing pattern. Taking this temporal
correlation into account can in principle facilitate the 4D-CT reconstruction
process and potentially achieve the goal of even lowering projection number. In
fact, it is reasonable to believe that there are usually common anatomical feath-
ers within successive CT images, though the precise locations of those feathers
may slightly vary. Inspired by this fact, we propose in this work a new 4D-CT re-
construction approach by imposing regularization among neighboring phases via
a Temporal Non-local Means (TNLM) method. Specifically, each feature in a CT
image is searched in nearby area in images of neighboring breathing phases and
similar features are grouped together to constructively enhance each other. Such
an approach is found to be capable of solving the few-view 4D-CT reconstruction
problem, as will be seen in the rest of this paper.

2 Our Method

2.1 Conventional CT Reconstruction

Before presenting our method, we first describe how a conventional CT image
is reconstructed from highly under-sampled projections. In fact, the conventional
CT reconstruction problem, challenging by itself, is a subproblem of the 4D-
CT reconstruction, if each phase is reconstructed independently. Let us denote
one horizontal slide of patient anatomical information by a vector f . An x-ray
projection matrix P maps f into another vector Y on x-ray detectors in a fan-
beam geometry, such that Pf = Y . A CT reconstruction problem is formulated
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as the retrieval of the vector f based on the observation Y given the projection
matrix P .

The so-called few-projection CT reconstruction problem is well known to
be highly under-determined in that there are infinitely many solution vectors f
satisfying the equation Pf = Y . In order to single out an ideal CT image f ,
additional information needs to be imposed properly. For this purpose, regular-
ization models are usually used to reconstruct a desirable CT image in this highly
under-sampling situation. As such, one considers the optimization problem

f = argminf‖Pf − Y ‖22 +
µ

2
J [f ], (2.1)

where the first term ensures the consistency between the reconstructed CT image
f and the observation Y . The second term J [f ], known as a regularization term,
is imposed a priori to guarantee that the reconstructed image from (2.1) satis-
fies some desirable properties, e.g. sharp in edges and smooth in homogeneous
regions. Examples of J [f ] include Total Variation (TV) [5] and Tight Frames
(TF) [6], to name a few. The parameter µ in (2.1) balances the fidelity of the
solution f to the data Y and the imposed regularization.

It is straightforward to utilize this reconstruction approach to solve the 4D-
CT reconstruction problem by applying it to each phase independently. The
results produced by the TV-based or TF-based methods will be used to bench-
mark our 4D-CT reconstruction algorithm in our experiments.

2.2 4D-CT Reconstruction

Let us divide a respiratory cycle into N phases labeled by α = 1, · · · , N .
Denote the CT image at phase α by a vector fα. A projection matrix Pα at
phase α maps the image into an observation vector Yα, i.e. Pαfα = Yα. As
opposed to reconstructing images at each phase independently, we propose the
following 4D-CT reconstruction model

{fα} = argmin{fα}

N∑
α=1

‖Pαfα − Yα‖22 +
µ

2
[J(fα, fα−1) + J(fα, fα+1)], (2.2)

where J(·, ·) is a TNLM functional imposed as a temporal regularization term
between successive phases. Specifically, for two images fα and fβ , J(fα, fβ) is
defined as:

J(fα, fβ) =
∫∫

[fα(x)− fβ(y)]2 wf∗α,f∗β (x, y)dxdy. (2.3)

The weighting factors wf∗α,f∗β (x, y) are ideally independent of fα, fβ but defined
according to the ground truth images f∗α and f∗β as

wf∗α,f∗β (x, y) =
1
Z

exp
−‖pf∗α (x)−pf∗

β
(y)‖22/h2

, (2.4)
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where pf∗α(x) denotes a small patch in image f∗α centering at the coordinate x
and Z is a normalization factor. The scale parameter h controls to what extent
similarity between patches is enforced.

The above definition of TNLM functional J(·, ·) resembles, and yet is fun-
damentally different from, the original Non-local Means (NLM) idea that have
been widely used for restoring natural images [7, 8]. A key assumption in their
approach is that a natural image, such as a photograph of buildings, usually
contains some repetitive features. Therefore, the similarity between feathers at
different locations can be utilized to constructively enhance each other for image
restoration. In contrast, similar structures are hardly found in a single medical
image. The efficacy of a direct application of the NLM to restore a single medical
image, for example in CT reconstruction context, is thus limited. Nonetheless,
the crucial similarity assumption naturally exists along a temporal direction,
namely among images of adjacent phases. Therefore, in (2.2), we consider a
TNLM regularization J(fα, fα±1) as opposed to J(fα, fα) as in the NLM ap-
proach. Another reason why the TNLM is superior to the NLM method in this
4D-CT reconstruction problem is the capability of removing streaking artifacts
(straight lines along CT projection directions), which usually present in highly
under-sampled CT reconstruction problem (see the conventional FBP recon-
struction results in Fig. 1). If NLM were used in the reconstruction, the streaking
artifacts would be in fact strengthened rather than removed, since NLM method
tends to locate those straight lines in a single image and enhance them. On the
other hand, since the projection directions in two breathing phases are differ-
ent, the streaking artifacts do not repeat in different phases. TNLM method is
therefore able to remove them in all phases simultaneously.

To solve (2.2) efficiently, we adopt a forward-backward splitting algorithm
[9, 10], where the solution to (2.2) can be obtained by alternatively performing
the following two steps

vk
α = fk−1

α − 1
λ

PT
α (Pαfk−1

α − Yα), ∀α, (2.5)

{fk
α} = argmin{fα}

∑
α

λ‖fα − vk
α‖22 +

µ

2
[J(fα, fα−1) + J(fα, fα+1)]. (2.6)

Here vα are auxiliary vectors and λ is a constant introduced by the splitting
algorithm. Note that (2.5) is simply one step of gradient descent algorithm to-
wards minimizing an energy functional E[fα] =

∑
α ‖Pαfα − Yα‖22 with a step

size 1/2λ. In order to speed up the convergence, we substitute this step by a
conjugate gradient minimization for the energy functional E[fα] with an initial
solution fk−1

α , denoted as vk
α = CGE[fα](fk−1

α ). As for (2.6), we perform one
step of gradient descent for each exterior iteration as

fk
α(x) = vk

α(x)(1− 2µ)+µ

[∫
vk

α+1(y)wf∗α,f∗α+1
(x, y)dy+

∫
vk

α−1(y)wf∗α,f∗α−1
(x, y)dy

]
.

(2.7)



5

Note that, in the above equation, the images at phases (α ± 1) are naturally
imposed to enhance the image quality of fα. Another issue worth mentioning
here is the weighting factors wf∗α,f∗β (x, y). In (2.4) they are defined with respect
to the ground truth images f∗α, which are not available during the reconstruc-
tion. In practice, for each iteration k, the weights wf∗α,f∗β (x, y) are replaced by
wfk−1

α ,fk−1
β

(x, y). In summary, the algorithm solving (2.2) is to perform the fol-
lowing two steps alternatively:

vk
α = CGE[fα](fk−1

α ), ∀α,

fk
α(x) = vk

α(x)(1− 2µ) + µ

[∫
vk

α+1(y)wfk−1
α ,fk−1

α+1
(x, y)dy

+
∫

vα−1(y)wfk−1
α ,fk−1

α−1
(x, y)dy

]
.

(2.8)

3 Experiments

We first test our 4D-CT reconstruction algorithm on a digital NCAT thorax
phantom [11]. We consider a simple breathing model with only two phases in a
respiratory cycle. The image resolution is 256× 256. Due to its simple anatom-
ical structure in this digital phantom, only 20 x-ray projections per respiratory
phase are used. These projections are generated in a fan beam geometry and
are equally spaced in an entire 360◦ rotation. In Fig. 1, we show the ground
truth images and the reconstruction results from the conventional FBP algo-
rithms in the first and the second columns, respectively. Clearly, FBP algorithm
produces severe streaking artifacts in this context of extremely under-sampling,
making these images clinically unacceptable. The reconstruction results shown
in the columns 3 and 4 in Fig. 1 correspond to TV and TF methods. Despite a

Fig. 1. A Digital NCAT phantom case. Images at two breathing phases are shown in
two rows. Columns from left to right: ground truth images, reconstruction results from
FBP, TV, TF, and our TNLM method, respectively.
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great improvement over the FBP algorithm, the images obtained from these two
methods are smeared out with reduced contrast and still contain obvious fluctu-
ating artifacts. Finally, the images reconstructed from our TNLM regularization
method are shown in the last column, where the image quality is considerably
enhanced by imposing the temporal regularization between these two phases.
Notice that for these iterative methods (TV, TF and TNLM), the results are
presented with parameters, such as µ in Eq. (2.1), carefully tuned for the optimal
results.

Fig. 2. Patient case A. Rows from top to bottom: phase 1, 4, and 7 in a 10-phase res-
piratory cycle. Columns from left to right: ground truth images, reconstruction results
from TV, TF, and our TNLM method.

To further validate our 4D-CT reconstruction algorithm, we study two pa-
tient cases obtained in the real clinic. There are 10 breathing phases in both
cases. Since the real clinical 4D-CT images are full of detailed structures, 30
fan beam x-ray projections per breathing phase are used. Other parameters are
same as those in the NCAT phantom case. We exclude presenting the FBP
results since it is apparently not able to provide clinically acceptable 4D-CT im-
ages. Due to the space limitation, only phase 1, 4, and 7 out of the 10 phases in
an entire breathing cycle are illustrated in Fig. 2 and 3 respectively for the two
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Fig. 3. Patient case B. Rows from top to bottom: phase 1, 4, and 7 in a 10-phase res-
piratory cycle. Columns from left to right: ground truth images, reconstruction results
from TV, TF, and our TNLM method.

real clinical cases. Again, our method is able to reconstruct the 4D-CT images
with great quality, while low contrast and streaking artifacts are found to some
extent in those images obtained from TV or TF methods.

In order to quantitatively evaluate the reconstruction results, we take signal-
to-noise ratio (SNR) as a metric defined as

SNR(f∗, f) = 20 log10

{ ||f − f̄ ||L2

||f − f∗||L2

}
, (3.1)

where f∗ is the ground truth image and f̄ denote the mean value of the image f .
The SNRs for images obtained from different methods are summarized in Tab. 1.
Our method yield the highest SNR values in all cases, undoubtedly outperforms
the other two methods.

4 Conclusion

In this paper, we have presented a new 4D-CT reconstruction algorithm that
exploits the recurrence of the anatomical structures at different locations between
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Table 1. SNR for different methods

NCAT patient A patient B

Phase 1 Phase 2 Phase 1 Phase 4 Phase 7 Phase 1 Phase 4 Phase 7

TV 20.35 20.14 15.04 14.97 15.47 11.66 11.39 11.40

TF 21.06 20.72 18.71 18.66 19.46 15.85 15.44 15.14

our method 25.68 25.59 20.63 20.29 20.44 18.99 19.22 19.13

adjacent breathing phases. TNLM regularization is specifically designed to take
this fact into the reconstruction process. We have tested our reconstruction re-
sults on one digital NCAT phantom and two patient cases. The reconstruction
results indicate that our TNLM algorithm outperforms the conventional FBP-
type reconstruction algorithm and the TV-based or TF-based spatial regular-
ization methods. One concern about our TNLM method is the speed. Currently
it takes much longer time for the TNLM method to reconstruct a set of 4D-
CT images due to its inherent complicated mathematical structure. However,
our preliminary work on the speed-up via advanced GPU technology indicates
promising perspectives.
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