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Abstract

Image inpainting has been widely used in practice to repair damaged/missing
pixels of given images. Most of the existing inpainting techniques require know-
ing beforehand where those damaged pixels are, either given as a priori or
detected by some pre-processing. However, in certain applications, such in-
formation neither is available nor can be reliably pre-detected, e.g. removing
random-valued impulse noise from images or removing certain scratches from
archived photographs. This paper introduces a blind inpainting model to solve
this type of problems, i.e., a model of simultaneously identifying and recov-
ering damaged pixels of the given image. A tight frame based regularization
approach is developed in this paper for such blind inpainting problems, and
the resulted minimization problem is solved by the split Bregman algorithm
first proposed by [1]. The proposed blind inpainting method is applied to var-
ious challenging image restoration tasks, including recovering images that are
blurry and damaged by scratches and removing image noise mixed with both
Gaussian and random-valued impulse noise. The experiments show that our
method is compared favorably against many available two-staged methods in
these applications.

Key words: image inpainting, sparse approximation, split Bregman
algorithm, wavelet frame

1. Introduction

The word “inpainting” has been used by museum restoration artists for quite
a while before the concept was applied to digital image inpainting first by [2].
Image inpainting problem occurs when image pixels are missing, over-written
or damaged by some other means. This arises for example in restoring ancient
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drawings or old videos where a portion of a picture or frame is missing or
damaged due to aging or scratching; or when an image is corrupted by impulse
noise due to noisy sensors or channel transmission error. Thus, image inpainting
is about recovering the missing information within the damaged regions from the
incomplete and noisy observation of the image. An ideal recovery of an image
in the corrupted regions should possess image features, like edges and textures,
that are consistent to the features observed. In recent years, there have been
great progresses on image inpainting, see [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
and the references therein.

The model for general image inpainting problem, accompanied by other im-
age degradation effects such as blurring, can be formulated as follows. Let an
image be represented as a column vector in Rn, where n is the total number
of pixels. Then the mathematical formulation of imaging inpainting can be
expressed as

f(i) =

{
(Hu)(i)+ε(i), i∈Λ
v(i), i∈Λc,

(1.1)

where f is the observed corrupted image, u is the original image that we are
trying to recover, ε represents i.i.d. additive Gaussian white noise ([15]), H is
some degradation operator (e.g. convolution for image blurring), and Λ is the
index set of certain pixels of the image. The random-valued vector v repre-
sents the values of all other image pixels corrupted by other factors (besides
Gaussian white noise). The sub-vector v|Λc of v defined on Λc can represent
various types of degradations to the original image, including impulse noise (e.g.
salt-and-pepper noise and random-valued impulse noise) and random-patterned
scratching with unknown intensities. The goal of image inpainting is then to
estimate the original image u from the observation f .

The index set Λc is called the inpainting region/domain which is assumed
to be known or estimated beforehand in most literatures. However, in some
applications, the inpainting domain may not be readily available, or it can not
be accurately detected by some separate process, e.g. when the vector v in
(1.1) contains random-valued impulse noise mixed with Gaussian white noise.
We call such a inpainting problem a blind inpainting problem, that is, both the
inpainting domain Λc (or equivalently the projection PΛ) and the original image
u are unknown. In contrast to regular image inpainting problems in which Λ
is known, both Λ and u are unknown in blind inpainting problem. Thus, blind
inpainting problem is a highly ill-posed inverse problem.

In recent years, there have been a few works on solving such blind inpainting
problems. For video restoration, the blind inpainting problem is first discussed
in [16]. Based on the same sparsity prior of damaged pixels in image space, a
patch-based approach is proposed in [16] to do blind video inpainting. For image
restoration, the blind inpainting problem for repairing damaged pixels is tackled
by [17] and [18], both of which use the `1 norm as the fidelity measurement to
suppress the outlier effect of damaged pixels. The differences between them is
one is using non-local total variation (TV) regularization ([17]) and the other is
using `1 norm of tight frame coefficients ([18]). Recently, a TV-based approach
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is proposed [19] to simultaneously identify occlusions and estimating optical flow
of a video sequence, which also can be viewed as a blind inpainting problem.

The goal of this paper is to develop computational models and correspond-
ing efficient algorithms for solving such blind image inpainting problems. In
this paper, we take a Lagrangian regularization approach to tackle such an ill-
posed inverse problem. In order to overcome the ill-posedness of the problem,
appropriate regularization terms on both the original image u and the inpaint-
ing region Λc have to be enforced in the minimization model. The basic idea
of our approach is to utilize the sparsity priors of images and random-valued
vector v in different domains. Motivated by the impressive performance of using
sparsity prior of images under tight wavelet frames in many image restoration
tasks ([20, 21, 22, 23, 24, 25, 26, 27, 11, 12, 13]), we also use the `1 norm of
wavelet tight frame coefficients of images as the regularization term for images
in our approach. Since the values of v|Λ can be arbitrary, we seek the solution
to v whose elements defined on the index Λ are zeros. Since the number of the
inpainting domain Λc is usually much less than that of the whole image domain,
we assume that v is sparse in spatial domain. Such a assumption is utilized in
our approach by using the `1 norm of v in spatial domain as the regularization
term on v. Moreover, the `1 related minimization resulting from our proposed
models can be efficient solved using the so-called split Bregman method. The
split Bregman iteration is first proposed in [1] with many successful applications
in imaging sciences (see e.g. [1, 28, 29]).

The rest of this paper will be organized as follows. In Section 2, we will
propose two sparsity-based regularization models for blind image inpainting.
In Section 3, the split Bregman iteration based algorithms will be applied to
solve the minimization problems resulted from the proposed models. Numerical
experiments will be conducted in Section 4 for three image restoration tasks:

1. image denoising for random-valued impluse noise mixed with Gaussian
noise.

2. image deblurring in the presence of both random-valued impulse noise and
Gaussian white noise.

3. blind image inpainting for images corrupted by multiple sources including
random-valued impulse noise, Gaussian white noise and scratching.

2. Frame Based Blind Inpainting Models

Before presenting our regularization models for blind image inpainting, we
briefly review a few facts of discrete tight wavelet frame decomposition and re-
construction. Interesting readers should consult [30, 31, 32] for theories of frames
and framelets, [12] for a short survey on theory and applications of frames, and
[13] for a more detailed survey. In the discrete setting, a 2-dimensional image
is a 2-dimensional array that can be understood as a vector living in Rn, with
n the total number of pixels in the image. Then the discrete framelet decom-
position and reconstruction can be represented as matrix multiplications Wu
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and W>v respectively. Here W ∈Rk×n satisfies W>W = I, i.e. u=W>Wu,
∀u∈Rn, where W is derived by the filters of framelets obtained by the unitary
extension principle [31]. The matrix multiplications by W and W>v are only
for the notational convenience. In our numerical implementations, these two
matrix multiplications are done by using the fast tensor product tight wavelet
frame decomposition and reconstruction algorithms instead, which are essen-
tially just the convolution of images by a set of filters. Interested readers can
refer to [13, 27] for more details.

2.1. Blind Inpainting Model: Single System

For notational convenience, we denote the projection matrix PΛ associated
to each Λ as an n×n diagonal matrix with the diagonal entries 1 for the indices
in Λ and 0 otherwise. Under this notation, (1.1) can be written equivalently as

PΛf =PΛ(Hu+ε) and PΛcf =PΛcv. (2.1)

We propose the following model to solve the blind image inpainting problem
(2.1)

min
u,v

1

2
‖Hu+v−f‖22 +λ1‖Wu‖1 +λ2‖v‖1, (2.2)

where u is the ideal image that we are trying to recover, v is the random-
valued vector in the observed image f , H is some degradation matrix, and W is
the decomposition matrix associated to some tight framelet system. The basic
idea of (2.2) is as follows. Besides the variable u that represents the unknown
true image, we introduce a new variable v in the fidelity term. The role of this
variable is to explicitly represents the outliers (pixels damaged by impulse noise)
existing in f . Certain regularizations on both variable u and v are needed to
solve the ill-posed linear system Hu+v=f . The proposed regularization on the
true image u is based on the assumption that a clear noise-free image u should
have a sparse approximation under wavelet tight frame domain. The proposed
regularization on the variable v is based on the assumption that the percentage
of pixels damaged by impulse noise is small, which is equivalent to say that
the vector v is sparse with only a small percentage of non-zero elements. As
a convex relaxation of `0-norm that measures the exact sparsity of the signal,
`1-norm is used on both Wu and v in (2.2) to measure their sparsities. For the
case H is the identity, a similar model already appeared in [17] with non-local
total variation (TV) regularization.

In our proposed approach, the vector v is explicitly defined as an unknown to
be estimated in the optimization model. There are a few alternative approaches
to handle the random-valued vector v. One of them appears in [11, 18] is the
two-stage approach that estimates the inpainting region Λ before estimating u.
Then the problem (2.1) is reduced to a regular inpainting problem:

min
u

1

2
‖PΛ(Hu−f)‖22 +λ‖Wu‖1. (2.3)

Such a two-stage approach works well when an accurate detection of Λ is pos-
sible, e.g. detecting salt-and-pepper noise using adaptive median filter ([33]).
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However, it is much harder to accurately detect general random-valued impulse
noise in images. Such unavoidable detection errors of Λ could seriously hamper
the performance of the inpainting if using (2.3), as we will see in our experi-
ments.

The other approach is first proposed by [18, 34, 35] that treats v as the
outliers and uses the `1 norm in the fidelity term to increase the robustness of
inpainting to outliers:

min
u
‖Hu−f‖1 +λ‖Wu‖1. (2.4)

This model can also be applied to the blind image inpainting problems. When
there exists only random-valued impulsive noise, the performance of the reg-
ularization model (2.4) is similar to the proposed model (2.2) as we observed
in the experiments. In practice, however, image noise is hardly from a single
source. Five major sources of image noise with different statistical distributions
have been identified in [36] including amplifier noise modeled by Gaussian noise.
In the presence of noises from multiple sources such as the mixture of impulse
noise and Gaussian noise, the model (2.2) is better than (2.4). The reason is
as follows. It is known that the `2 norm based fidelity term yields the optimal
estimate in the presence of only Gaussian noise. Although the `1 norm based
fidelity term used in (2.4) suppresses the negative impact caused by the out-
liers, the adverse effect is the less optimal usage of the other data polluted by
mostly Gaussian noise. On the contrary, the proposed model (2.2) uses those
data damaged by mostly Gaussian noise in a optimal way while avoiding the
outlier effect of other data. The experimental evaluation in Section 4 will also
justify the advantage of the regularization (2.2) over (2.4).

2.2. Blind Inpainting Model: Two Systems

The success of the model (2.2) largely relies on the validity of two sparsity
assumptions: one is the sparsity of images in wavelet tight frame domain and the
sparsity of v in image domain. Thus, the model (2.2) is suitable for images that
are piecewise smooth. When there exists rich texture information in images,
these texture features are no longer piecewise smooth and they are relatively
sparse in image domain ([37, 38, 39]). As a result, it is possible in (2.2) that
these texture features are wrongly identified as the elements of v instead of
being preserved in u. Thus, the model (2.2) needs to be modified to prevent the
texture features from being absorbed into the vector v.

Our proposed approach is based on the observation that many types of
textures can be sparsely approximated by local discrete cosine transform (local
DCT), which has been successfully used in some image restoration tasks ([25,
10, 22]). Motivated by these approaches, we propose the following model for
blind inpainting problem:

min
u1,u2,v

1

2
‖H(u1 +u2)+v−f‖22 +λ1‖Wu1‖1 +λ2‖v‖1 +λ3‖Du2‖1. (2.5)
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Here D represents the local DCT, u1 is the cartoon component and u2 is the
texture component, and the desired recovery u=u1 +u2. The model (2.5) pro-
vided a more accurate estimate of u than (2.2) does for images of rich texture
information. However, the complexity of the resulting minimization problem is
also increased, which leads to a higher computational cost. Thus, both models
have their own merits and the choice of using either one of them should depends
on the image content. The model (2.2) is more suitable for images without rich
textures and the model (2.5) is more suitable for images with rich textures.

3. Numerical Algorithms

In this section, we will present numerical algorithms that solves our pro-
posed models (2.2) and (2.5), as well as (2.4) and (2.3) used for experimental
evaluation. All of these algorithms are built upon the split Bregman iteration.
The split Bregman algorithm was first proposed in [1] which showed its effi-
ciency applied to various PDE based image restoration models , e.g., ROF and
nonlocal variational models ([1, 40]). Convergence analysis of the split Breg-
man algorithm, as well as its applications in various wavelet frame based image
restoration algorithms, were given in [22]. For the completeness, we give a brief
introduction of the basic idea of split Bregman algorithm. Interesting readers
are referred to [1, 22] for more details.

Consider the following minimization problem

min
u

E(u)+λ‖Lu‖1, (3.1)

where E(u) is a smooth convex functional and L is some linear operator. Let
d=Lu. Then (3.1) can be rewritten as

min
u,d=Lu

E(u)+λ‖d‖1. (3.2)

Note that both u and d are variables now. The derivation of splitting Bregman
iteration for solving (3.2) is based on Bregman distance ([1, 22]). It was recently
shown (see e.g. [41, 42]) that the split Bregman algorithm can also be derived by
applying augmented Lagrangian method (see e.g. [43]) to (3.2). The connection
between split Bregman algorithm and Douglas-Rachford splitting was addressed
by [44]. We shall skip the detailed derivations and directly describe the split
Bregman algorithm that solves (3.1) through (3.2) as follows,

uk+1 = argminuE(u)+ µ
2 ‖Lu−d

k+bk‖22,
dk+1 = argmindλ‖d‖1 + µ

2 ‖d−Lu
k+1−bk‖22,

bk+1 = bk+Luk+1−dk+1.

(3.3)

By [45, 46], the second subproblem has a simple analytical solution based on
soft-thresholding operator. Therefore, (3.3) can be written equivalently as

uk+1 = argminuE(u)+ µ
2 ‖Lu−d

k+bk‖22,
dk+1 =Tλ/µ(Luk+1 +bk),

bk+1 = bk+(Luk+1−dk+1),

(3.4)
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where Tθ is the soft-thresholding operator defined by

Tθ :x= [x1,x2, ·· · ,xM ]→Tθ(x) = [tθ1(x1),tθ2(x2), ·· · ,tθM (xM )],

with
tθi(xi) = sgn(xi)max{0,|xi|−θi}.

Note that the last two steps of (3.4) are straightforward and very efficient to
compute, while the computation cost of the first step is usually more expensive
as it involves the procedure of solving some linear system.

3.1. Algorithms Solving Our Models (2.2) and (2.5)

The minimization (2.2) can be efficiently solved split Bregman iteration. Let
d=Wu and rewrite (2.2) as

min
u,v,d=Wu

1

2
‖Hu+v−f‖22 +λ1‖d‖1 +λ2‖v‖1.

Then we have the following iterative schemes that solves the above optimization
problem: 

uk+1 = argminu
1
2‖Hu+vk−f‖22 + µ

2 ‖Wu−dk+bk‖22,
vk+1 = argminvλ2‖v‖1 + 1

2‖v−(f−Huk+1)‖22,
dk+1 = argmindλ1‖d‖1 + µ

2 ‖d−(Wuk+1 +bk)‖22,
bk+1 = bk+(Wuk+1−dk+1).

The complete description of the algorithm for solving (2.2) is provided in Algo-
rithm 1.

Algorithm 1 Numerical algorithm for solving (2.2)

(i) Set initial guesses u0, v0, d0, b0. Choose an appropriate set of parameters
(λ1,λ2,µ).

(ii) For k= 0,1,. .., perform the following iterations until convergence
uk+1 = (H>H+µW>W )−1

(
H>(f−vk)+µW>(dk−bk)

)
,

vk+1 =Tλ2
(f−Huk+1),

dk+1 =Tλ1/µ(Wuk+1 +bk),

bk+1 = bk+(Wuk+1−dk+1).

(3.5)

In our numerical experiments, the initializations are u0 =v0 =d0 = b0 = 0.
The stopping criteria is

‖dk−Wuk‖2≤ ε.
Because of the linear system of the first equation in (3.5) is positive definite
and sparse, we will use conjugate gradient (CG) method to solve the linear
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Algorithm 2 Fast algorithm for solving (2.5)

(i) Set initial guesses u0
1, u0

2, v0, d0
1, b01, d0

2, b02. Choose an appropriate set of
parameters (λ1,λ2,λ3,µ1,µ2).

(ii) For k= 0,1,. .., perform the following iterations until convergence

u1
k+1 = (H>H+µ1W

>W )−1
(
H>(f−Huk2−vk)+µ1W

>(dk1−bk1)
)
,

u2
k+1 = (H>H+µ2D

>D)−1
(
H>(f−Huk+1

1 −vk)+µ2D
>(dk2−bk2)

)
,

vk+1 =Tλ2
(f−H(u1

k+1 +u2
k+1)),

dk+1
1 =Tλ1/µ1

(Wu1
k+1 +bk1),

bk+1
1 = bk1 +(Wu1

k+1−dk+1
1 ),

dk+1
2 =Tλ3/µ2

(Du2
k+1 +bk2),

bk+1
2 = bk2 +(Du2

k+1−dk+1
2 ).

(3.6)

equations. In practice, we will not solve the first equation of (3.5) accurately
but only run a few iterations of CG method.

The algorithm for solving the two-systems model (2.5) is similar to that for
the single-system model (2.2). We will skip the details and directly present the
detailed algorithm in Algorithm 2. In our numerical experiments, the initializa-
tion of Algorithm 2 is set to be u0

i =d0
i = b0i =v0 = 0 for i= 1,2. The stopping

criteria is
‖d1

k−Wu1
k‖2 +‖d2

k−Du2
k‖2≤ ε.

Conjugate gradient method is also used to solve u1 and u2 in each iteration of
(3.6). Similarly, only a few iterations of CG method is carried on when solving
the linear systems.

3.2. Algorithms Solving (2.3) and (2.4)

The split Bregman iteration can be directly applied to solve (2.3) by rewrit-
ting (2.3) as follows:

min
u,d=Wu

1

2
‖PΛ(Hu−f)‖22 +λ‖d‖1.

Let E(u) = 1
2‖PΛ(Hu−f)‖22 and let L=W in (3.4). The detailed algorithm

for solving (2.3) is given in Algorithm 3. In our implementation, u0 = 0 and
d0 = b0 = 0 in the initialization. The stopping criteria is the same as Algorithm 1
and Algorithm 2:

‖dk−Wuk‖≤ ε.

The idea of split Bregman algorithm can also applied to (2.4) with small
modifications. Notice that E(u) =‖Hu−f‖1 in (2.4) is not differentiable. Thus,
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Algorithm 3 Fast algorithm for solving (2.3)

(i) Set initial guesses u0, d0, b0. Choose an appropriate set of parameters
(λ,µ).

(ii) For k= 0,1,. .., perform the following iterations until convergence
uk+1 := (HTPΛH+µWTW )u=HTPΛf+µWT (dk−bk),

dk+1 :=Tλ/µ(Wuk+1 +bk),

bk+1 := bk+(Wuk+1−dk+1).

(3.7)

we need to introduce an additional splitting step (See also [47, 41]). First,
rewrite the problem (2.4)as follows:

min
u
‖Hu−f‖1 +λ‖Wu‖1.

Let d1 =Wu and d2 =Hu−f . Then (2.4) can be re-written as

min
u,d1,d2

{
‖d1‖1 +λ‖d2‖1 : d1 =Hu−f, d2 =Wu

}
. (3.8)

Now we have the following split Bregman iterations that solves (3.8) and hence
solves (2.4):

uk+1 = argminu
µ1

2 ‖Hu−f−d
k
1 +bk1‖22 + µ2

2 ‖Wu−dk2 +bk2‖22,
dk+1

1 = argmind1 ‖d1‖1 + µ1

2 ‖d1−(Wuk+1−f+bk1)‖22,
dk+1

2 = argmind2 λ‖d2‖1 + µ2

2 ‖d2−(Wuk+1 +bk2)‖22,
bk+1
1 = bk1 +(Huk+1−f−dk+1

1 ),

bk+1
2 = bk2 +(Wuk+1−dk+1

2 ).

See Algorithm 4 for the complete description. In our implementation, the vari-
ables are initialized as follows: u0 = 0, d0

1 = b01 = 0 and d0
2 = b02 = 0 . Similar to

other algorithms, the stopping criteria is

‖dk1−Huk+f‖2 +‖dk2−Wuk‖2≤ ε.

4. Related Applications and Experimental Evaluation

As we discussed in Section 2, both (2.2) and (2.5) are capable of solving blind
inpainting problem by simultaneously detecting inpainting region and recovering
damaged pixels of images. The model (2.2) is a good choice for recovering images
with less texture content and the model (2.5) works better for image with rich
textures due to its additional term that protects textures. In this section, we
will apply our blind inpainting algorithms in the following three applications:
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Algorithm 4 Fast algorithm for solving (2.4)

(i) Set initial guesses u0, d0
1, b01, d0

2, b02. Choose an appropriate set of param-
eters (λ,µ1,µ2).

(ii) For k= 0,1,. .., perform the following iterations until convergence

uk+1 = (µ1H
>H+µ2W

>W )−1
(
µ1H

>(dk1−bk1 +f)+µ2W
>(dk2−bk2)

)
,

dk+1
1 =T1/µ1

(Huk+1−f+bk1),

dk+1
2 =Tλ/µ2

(Wuk+1 +bk2),

bk+1
1 = bk1 +(Huk+1−f−dk+1

1 ),

bk+1
2 = bk2 +(Wuk+1−dk+1

2 ).

(3.9)

(1) Removing random-valued impulse noise from images;

(2) Image deblurring in the presence of random-valued impulse noise;

(3) Blind inpainting for images damaged by multiple factors including
scratches, impulse noise and etc.

It is noted that through our experiments, besides the above-mentioned degra-
dations, all images are also degraded by additional additive Gaussian amplifier,
since amplifier noise is commonly seen in most image noises. In the applica-
tions (1) and (3), H is set as identical matrix for the models (2.2) and (2.5),
i.e. images are not blurred. In the application (2), H is set to be the out-of-
focus blurring kernel with radius 6 pixels. The results from our approaches are
compared against that from the existing approaches (2.4) and (2.3). Also, the
comparison between the proposed two models (2.2) and (2.5) are demonstrated
to illustrate their performances for images with/without textures.

In our experiments, all the degradations by impulse noise and Gaussian noise
are synthesized as follows.

f =Np(Hu+ε), (4.1)

where u is the original image before corruption and f represents the corrupted
image, H is either identical operator or convolution operator, ε stands for i.i.d.
Gaussian white noise with zero mean, and Np(x) is the operator that adds
impulse noise to x. The operator Np is defined as follows:

Random-valued impulsive noise: a certain proportion of pixels (chosen ran-
domly) are altered to be an uniformly random number in [dmin, dmax]

Np(xij) =

{
dij , with probability r,

xij , with probability (1−r),
(4.2)

where dij is a uniformly distribution random number in [dmin, dmax] and
r is the level of random valued noise.
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The dynamic range of f which is [dmin, dmax], is taken to be [0,255]. Besides
the visual comparison of the results, the PSNR measurement is used to quanti-
tatively evaluate the quality of the restoration results. Recall that given a signal
x, the peak signal to noise ratio (PSNR) of its estimate is defined as

PSNR(x̂,x) = 10log10

2552

1
mn

∑m
i=1

∑n
j=1(x̂ij−xij)2

.

where m and n are the dimensions of the image, xij is the intensity value at the
pixel location (i,j), and x̂ij corresponds to the intensity value of the restored
image at location (i,j).

Through the numerical experiments, 100 iterations are executed in Algo-
rithm 1, Algorithm 2 and Algorithm 4 when solving (2.2), (2.5) and (2.4), it
takes approximately 60 seconds when running the matlab implementations of
these two algorithms on a PC with 2Ghz Intel Core 2 CPU. When solving (2.3),
50 iterations of Algorithm 3 are executed which takes about 50 seconds in the
same hardware setting.

4.1. Removing Random-valued Impulse Noise from Images

Besides the most commonly seen Gaussian white noise that degrades images,
impulse noise is also often seen in corrupted images due to transmission errors,
faulty sensors and etc. There are mainly two types of impulse noise, one is
salt-and-pepper noise and the other is random-valued impulse noise. Removing
impulse noise from images is different from removing Gaussian noise as the
values of damaged pixels contains no information of the truth at all. Thus,
removing impulse noise is essentially an image inpainting problem. The pixels
damaged by salt-and-pepper noise are much easier to find since their brightness
values are either 0 or 255. The adaptive median filter has been widely used
to accurately identify most pixels damaged by salt-and-pepper noise (See e.g.
[48, 49, 29]). On the contrary, the detection of pixels damaged by random-
valued impulse noise is much harder as the brightness value of damaged pixels
can be arbitrary. The adaptive center-weighted median filter (ACWMF) was
first proposed in [48] to detect pixels damaged by random-valued impulse noise.
More recently, The ROLD detection method has been proposed by [50] with
better accuracy on detecting such impulse noise. In our experiments, both
detection techniques are used to provide the input needed for the two-stage
method (2.3). It is noted that our proposed models do not require the input of
inpainting regions from such a detection pre-process.

The parameters of the proposed denoising algorithms used in the experi-
ments are set as follows. For the single system model (2.2), the value of the
parameter λ1 is dependent on the level of Gaussian white noise. The higher the
Gaussian noise level, the larger the value of λ1 should be. Through all experi-
ments, the values of λ1 is chosen from the set of {1.8,2,2.25,3}. The value of λ2

is dependent on the impulse noise level and is chosen from {5,6}. The values of
two parameters λ1,λ2 in (2.5) is set the same as that in (2.2). The value of the
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parameter λ3 in (2.5) is dependent on the percentage of textures in the given
image. We set it to 1 for images with less textures and to 5 otherwise.

The PSNR values of the results from all six methods are summarized in
Table 1 and 2. The visual comparison of some results are shown in Figure
1 and Figure 2. From the results, the ROLD detector clearly outperformed
the ACWMF detector in terms of the accuracy of detecting pixels damaged
by impulse noise. However, when impulse noise is mixed with Gaussian white
noise, the detection reliability of ROLD detector noticeably decreases as the
effect caused by Gaussian white noise is not considered in the design of the
ROLD detector. It is seen that the results from our models (2.2) and (2.5) are
noticeably better than (2.4) and (2.3) in terms of PSNR values, especially in
the case of modest noise level. The visual inspection on Figure 1 and Figure 2
also leads to the same conclusion. When the impulse noise level is higher,
the sparsity assumption of v is less valid. As a result, the performance of our
models (2.2) and (2.5) will decrease. However, they still manage to achieve
modest gains in image quality, compared to the two-stage method. The results
in this experiments clearly show the advantages of the models (2.2) and (2.5)
by simultaneously identifying outlier and recovering damaged pixels.

It is noted that the proposed two models are not suitable for recovering image
damaged by very high level of impulse noise, e.g, r= 0.6. The main reason is
that the sparsity assumption on the impulse noise does not hold true anymore
in such cases. To recover image with very high impulse noise level, the two-stage
method with impulse noise detector such as ROLD may be a better choice. One
possible solution is to first detect impulse noise in the image using ROLD in a
conservative manner, then use the proposed methods to remove Gaussian noise
and remained un-detected impulse noise from the image..

Table 1: PSNR value (dB) of the denoising results for cameraman image from all the three
models from (2.3), (2.4) and (2.2) (our model 1), in the presence of random-valued impulse
noise with ratio r and Gaussian noise with std σ.

Ratio r and r = 10% r = 20% r = 40%
standard deviation σ=0 σ=10 σ=0 σ=10 σ=0 σ=10

ROLD-ERR Model in [50] 27.4 24.6 25.4 23.6 23.6 22.3

Model (2.3) + ACWMF 28.5 26.0 26.3 24.9 23.1 22.5

Model (2.3) + ROLD 28.4 27.5 26.3 25.8 23.7 23.3

Model (2.4) 29.9 27.5 27.1 26.0 23.1 22.9

Model (2.2) 30.3 28.4 27.4 26.6 23.6 23.3

Model (2.5) 30.3 28.4 27.4 26.6 23.6 23.3

4.2. Image Deblurring in the presence of Random-Valued Impulse Noise

In this application, we applied our blind inpainting algorithm to images that
not only contain random-valued impulse noise but are also blurry. Same as
Section 4.1, we also assume the existence of Gaussian white noise in images.
For image deblurring, H in all models are now some convolution matrix and we
use the out-of-focus kernel of radius 6 pixels. The values of parameters λ1,λ2
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noisy images (2.3) + ROLD (2.4) (2.2)

Figure 1: Denoising results of cameraman image contaminated by both random-valued impulse
noise and Gaussian noise. Images in each column represent (from left to right) corrupted
images, results from (2.3) combined with ROLD pre-detection, results from (2.4) and results
from (2.2) respectively. The noise levels of corrupted images (from top to bottom) are as
follows. (1) 10% random-valued impulse noise without Gaussian noise; (2) 10% random-
valued impulse noise with Gaussian noise of σ=10; (3) 20% random-valued impulse noise
without Gaussian noise (4) 20% random-valued impulse noise with Gaussian noise of σ=10.
The PSNR values of the results are given in Table 1.
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noisy images (2.3) + ROLD (2.4) (2.2)

Figure 2: Denoising result of several images contaminated by random-valued impulse noise of
rate 10% and Gaussian noise of σ=10. Images in each column represent (from left to right)
corrupted images, results from (2.3) combined with ROLD pre-detection, results from (2.4)
and results from (2.2) respectively. The PSNR values of the results are given in Table 2.

Table 2: PSNR value (dB) of the denoising results for other images from all the three models
from (2.3), (2.4), (2.2) and (2.5), in the presence of random-valued impulse noise with ratio r
and Gaussian noise with std=10.

Image and r and Baboon Boat Bridge Barbara512
ratio 10% 20% 10% 20% 10% 20% 10% 20%

ROLD-ERR Model in [50] 23.0 21.6 24.7 23.8 23.3 22.1 25.3 23.9

Model (2.3) + ACWMF 23.3 22.2 26.6 25.1 24.2 22.9 26.0 24.6

Model (2.3) + ROLD 24.8 22.9 28.2 26.4 25.3 23.7 27.8 25.8

Model from (2.4) 24.5 23.2 27.6 26.1 25.0 23.4 27.0 25.5

Model from (2.2) 25.1 23.5 28.3 26.4 25.4 23.7 27.9 26.0

Model from (2.5) 25.2 23.5 28.2 26.4 25.4 23.7 27.9 26.0
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corrupted images (2.3) + ROLD (2.4) (2.2)

Figure 3: Deblurring result of several images in the presence of random-valued impulse noise
of rate 10% and Gaussian noise of σ=10. Images in each column represent (from left to right)
corrupted images, results from (2.3) combined with ROLD pre-detection, results from (2.4)
and results from (2.2). The PSNR values of the results are given in Table 3.

used in the models are dependent on the noise level and their values are chosen
from the set {1,10,12}. The PSNR values of the results are summarized in
Table 3, and the visual comparison of some results are shown in Figure 3. It
is seen that the results from our models (2.2) and (2.5) are comparable to that
from the other two models. Overall, there are not much differences among all
five methods for image deblurring.

Table 3: PSNR value (dB) of the results from (2.3), (2.4), (2.2) and (2.5), for image deblurring
in the presence of random-valued impulse noise and Gaussian noise.

Image and r and Cameraman Goldhill Baboon
ratio 10% 20% 10% 20% 10% 20%

Model (2.3) + ACWMF 24.3 24.0 25.7 21.5 21.2 21.2

Model (2.3) + ROLD 24.3 24.1 25.8 21.6 21.3 21.2

Model (2.4) 24.1 23.9 25.5 21.2 21.2 21.1

Model (2.2) 24.2 24.0 25.7 21.4 21.2 21.1

Model (2.5) 24.2 24.0 25.7 21,4 21.3 21.2
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4.3. Blind Inpainting for images damaged by multiple factors

In this application, images are corrupted by both random-valued impulse
noise and scratches without any prior knowledge on their brightness values.
The values of parameters λ1,λ2 in both (2.2) and (2.5) are set as λ1 = 3.5,λ2 = 5
for all images. The value of λ3 in (2.5) is either 1/2 or 1, dependent on the
percentage of textures in the given image.

We compared the results from our proposed models (2.2), (2.5) against that
from the two-stage method (2.3) with ROLD pre-detector for detecting both
random-valued impulse noise and scratches. The PSNR values of results are
summarized in Table 4 and the results of some sample images are shown in
Figure 4. It is seen that the model (2.5) is the best performer among all three
methods, in particular, for ”Barbara512” and ”Goldhill” with rich textures.

The model (2.2) outperformed the model (2.3) with ROLD pre-detector on
images ”Goldhill” and ”Cameraman” which have fewer textures; the model (2.3)
with ROLD pre-detector did better on the image ”Barbara512” which has rich
textures. The performance of (2.3) is highly dependent on the reliability of
the ROLD detector on detecting impulse noise. The ROLD detector can not
detect thick scratches and also it cannot reliably detect random-valued impulse
noise mixed with Gaussian white noise. As a result, the model (2.3) did not
perform well on two images with few textures. The model (2.2) did not do well
on the image with rich textures is because many textures in ”Barbara512” are
mis-marked as scratches and been included in v. Thus, the texture region could
be over-smoothed in (2.2). Such a weakness of (2.2) is addressed in the model
(2.5) by including an explicit variable for representing textures. Thus, it is not
surprising to see that the model (2.5) achieved the best performance among all
three methods.

Table 4: PSNR value (dB) of the results for inpainting experiments on images degraded by
mixed factors, the rate of random-valued impulse noise is set as 10%.

Standard deviation σ
Image

of Gaussian noise
(2.3) with ROLD (2.2) (2.5)

0 25.2 24.6 25.2
Barbara512

10 24.7 24.3 24.7
0 25.6 26.5 27.2

Goldhill
10 24.4 26.0 26.4
0 23.4 24.8 24.9

Cameraman
10 23.3 24.5 24.6

4.4. Conclusions

This paper presents two regularization approaches for blind image inpainting
problems that are capable of simultaneously identifying corrupted regions and
restoring the corrupted pixels. The basic idea is to utilize the sparsity prior of
images in wavelet tight frame domain (or/and in discrete local cosine transform
domain) and the sparsity prior of corrupted pixels in the image domain. It is
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corrupted images (2.3) (2.2) (2.5)

Figure 4: The blind inpainting results for images damaged by both impulse noise, scratch
and Gaussian noise with std=10. Three sample images are showned (from top to bottom):
”Barbara”, ”goldhill” and ”cameraman”. Images in each column represent (from left to right)
corrupted image, restored image by (2.3) with ROLD pre-detector, restored image by (2.2)
and restored image (2.5). The PSNR values of the results are given in Table 4.
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shown in the experiments that the proposed approaches did equally well as or
better than the existing approaches on some image restoration problems, such as
removing random-valued impulse noise from images or image deblurring in the
presence of random-valued impulse noise. Moreover, the proposed approaches
are the first available methods that can automatically recover images corrupted
by multiple factors without requiring any user interaction. In future, we will
investigate the possible applications of the proposed models to other image
restoration tasks such as blind deconvolution.
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