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Purpose: Four-dimensional computed tomography �4DCT� has been widely used in cancer radio-
therapy for accurate target delineation and motion measurement for tumors in the thorax and upper
abdomen areas. However, its prolonged scanning duration causes a considerable increase of radia-
tion dose compared to conventional CT, which is a major concern in its clinical application. This
work is to develop a new algorithm to reconstruct 4DCT images from undersampled projections
acquired at low mA s levels in order to reduce the imaging dose.
Methods: Conventionally, each phase of 4DCT is reconstructed independently using the filtered
backprojection �FBP� algorithm. The basic idea of the authors’ new algorithm is that by utilizing the
common information among different phases, the input information required to reconstruct the
image of high quality, and thus the imaging dose, can be reduced. The authors proposed a temporal
nonlocal means �TNLM� method to explore the interphase similarity. All phases of the 4DCT
images are reconstructed simultaneously by minimizing a cost function consisting of a data fidelity
term and a TNLM regularization term. The authors utilized a modified forward-backward splitting
algorithm and a Gauss–Jacobi iteration method to efficiently solve the minimization problem. The
algorithm was also implemented on a graphics processing unit �GPU� to improve the computational
speed. The authors’ reconstruction algorithm has been tested on a digital NCAT thorax phantom in
three low dose scenarios: All projections with low mA s level, undersampled projections with high
mA s level, and undersampled projections with low mA s level.
Results: In all three low dose scenarios, the new algorithm generates visually much better CT
images containing less image noise and streaking artifacts compared to the standard FBP algorithm.
Quantitative analysis shows that by comparing the authors’ TNLM algorithm to the standard FBP
algorithm, the contrast-to-noise ratio has been improved by a factor of 3.9–10.2 and the signal-to-
noise ratio has been improved by a factor of 2.1–5.9, depending on the cases. In the situation of
undersampled projection data, the majority of the streaks in the images reconstructed by FBP can be
suppressed using the authors’ algorithm. The total reconstruction time for all ten phases of a slice
ranges from 40 to 90 s on an NVIDIA Tesla C1060 GPU card.
Conclusions: The experimental results indicate that the authors’ new algorithm outperforms the
conventional FBP algorithm in effectively reducing the image artifacts due to undersampling and
suppressing the image noise due to the low mA s level. © 2011 American Association of Physicists
in Medicine. �DOI: 10.1118/1.3547724�
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I. INTRODUCTION

Four-dimensional computed tomography �4DCT� has been
widely used for treatment simulation in radiotherapy of tu-
mors with respiratory motion,1–6 in that it can provide time-

resolved volumetric images. Currently, there are two differ-
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ent methods for 4DCT acquisition and sorting, namely,
retrospective slice sorting1–6 and prospective sinogram
selection.7 For the retrospective slice sorting method, the
projection data are continuously acquired at each couch po-

sition for a time interval slightly longer than a full respira-
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tory cycle, either in cine mode or in helical mode with a very
low pitch.1–6 Multiple slices corresponding to different ac-
quisition time points are reconstructed at each couch position
and then sorted into respiratory phase bins using various res-
piratory signals.1–6,8–10 For prospective sinogram selection
method, the CT scanner is triggered by the respiratory signal
for projection data acquisition.7 The projection data within
the same phase bin are used to reconstruct CT slices corre-
sponding to that breathing phase.

No matter which method is used, the reconstructed CT
slices at different breathing phases represent a set of time-
resolved volumetric images, which are called 4DCT images
and can resolve the organ motions and reduce motion arti-
facts to a satisfactory extent.11 However, the prolonged ac-
quisition time results in a considerably increased radiation
dose. For example, given the standard 4DCT parameters
�140 kVp, 95 mA, and 0.5 s per rotation�, the radiation dose
of a 4DCT scan is about six times of that of a typical helical
CT scan.12 This fact has become a major concern in the
clinical application of 4DCT and thus it is highly desirable to
reduce its imaging dose.

Intuitively, the radiation dose can be reduced by lowering
the mA s level and/or decreasing the number of acquired
projections �decreasing the number of projections is not
straightforward on currently available commercial CT scan-
ners due to the use of continuous x-ray generation mode.
However, technically, it is possible to modify the scanners to
operate in high-frequency pulsed mode13–15 if there is a clini-
cal need �such as the one suggested in this paper��. However,
these approaches in general will lead to amplified image
noise and obvious streaking artifacts in the reconstructed
4DCT images if conventional filtered backprojection �FBP�
algorithm is used. In the current FBP-based 4DCT recon-
struction algorithm, each phase of the 4DCT images is re-
constructed independently based on the acquired projection
data associated with it. This method, though simple, com-
pletely neglects the highly temporal correlation between
4DCT images at successive phases, as apparently the same
anatomical features exist in successive phases of 4DCT im-
ages with slight motion and deformation. It is expected that
taking into account this information during reconstruction,
one can reconstruct 4DCT images with high quality, even at
the low dose contexts of low mA s level and/or under-
sampled projection data.

Inspired by this idea, in this paper we propose a new
4DCT reconstruction algorithm by utilizing the aforemen-
tioned temporal correlation between images at successive
phases. In our algorithm, CT slices corresponding to differ-
ent phases are reconstructed simultaneously as opposed to
independently in conventional FBP-type algorithms. In par-
ticular, the temporal regularization is imposed between suc-
cessive phases via a temporal nonlocal means �TNLM� term
to take the interphase correlation into account. Our idea of
the TNLM function is inspired by the so-called nonlocal
means �NLM� method16 originated in image processing field.
The NLM method assumes that there are lots of repetitive
structures contained in an image and thus utilizes the similar

image features at different spatial locations in the same im-
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age to constructively enhance each other.17 This assumption,
though valid in many cases in image processing problems,
may not hold in medical images. However, it is reasonable to
believe that along temporal direction, there exist repetitive
features in the 4DCT images. Thus, we propose the novel
TNLM method which extends the original NLM method into
the temporal domain by exploring the similarity between
neighboring phases in the context of 4DCT reconstruction.

The rest of this paper is organized as follows. In Sec. II
we will present the new 4DCT reconstruction method. The
experimental results with this new method will be given in
Sec. III. We then give discussion and conclusions in Sec. IV.

II. METHODS

II.A. Reconstruction model

Let us divide a respiratory cycle into N phases labeled by
i=1,2 , . . . ,N. The 4DCT image of phase i is denoted by a
vector f i. Pi is the projection matrix of phase i that maps the
image f i into a set of projections corresponding to various
projection angles. The measured set of projections is denoted
by a vector yi. We attempt to reconstruct the 4DCT images
by solving the following optimization problem:

�f i� = arg min�f i� �
i=1

N ��Pifi − yi�T�−1
�Pifi − yi�

+
�

2
�J�f i, f i−1� + J�f i, f i+1��	 , �1�

where the first term in the summation is a data fidelity term,
ensuring that the projections of the reconstructed 4DCT im-
age at each phase match the corresponding observed projec-
tions. The symbol T denotes the matrix transpose. The cova-
riance matrix � is a diagonal matrix with its nonzero
elements corresponding to the variance of the pixel values of
the measured projection images.18 The second term in Eq.
�1�, J�· , ·�, is the regularization term and the parameter �
adjusts the relative weight between the data fidelity term and
the regularization term.

In this paper, we propose a new TNLM function as the
temporal regularization imposed between neighboring phases
to explore the interphase similarity. A periodic boundary con-
dition along the temporal direction is assumed, e.g., fN+1

= f1. For two images at different phases f i and f j, J�f i , f j� is
defined as

J�f i, f j� = �
x

�
y

�f i�x� − f j�y��2�i,j
� �x,y� . �2�

The weighting factor �i,j
� �x ,y� is independent of f i�x� and

f j�y� but defined according to the ground truth images f i
��x�

and f j
��y� as

�i,j
� �x,y� =

1

Z
exp
−

�Ri
��x� − Rj

��y��2
2

h2 � , �3�

where Ri
��x� denotes a square patch on the image f i

� centering
at a pixel x and �Ri

��x�−Rj
��y��2

2 is the L2-norm of the differ-
� �
ence between Ri �x� and Rj �y�. Z is a normalization param-
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eter such that �y�i,j
� �x ,y�=1. h is a parameter that adjusts to

what extent we would like to enforce the similarity between
patches.

II.B. Optimization approach

To solve the optimization problem in Eq. �1�, we imple-
ment a forward-backward splitting algorithm,19,20 where the
solution to Eq. �1� can be obtained by alternatively perform-
ing the following two steps until convergence:

gi
�k� = f i

�k−1� −
1

�
Pi

T�−1
�Pifi

�k−1� − yi�, ∀ i , �4�

�f i
�k�� = arg min�f i�

E1��f i��

= arg min�f i� �
i=1

N ��f i − gi
�k��2

2

+
�

2�
�J�f i, f i−1� + J�f i, f i+1��	 , �5�

where the superscript k is the index for iteration steps. gi is
an auxiliary vector and ��0 is a constant introduced by the
splitting algorithm. Note that Eq. �4� is actually one step of
the gradient descent algorithm toward a problem minimizing
an energy function E2�f i�= �Pifi−yi�T�−1�Pifi−yi�. The intro-
duction of � actually controls the step size of the gradient
descent algorithm for numerical stability purpose. In prac-
tice, it is found that by substituting this one step gradient
descent with a conjugate gradient least square �CGLS�
method21 for the minimization of E2�f i�, the overall conver-
gence can be enhanced, although the convergence after this
modification is not mathematically proven. The CGLS algo-
rithm by itself is an iterative algorithm. In each iteration k,
we use the images obtained from the last iteration, i.e., f i

�k−1�

as an initial guess. Let us denote Pni=�−1/2Pi and yni

=�−1/2yi. The detailed implementation of this CGLS algo-
rithm is performed as follows:

CGLS Algorithm:

Initialinize: m=0, ui
�0�= f i

�k−1�, ri
�0�=yni− Pniui

�0�, si
�0�= Pni

T ri
�0�.

Do the Steps 1–5 for M1 times.

1. ai
�m�= �Pni

T ri
�m��2

2 / �Pnisi
�m��2

2

2. ui
�m+1�=ui

�m�+ai
�m�si

�m�

3. ri
�m+1�=ri

�m�−ai
�m�Pnisi

�m�

4. bi
�m�= �Pni

T ri
�m+1��2

2 / �Pni
T ri

�m��2
2

5. si
�m+1�= Pni

T ri
�m+1�+bi

�m�si
�m�

6. gi
�k�=ui

�M1�

Here the superscript m is the iteration step for the CGLS
algorithm. In practice, it is not necessary to carry out this
CGLS algorithm very precisely in each outer loop k, since
the purpose of this CGLS step is only to generate a better
solution gi

�k� based on the input f i
�k−1�. Therefore, the iteration

steps of the CGLS algorithm M1 is chosen to be a small
integer, such as M1=3.

To solve the subproblem in Eq. �5�, let us first take func-
tional variation of E1��f i�� with respect to f i�x�. Note that the
weighting factor �i,j

� �x ,y� is a constant defined according to
� �
the ground truth images f i �x� and f j �y�. We arrive at
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�E1

�f i�x�
= 2�f i − gi

�k�� + �̂
 f i − �
y

f i−1�y��i,i−1
� �x,y��

+ �̂
 f i − �
y

f i+1�y��i,i+1
� �x,y�� , �6�

where �̂=� /�. By setting this variation to be zero and rear-
range different terms, we obtain the optimality condition as

f i =
1

�̂ + 1
gi

�k� +
�̂

2�̂ + 2
�y

f i−1�i,i−1
� �x,y�

+ �
y

f i+1�i,i+1
� �x,y�� . �7�

This equation leads to a Gauss–Jacobi type iteration
scheme22 for solving the problem in Eq. �5�

Gauss-Jacobi iteration Algorithm:

Initialize m=0 and �i
�0�=gi

�k�. Do the Step 1 for M2 times.

1. ui
�m+1�= 1 / ��̂+1�gi

�k�+ �̂ / �2�̂+2� ��yui−1
�m��i,i−1

� �x ,y�
+�yui+1

�m��i,i+1
� �x ,y��

2. f i
�k�=ui

�M2�

Again the integer m here denotes iteration step. It follows
from Theorem 10.1.1 in the literature22 that such an iteration
scheme converges for any �̂�0. The total number of itera-
tion steps M2 is chosen to be a small integer, such as M2

=1.
Moreover, since the weighting factor �i,j

� �x ,y� defined ac-
cording to the ground truth images f i

��x� and f j
��y� is not

known beforehand, we update the weight during the iteration
according to the latest available images gi

�k� and gj
�k�. In other

words, we choose square patches from the reconstructed im-
ages obtained in the last iteration �Rg

i
�k��x� and Rg

j
�k��y�� to

calculate the weight �i,j�x ,y� instead of �i,j
� �x ,y�.

�i,j�x,y� =
1

Z
exp�− �Rgi

�k��x� − Rgj
�k��y��2

2/h2� . �8�

Additionally, a simple truncation of negative pixel values is
necessary after each iteration to ensure the positivity of the
reconstructed images. The TNLM algorithm can be summa-
rized as follows:

TNLM Algorithm:

1. Initialize f i
�0� for i=1, . . . ,N to be the image

reconstructed by FBP with all projections from all N
phases.

2. Use CGLS with initial value �f i
�k−1�� to get �gi

�k��.
3. Update weighting parameter �i,i−1, �i,i+1, using �gi

�k��.
4. Get �f i

�k�� using Gaussian-Jacobi algorithm.

5. Ensure image positivity: f i
�k�=0 if f i

�k��0.
6. Go back to step 2 until convergence.

The advantage of this TNLM algorithm is straightfor-
ward. In the kth iteration, the algorithm first obtains a better
solution gi

�k� using the CGLS algorithm based on the solution
from previous step �f i

�k−1��. Since this step does not contain
any regularization on the solution, the obtained gi

�k� will be
contaminated by noise and various artifacts. The following
TNLM step, i.e., step 4, updates the solution according to the

�k�
Gauss–Jacobi algorithm, yielding a new solution f i . In par-
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ticular, f i
�k� is a weighted average of the input image gi

�k� and
the images at neighboring phases gi−1

�k� and gi+1
�k� . Moreover, the

updated image f i
�k� pixel value at x depend on gi

�k� in a local
fashion, i.e., also at pixel x but in a nonlocal fashion on the
neighboring phases, i.e., at other pixels y. For those nonlocal
terms, the weight is automatically adjusted according to the
similarity between the patches around x in phase i and the
patches around y in neighboring phases. As such, any fea-
tures that repetitively appear in successive phases, such as
true anatomical structures, are preserved during the iteration.
In contrast, those features that do not repeat, such as streak-
ing artifacts, are suppressed.

II.C. Implementation issues

One disadvantage of our TNLM reconstruction algorithm
is its large computational burden of searching for similarity.
During the implementation, for each pixel x on image f i, a
square patch Ri�x� centering at this pixel on the image is
compared to patches centering at all pixels y on the neigh-
boring phase images f i�1 for computing the weighting factor
�i,i�1�x ,y�. Suppose the patches used for computing this
weighting factor are two-dimensional squares with d pixels
in each dimension. Then the total complexity of the search-
ing scheme between two images is in the order of O�L2

	L2	d2�, where L is the size of the 4D-CT slices in each
dimension. However, this approach is neither computation-
ally efficient nor necessary. In fact, for a patch at location x
on phase i, the patches similar to it on neighboring phases
must locate within a neighborhood of x due to the finite
motion range of respiratory motion. Therefore, it is adequate
to restrict the search for the similar patches only within a
search window. In practice, we set this search window to be
a square region with W pixels in each dimension. Since it is
usually true that W
L, this searching window can reduce
the computation load down to O�L2	W2	d2�.

Another technique we use to speed up the calculation is
removing the redundant calculations in computing the
weighting factor. Note that the weights �i,j�x ,y� and
� j,i�y ,x� are actually same before normalization. Reusing
this factor in the Gauss–Jacobi algorithm instead of recom-
puting it can reduce the computational load by a factor of
about 2.

Besides, we also implement the 4DCT reconstruction al-
gorithm on an NVIDIA Tesla C1060 card to speed up the
computation. This graphics processing unit �GPU� card has a
total number of 240 processor cores �grouped into 30 multi-
processors with 8 cores each�, each with a clock speed of 1.3
GHz. It is also equipped with 4 GB DDR3 memory, shared
by all processor cores. We simply have each GPU thread
responsible for 1 pixel of the CT slices. Because of the large
number of GPU threads, the computation efficiency can be
considerably elevated.

III. EXPERIMENTAL RESULTS

We tested our reconstruction algorithm on a digital NCAT
phantom at a thorax region.23 The x-ray projections were

24
simulated using Siddon’s algorithm in fan-beam geometry
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with an arc detector of 888 units and a spacing of 1.0239
mm. The source to detector distance is 949.075 mm and the
source to rotation center distance is 541.0 mm. All these
parameters mimic the realistic configuration of a GE Light-
speed QX/I CT scanner. The gantry’s rotation speed is set to
be 0.5 s/rotation. The period of the respiratory cycle is 4 s.
Our 4DCT reconstruction algorithm is tested on three low
dose cases: Case 1: All projections acquired with low mA s
protocol; case 2: Undersampled projections acquired with
high mA s protocol; and case 3: Undersampled projections
acquired with low mA s protocol.

(a3) (b3) (c3) (d3)

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

FIG. 1. The reconstruction 4DCT images for the 40% phase �end point of
inhale� �top�, the 70% phase �midpoint of exhale� �middle�, and the 100%
phase �end point of exhale� �bottom� with all projections at 20 mA s level
�case 1�. �a� Ground truth, �b� FBP, �c� TNLM, and �d� difference between
ground truth and TNLM.

(a1) (b1) (c1) (d1)(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)(a2) (b2) (c2) (d2)

( 3) (b3) ( 3) (d3)(a3) (b3) (c3) (d3)

FIG. 2. The reconstruction 4DCT images for the 40% phase �end point of
inhale� �top�, the 70% phase �midpoint of exhale� �middle�, and the 100%
phase �end point of exhale� �bottom� with 500 projections at 100 mA s level
�case 2�. �a� Ground truth, �b� FBP, �c� TNLM, and �d� difference between

ground truth and TNLM.
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To simulate the noise-contaminated sinogram at low mA s
situations, we add Gaussian noise signal to the noise free
projection data, where the variance at a given entry i of the
projection is taken as25,26

�i
2 =

1

N0i
exp�p̄i� , �9�

where p̄i is the projection data value before adding noise. N0i

represents the average photon number just before entering
the patient body, which is derived from the measurements at
a certain mAs level. The variance computed as such also
goes into the matrix � in Eq. �1�.

In case 1, we first generated 4000 noise-contaminated
projections at 20 mA s for ten phases and all of them are
used for reconstruction. The reconstructed images at three
phases, namely, the end of inhale, the middle of the exhale,
and the end of exhale are shown in Fig. 1. The reconstruction
results of the conventional FBP algorithm are also shown for
comparison purpose. By visually inspecting, it is clear that
our TNLM algorithm outperforms the FBP algorithm by
greatly reducing the image noise. The blurring effect shown
in the top and bottom row images is due to the residual heart
motion within the respiratory phase bin. More discussion
about this effect will be given in Sec. IV.

As for case 2, we generated 500 projections at 100 mA s
to simulate the undersampling situation with high mA s

(a1) (b1) (c1) (d1)(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)(a2) (b2) (c2) (d2)

( 3) (b3) ( 3) (d3)(a3) (b3) (c3) (d3)

FIG. 3. The reconstruction 4DCT images for the 40% phase �end point of
inhale� �top�, the 70% phase �midpoint of exhale� �middle�, and the 100%
phase �end point of exhale� �bottom� with 500 projections at 20 mA s level
�case 3�. �a� Ground truth, �b� FBP, �c� TNLM, and �d� difference between
ground truth and TNLM.

TABLE I. Mean CNR values over ten phases of the tw

Case1

ROI1 ROI2

FBP 6.83 1.80
TNLM 28.64 12.15
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level. Case 3 is same as case 2 except the mA s is lowered
down to 20 mA s to simulate the undersampling situation
with low mA s level. The results of these two cases are
shown in Figs. 2 and 3, respectively. Obvious streaking arti-
facts can be observed in the CT images reconstructed by the
FBP algorithm due to undersampling �see Figs. 2�b��1�–
2�b��iii� and Figs. 3�b��1�–3�b��iii��. Moreover, the FBP re-
sults of case 3 are noisier than that of case 2 due to the low
mA s level. On the other hand, our TNLM algorithm can still
maintain the image quality to a satisfactory level in both
cases. From the difference images between the ground truth
image and TNLM result, it is found that the spatial resolution
is degraded to a certain extent with the TNLM method and
thus some small structures are lost, especially at the under-
sampling situation in cases 2 and 3.

To quantitatively evaluate the performance of our recon-
struction algorithm in terms of maintaining image contrast
and suppressing image noise, we calculate the contrast-to-
noise ratio �CNR� and signal-to-noise ratio �SNR� which are
defined as follows:

CNR = ��s − �b�/�b, �10�

SNR = 10 log10��f − f̄�2
2/�f − f��2

2� . �11�

The CNR is defined on a given region of interest �ROI�. �s is
the mean value of the signal for the ROI, while �b and �b are
the mean value and standard deviation of the nearby back-
ground. SNR is a quantity to measure the overall deviation of
the reconstructed 4DCT image from the ground truth image.

f is the mean value of an image f and f� is the ground truth
image.

Table I lists the mean values of CNRs over ten phases of
the two ROIs shown in Fig. 4. ROI1 is a small high contrast
structure with the nearby dark lung region as its background.
ROI2 is the vertebral body with the neighboring tissue as its
background. In all three cases, our TNLM algorithm has im-
proved the CNR by a factor of 3.9–10.2 depending on the
ROIs and cases compared to the conventional FBP algo-
rithm. In particular, for the FBP algorithm, all the CNRs of
ROI2 are very small and thus the low contrast structures is
hardly resolved, while for our TNLM algorithm, the corre-
sponding CNRs are much larger. The results of CNRs illus-
trate that our algorithm is superior to the FBP algorithm in
maintaining good contrast under low dose contexts. Table II
lists the mean SNRs over ten phases, in which our TNLM
algorithm has improved the SNRs by a factor of 2.1–5.9,

OIs in Fig. 4.

Case2 Case3

ROI2 ROI1 ROI2

1.13 2.56 0.69
7.53 19.53 7.07
o R

ROI1

4.09
16.04
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indicating that our algorithm outperforms the FBP algorithm
in effectively suppressing the image noise at low dose situa-
tion.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a novel iterative 4DCT
reconstruction algorithm via temporal regularization. The
4DCT images of different phases are reconstructed simulta-
neously by minimizing an energy function consisting of a
data fidelity term and a temporal regularization term between
every two neighboring phases. A temporal nonlocal means
method is employed to take the temporal correlation of the
4DCT images into account. We utilized a modified forward-
backward splitting algorithm to perform the optimization.
The iterative reconstruction algorithm is implemented on a
GPU platform to improve its efficiency. Our algorithm is
tested on a digital NCAT phantom under low dose context by
lowering the mA s level and/or decreasing the number of
projections. The experimental results indicate that our algo-
rithm performs much better than the conventional FBP algo-
rithm in effectively reducing the image artifacts due to un-
dersampling and suppressing the image noise due to the low
mA s level. Specifically, the contrast-to-noise ratio has been
improved by a factor of 3.9–10.2 and the signal-to-noise ra-
tio has been improved by a factor of 2.1–5.9, depending on
the cases. The total reconstruction time ranges from 40 to 90
s on a NVIDIA Tesla C1060 card �NVIDIA, Santa Clara,
CA� for ten phases at a transverse slice. This reconstruction
time may not meet the requirement for some clinical appli-
cations, yet the efficiency of our algorithm could be further
increased by using some advanced technologies such as mul-
tigrid algorithm and multiple GPUs.

ROI1

ROI2

FIG. 4. Two ROIs used for CNR calculation.

TABLE II. Mean SNR values over ten phases.

Case1 Case2 Case3

FBP 10.49 6.03 3.39
TNLM 22.13 21.12 20.28
Medical Physics, Vol. 38, No. 3, March 2011
The blurred heart edges in some panels of Figs. 1–3 are
caused by the residual heart motion within the respiratory
phase bin. The breathing period used in this work is 4 s.
Then, each of ten breathing phase bin covers 0.4 s, within
which the respiratory motion is negligible but the heart mo-
tion is not. For example, we observe apparent blurring effect
in Figs. 1�c��i� and 1�c��iii�, but not Fig. 1�c��ii�; this is be-
cause the heart in Figs. 1�c��i� and 1�c��iii� is in the middle of
systole/diastole, while in Fig. 1�c��ii�, it happens to be at the
end of systole. The blurring effect also presents in the ground
truth images, as shown in Figs. 1�a��i� and 1�a��iii�, because
we average over 400 images within a given breathing phase
bin to produce the ground truth CT image at that phase. The
blurring effect due to the residual heart motion also exists in
the FBP images, which, however, is less visible due to the
image noise and the streak artifact.

In this feasibility study, we have only quantitatively
evaluated CNR and SNR. Other quantitative measures, such
as spatial resolution of the images, are not considered in the
current work. It is found that the spatial resolution is de-
graded to a certain extent with the TNLM method, especially
at the undersampling situation in cases 2 and 3. We plan to
conduct much more systematic and quantitative evaluations
using a large set of representative patient images and a set of
clinically relevant metrics in our future work.
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