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Abstract. In this paper, we propose a new wavelet frame based image restoration model that
explicitly treats images as piecewise smooth functions. It estimates both the image to be restored
and its singularity set. It can well protect singularities, which are important image features, and
provide enough regularization in smooth regions at the same time. This model penalizes the ℓ2-
norm of the wavelet frame coefficients away from the singularity set, while penalizes the ℓ1-norm
of the coefficients on the singularity set. This model explicitly models images as piecewise smooth
functions with a general smoothness regularization and characterizes rather general singularity set,
which includes both jump discontinuities and jumps after certain orders of differentiations. As we
know, all types of singularities are important image features and need to be recovered. Furthermore,
the singularity set can be robustly estimated by wavelet frame transform during the image recovery
procedure, which makes our model easy to solve numerically; hence, the model is insensitive to the
estimation of the singularity set.

The proposed model is in discrete setting and is a wavelet frame based approach. To further
understand the piecewise smooth nature of the obtained solutions, we connect it to a variational
model on the space of piecewise smooth functions and prove rigorously that the discrete model
converges to the variational model as image resolution goes to infinity. Also, we show that the
approximate solutions of the discrete model can be regarded as an approximation of those of the
variational model. Through these theoretical analysis, we manage to connect the proposed discrete
wavelet frame based model with the variational model. Such connection not only enables us to
acquire deeper understandings of the discrete model, but also leads us to the discovery of a varia-
tional model new to the literature, which is more general and works better than the Mumford-Shah
model [1] for image restoration problems. Although the focus of the paper is to propose the new
model and provide theoretical studies, we still conduct numerical simulations to support our claims
and theoretical findings. Our numerical studies show that the proposed model is the right one
for image restorations, when the underlying solutions are piecewise smooth. Generally speaking,
this model combines the merits of the PDE based approach [1–7] and the wavelet frame based
approach [8–10].

1. Introduction

Image restoration, including image denoising, deblurring, inpainting, computed tomography,
etc., is one of the most important areas in imaging science. Its major purpose is to enhance
the quality of a given image that is corrupted in various ways during the process of imaging,
acquisition and communication, and enable us to see crucial but subtle objects that reside in
the image. Mathematics has become one of the main driving forces of the modern development
of image restoration. There are several mathematics based approaches, the partial differential
equation (PDE) based approach (e.g. variational methods and PDEs models), and wavelet frame
based approach developed in the last few decades are successful examples among many.

Image restoration problems can be casted as solving a linear inverse problem

(1.1) f = Au+ η
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where the matrix A is some linear operator (not invertible in general) and η denotes a perturbation
caused by the additive noise in the observed image (or measurements), which is typically assumed
to be white Gaussian noise. Different image restoration problem corresponds to different type of
A, e.g., the identity operator for image denoising, a restriction operator for inpainting, a convo-
lution operator for image deconvolution, partial Radon transform for CT imaging, partial Fourier
transform for MR Imaging, etc. The problem (1.1) is usually ill-posed, which makes solving (1.1)
nontrivial.

In order to obtain a high quality recovery of the unknown image from the ill-posed linear inverse
problem (1.1), we need a proper modeling of images. The modeling should be different for different
classes of images, such as natural images, biological images, textures, etc. Here, just like many
previous work in the literature, we shall focus on natural images, including photographs of archi-
tecture, landscaping, portrait, etc. A fundamental question one should always ask before going into
the image restoration process is: what is an appropriate model/descriptor for images. In variational
and nonlinear PDE based modeling, such as the well-known Rudin-Osher-Fatemi (ROF) model [2],
images are described by functions of bounded variations (BV). For wavelet or wavelet frame based
methods (see e.g. [9, 11, 12]) with the regularization term being the ℓ1-norm of the wavelet frame
coefficients, images are essentially approximated by functions in the homogenous Besov space B1

1,1.
The BV space is a fairly large function space. It is known (see e.g. [6]) that a BV function can
always be decomposed to the sum of an absolute continuous part with respect to the Lebesgue
measure, a jump part (e.g. edges), and a Cantor measure. However, since images always have a
limited resolution, we normally cannot observe the Cantor measure in images. On the other hand,
the Besov space B1

1,1 sometimes is not large enough to include some natural images.
In this paper, we model images as piecewise smooth functions, and we propose a new wavelet

frame based image restoration model that seeks piecewise smooth solutions to the linear inverse
problem (1.1). The proposed model estimates both the image to be restored and its singularity
set (which shall be simply called jump set throughout the rest of this paper), so that it can well
protect singularities, which are important image features, and provide enough regularization in
smooth regions at the same time. The proposed model combines the merits of the PDE based
approach [1–5, 7] and the wavelet frame based approach [8–10]. Here, we provide a first glance of
the model while the detailed definition and analysis of it are available in Section 3–5:

(1.2) inf
u, Γ

‖[λ ·Wu]
Γc‖22 + ‖[γ ·Wu]

Γ
‖1 +

1

2
‖Au− f‖22,

whereW is the wavelet frame transformation, u is the image to be recovered and Γ is the estimated
jump sets. When Γ = ∅, this model reduces to the standard Tikhonov regularization method. When
Γc = ∅, this model reduces to the wavelet frame based analysis model of [9]. Although the Tikhonov
regularization method keeps regularity of smooth part of images, it smears out the edges in images.
On the other hand, the sparsity based wavelet frame analysis model of [9] preserves the edges
by pursing a sparse approximation of the underlying solution through ℓ1-regularization in wavelet
frame domain, while it can also introduce artifact, or unwanted singularities, in smooth regions of
images.

The proposed model (1.2) is to take advantage of the fact that the ℓ2-regularization in wavelet
frame domain to keep smooth components of images smooth, and the ℓ1-regularization to keep
the edges sharp. The use of the ℓ2-norm in the term ‖[λ ·Wu]

Γc‖22 is because u is supposed to
be smooth away from its jump set. Due to the present of wavelet frames with multiple orders of
vanishing moments, this term in fact corresponds to general regularization term for the smooth
part of image. The term ‖[γ ·Wu]

Γ
‖1 regularizes both jumps (jump discontinuities) and hidden

jumps (jump discontinuities after certain orders of differentiations) at Γ, so that it preserves the
singularity set of the image, and, at the same time, promote regularity along the singularity set of
the image.
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The key to the success of the model (1.2) is that there is a fast and robust way to determine the
jump set Γ, since the large wavelet frame coefficients indicate the locations of jump set. The jump
discontinuities are naturally extracted by wavelet frames with vanishing moments of order 1, while
the hidden jumps are extracted by wavelet frames with higher order of vanishing moments. Since
the high pass filters associated to wavelet frame functions can automatically detect the jump set
of various types (jumps and hidden jumps), the set Γ can be obtained iteratively in a numerically
simple way, as will be shown in later parts of this paper. Furthermore, model (1.2) is not sensitive
to the estimation of Γ, because the specific form of the second term ‖[γ ·Wu]

Γ
‖1. Indeed, when

Γc = ∅, our model (1.2) reduces to the analysis based model [9, 13, 14] which is proven in the
literature to be a good image restoration model. Intuitively, the reconstruction results of our model
(1.2) cannot be worse than those of the analysis based model. In fact, our numerical experiments
in Section 3.3 will show that if Γ is more informative than Γc = ∅, we can significantly improve
the image restoration results for images that can be well modeled as piecewise smooth functions.
Finally, the built-in multiscale structure of wavelet frame systems enables a reliable estimation of
the jump set at the present of noise.

In the literature of mathematical modeling in image restoration, PDE based approach and wavelet
frame based approach are successful examples among many. In this paper, we shall refer to both
variational models and the (nonlinear) PDE based models as PDE based approach. Although both
types of models view image restoration problems from different perspectives, they are closely related.
Indeed, at the beginning of variational modeling for image restoration, variational models are solved
via PDEs (e.g. gradient flows). In general, variational techniques are frequently used to aid the
analysis of the associated PDEs. Therefore, we shall classify both variational modeling and PDE
based modeling as PDE based approach. In general, when we mention the PDE based approach,
we are including the variational models such as the refined Rudin-Osher-Fatemi (ROF) model [2]
and the well-known Mumford-Shah model [1]; and nonlinear PDE models such as the anisotropic
diffusion model by Perona and Malik [3]. In PDE based approach, images are essentially assumed
as functions in the space of functions with bounded variation (BV). These ground-breaking models
started the modern trend of mathematical imaging sciences and have inspired lots of interesting
and exciting developments in the field ever since (see, e.g., [4–7, 15]). Almost all PDE based
approaches for image restoration aim at preserving or enhancing image features, such as edges,
while regularizing smooth image components at the same time. Wavelet frame based approach, on
the other hand, achieves a similar objective as the PDE based approach by promoting the sparsity
of the wavelet frame coefficients of the images via shrinkage operators so that singularities such as
edges can be preserved/enhanced.

The wavelet and wavelet frame based image restoration models with the ℓ1-norm regularization
implicitly approximates images by functions in a certain Besov space, such as B1

1,1. The wavelet

frame based image processing started from [8, 16] for high-resolution image reconstructions and
was later generalized by [17, 18] which lead to an effective image restoration model known as the
balanced model. The balanced model includes two other wavelet frame based models as special
cases. One is known as the synthesis based model [11, 12, 19–21], and the other is known as the
analysis based model, [9, 13, 14]. The three approaches are different from each other, unless the
underlying wavelet frame systems is in fact orthonormal/biorthogonal. However, what they have
in common, is the penalization of the sparsity of the wavelet frame coefficients of the image to be
restored to enhance the features of images. In recent years, variational models are discretized first
and then optimization algorithms are applied to solve the variational models in discrete settings.
As shown by results in [22,23] and this paper, implicitly, this approach essentially coverts the PDE
based approaches to various wavelet frame based approaches. This seems to make the PDE based
models distant from variational methods. However, our recent work in [23] indicates that some such
numerical optimization algorithms for variational models are closely related to (nonlinear) PDEs
in the discrete setting on the other hand.
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Regardless of the different spaces of images that the PDE based approach and wavelet frame
based approach may assume, both approaches eventually want to model images as piecewise smooth
functions. To properly recover a piecewise smooth function, we need to explicitly estimate its jump
set, while regularize the function as much as possible elsewhere. However, most of the widely used
image restoration models do not model jump set explicitly due to the computation challenge to
simultaneously recover the jumps sets and the image. Instead, these models make use of the ℓ1-
norm (or even the ℓ0-norm) and the sparsity of the image under certain transformation to maintain
sharpness of edges while regularizing smooth image components. However, such treatment cannot
always guarantee sharpness of edges and image smoothness at the same time since the ℓ1-norm treats
each pixel location of an image equally which means that each pixel has a chance to be selected into
the jump set. In the literature, a variational model that attempted to model images as piecewise
smooth function explicitly is the Mumford-Shah model [1]. Mumford-Shah model treats images as
the so-called special functions with bounded variation (SBV) [24], which are BV functions without
the component of Cantor measure. The SBV space can be regarded as something in between of B1

1,1

and BV space. However, SBV is still not a space large enough to include most natural images inside.
For one thing, images may be much smoother than merely absolute continuous away from jump
discontinuities. Furthermore, the Mumford-Shah model is difficult to solve numerically mainly due
to the sensitivity of the image solutions to the estimation of the jump set.

To further understand the piecewise smooth nature of the underlying solution of the proposed
model (1.2), we shall analyze its asymptotic property as image resolution goes to infinity. We will
prove that there is a variational model (see (5.2)) for piecewise smooth functions, to which the
discrete model (1.2) converges. Also, through the convergence analysis, the approximate solutions
of (1.2) can be regarded as discrete approximations of the solutions to the variational model under
suitable assumptions. Through these theoretical analysis, we are managed to connect the discrete
wavelet frame based model with the continuum variational model. Such connection not only enables
us to acquire deeper understandings of the discrete model, but also leads us to the discovery of a
variational model new to the literature. As a consequence of our analysis, we are able to link this
new wavelet frame based model to the Mumford-Shah model.

The analysis in this paper is motivated by our earlier work [22, 23]. In [22], a fundamental
connection between a wavelet frame based approach, namely the analysis based approach, and a
generic variation model (which takes the ROF model as a special case) were established. It was
shown in [22] that the analysis based model using generic wavelet frame systems can be regarded
as an approximation of the variational model in the discrete setting. More recently in [23], a
fundamental connection between generic wavelet frame shrinkage and nonlinear evolution PDEs
(which takes the PM (Perona-Malik) equation and many other classical PDE models as special
cases) were established. In [23], interpretations and analytical studies of such connection were
provided and new algorithms for image restoration were proposed based on the new understandings.
From our work in [22, 23] and that of the current paper, we have a fairly complete picture of how
wavelet frame based approach is connected with the PDE based approach. The connections we
have established in the three papers automatically give wavelet frame based approach a geometric
explanation through variational models and nonlinear PDEs; and at the same time, they enable
us to equip the PDE based approach with a multi-scaled time frequency analysis. In particular,
wavelet frames can be used as a new and useful tool in numerical analysis to discretize and solve
various variational and PDE models. Furthermore, such connections lead to new and inspiring
interpretations of both approaches which enables us to create novel and more effective PDE and
wavelet frame based models/algorithms for image restoration problems.

The rest of the paper is organized as follows. In Section 2, we present a brief review of wavelet
frame theory and introduce some basic concepts of wavelet frame that will be used in later sections.
We propose the discrete wavelet frame based model and its associated algorithm in Section 3. At
the end of this section, we conduct numerical experiments on the proposed model and algorithm
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which will show great potential of our proposed approach. In Section 4, we present a variational
model for piecewise smooth functions to which the proposed discrete model converges. In Section
5, we rigorously prove that, under suitable assumptions, the proposed discrete wavelet frame based
model does converge to the variational model as the resolution goes to infinite. As a result of our
analysis, we can see how the (approximate) solutions of the discrete model approximate those of
the variational model. Through such analysis, we can also see that our discrete model does acquire
piecewise smooth solutions of the associated linear inverse problem in the discrete setting.

2. Preliminaries of Wavelet Frames

In this subsection, we briefly introduce the concept of tight frames and tight wavelet frames.
The interested readers should consult [25–27] for theories of frames and wavelet frames, [28] for a
short survey on the theory and applications of frames, and [10] for a more detailed survey.

A countable set X ⊂ L2(R
d), with d ∈ Z+, is called a tight frame of L2(R

d) if

(2.1) f =
∑

g∈X
〈f, g〉g ∀f ∈ L2(R

d),

where 〈·, ·〉 is the inner product of L2(R
d).

For given Ψ := {ψ1, . . . , ψL} ⊂ L2(R
d), the corresponding quasi-affine system X(Ψ) generated

by Ψ is defined by the collection of the dilations and the shifts of Ψ as

(2.2) X(Ψ) = {ψℓ,n,k : 1 ≤ ℓ ≤ L;n ∈ Z,k ∈ Z
d},

where ψℓ,n,k is defined by

(2.3) ψℓ,n,k :=

{
2

nd
2 ψℓ(2

n · −k), n ≥ 0;
2ndψℓ(2

n · −2nk), n < 0.

When X(Ψ) forms a (tight) frame of L2(R
d), each function ψℓ, ℓ = 1, . . . , L, is called a (tight)

framelet and the whole system X(Ψ) is called a (tight) wavelet frame system. Note that in the
literature, the affine (or wavelet) system is commonly used, which corresponds to the decimated
wavelet (frame) transforms. The quasi-affine system, which corresponds to the undecimated wavelet
(frame) transforms, was first introduced and analyzed by [25]. Here, we only discuss the quasi-affine
system (2.3), since it works better in image restoration and its connection to PDEs is more natural
than the affine system. The interested reader can find further details on the affine wavelet frame
systems and its relation to the quasi-affine frames in [10,25,29].

The constructions of framelets Ψ, which are desirably (anti)symmetric and compactly supported
functions, are usually based on a multiresolution analysis (MRA) that is generated by some refinable
function φ with refinement mask a0 satisfying

(2.4) φ = 2d
∑

k∈Zd

a0[k]φ(2 · −k).

The idea of an MRA-based construction of framelets Ψ = {ψ1, . . . , ψq} ⊂ L2(R
d) is to find masks

aℓ, which are finite sequences, such that

(2.5) ψℓ = 2d
∑

k∈Zd

aℓ[k]φ(2 · −k), ℓ = 1, 2, . . . , q.

The sequences a1, . . . ,aq are called wavelet frame masks, or the high pass filters of the system, and
the refinement mask a0 is also known as the low pass filter.

The unitary extension principle (UEP) of [25] provides a general theory of the construction of
MRA-based tight wavelet frames. Roughly speaking, as long as {a1, . . . ,aq} are finitely supported



6 JIAN-FENG CAI, BIN DONG, AND ZUOWEI SHEN

and their Fourier series satisfy

(2.6)

q∑

ℓ=0

|âℓ(ξ)|2 = 1 and

q∑

ℓ=0

âℓ(ξ)âℓ(ξ + ν) = 0,

for all ν ∈ {0, π}d \ {0} and ξ ∈ [−π, π]d, the quasi-affine system X(Ψ) (as well as the traditional
wavelet system) with Ψ = {ψ1, . . . , ψq} defined by (2.5) forms a tight frame in L2(R

d).
We now show two simple but useful examples of univariate framelets. The framelet given in

Example 2.1 is known as the Haar wavelet. When one uses a wavelet (affine) system, it generates
an orthonormal basis of L2(R). The quasi-affine system that the Haar wavelet generates, however,
is not an orthonormal basis, but a tight frame of L2(R) instead. We shall refer to ψ1 in Example
2.1 as the “Haar framelet”. The framelets given by Example 2.2 is constructed from piecewise
linear B-spline which was first given in [25]. The masks of all the B-splines framelets constructed
by [25] are exactly discrete difference operators up to a scaling. These framelets, especially the ones
in Example 2.2, are widely used in frame based image restoration problems because they provide
sparse approximations to piecewise smooth functions such as images (see, e.g., [8,9,16–18,29–33]).
We shall refer to ψ1 and ψ2 in Example 2.2 as “piecewise linear framelets”. For a comprehensive
introduction to B-splines, we refer the interested readers to [34].

Example 2.1. Let a0 =
1
2 [1, 1] be the refinement mask of the piecewise constant B-splineB1(x) = 1

for x ∈ [0, 1] and 0 otherwise. Define a1 = 1
2 [1,−1]. Then a0 and a1 satisfy (2.6). Hence, the

system X(ψ1) defined in (2.2) is a tight frame of L2(R). The mask a1 corresponds to a first order
difference operator up to a scaling.

Example 2.2. Let a0 =
1
4 [1, 2, 1] be the refinement mask of the piecewise linear B-spline B2(x) =

max (1− |x|, 0). Define a1 =
√
2
4 [1, 0,−1] and a2 =

1
4 [−1, 2,−1]. Then a0, a1 and a2 satisfy (2.6).

Hence, the system X(Ψ) where Ψ = {ψ1, ψ2} defined in (2.2) is a tight frame of L2(R). The masks
a1 and a2 correspond to the first order and second order difference operators respectively up to a
scaling.

For practical concerns, we need to consider tight frames of L2(R
d) with d = 2 or 3, since a

typical image is a discrete function with its domain in 2 or 3 dimensional space. In this paper,
we shall consider the case d = 2. One way to construct tight frames for L2(R

2) (or L2(R
d) in

general) is by taking tensor products of univariate tight frames. Given a set of univariate masks
{aℓ : ℓ = 0, 1, . . . , r}, define the 2D masks ai[k], with i := (i1, i2) and k := (k1, k2), as

(2.7) ai[k] := ai1 [k1]ai2 [k2], 0 ≤ i1, i2 ≤ r; (k1, k2) ∈ Z
2.

Then the corresponding 2D refinable function and framelets are defined by

ψi(x, y) = ψi1(x)ψi2(y), 0 ≤ i1, i2 ≤ r; (x, y) ∈ R
2,

where we have let ψ0 := φ for convenience. We denote

Ψ := {ψi; 0 ≤ i1, i2 ≤ r; i 6= (0, 0)}.
If the univariate masks {aℓ} are constructed from UEP, then it is easy to verify that {ai} satisfies
(2.6) and thus X(Ψ) is a tight frame for L2(R

2).
Recall that there are m framelets with vanishing moment from 1, . . . ,m constructed from the B-

spline of order m by the UEP in [25]. Recall that the vanishing moment of a function is the order of
the zero of its Fourier transform at the origin. We shall order the indices of the framelets according
to their orders of vanishing moments. Note that the corresponding index for any B-spline is 0, since
it has no vanishing moment. Then, for the tensor product framelet ψi with i = (i1, i2), if there is
a differential operator associate with it, the differential operator should be Di, i.e. applying the i1
derivative of the first variable and the i2 derivative of the second variable. The order of vanishing
moment of the framelet is |i| which is equal to the order of the differential operator Di. Such
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association of framelets with differential operators was first discovered in [22] and was extensively
used in [23]. The reason behind it will become more evident in later sections.

We now provide the masks of 2-dimensional Haar and piecewise linear framelets constructed by
tensor product in the following example.

Example 2.3.

(1) The tensor-product 2-dimensional Haar tight frame system has filters

a0,0 =
1

4

(

1 1
1 1

)

,a0,1 =
1

4

(

1 −1
1 −1

)

,

a1,0 =
1

4

(

1 1
−1 −1

)

,a1,1 =
1

4

(

1 −1
−1 1

)

.

(2) The tensor-product 2-dimensional piecewise linear B-spline tight frame system has filters

a0,0 =
1

16





1 2 1
2 4 2
1 2 1



 ,a0,1 =

√

2

16





1 0 −1
2 0 −2
1 0 −1



 ,a0,2 =
1

16





−1 2 −1
−2 4 −2
−1 2 −1



 ,

a1,0 =

√

2

16





1 2 1
0 0 0

−1 −2 −1



 ,a1,1 =
1

8





1 0 −1
0 0 0

−1 0 1



 ,a1,2 =

√

2

16





−1 2 −1
0 0 0
1 −2 1



 ,

a2,0 =
1

16





−1 −2 −1
2 4 2

−1 −2 −1



 ,a2,1 =

√

2

16





−1 0 1
2 0 −2

−1 0 1



 ,a2,2 =
1

16





1 −2 1
−2 4 −2
1 −2 1



 .

In the discrete setting, let an image f be a 2-dimensional array. We denote by

I2 := R
N1×N2

the set of all 2-dimensional images. We will further assume that all images are square images, i.e.
N1 = N2 = N and they all have supports in the open unit d-dimensional cube Ω = (0, 1)d. Note
that these assumptions are not essential, and all arguments and results in this paper can be easily
extended to more general cases. We denote the 2-dimensional fast (discrete) framelet transform
(see, e.g., [10]) with levels of decomposition L as

(2.8) Wu = {Wl,iu : 0 ≤ l ≤ L− 1, 0 ≤ i1, i2 ≤ r}, u ∈ I2.
We denote the wavelet frame bands (high frequency bands) as B = {i : 0 ≤ i1, i2 ≤ r} \ {0}. The
fast framelet transform W is a linear operator with Wl,iu ∈ I2 denoting the frame coefficients of
u at level l and band i. Furthermore, we have

Wl,iu := al,i[−·]⊛ u,

where ⊛ denotes the convolution operator with a certain boundary condition, e.g., periodic bound-
ary condition, and al,i is defined as

(2.9) al,i = ãl,i ⊛ ãl−1,0 ⊛ . . .⊛ ã0,0 with ãl,i[k] =

{
ai[2

−lk], k ∈ 2lZ2;
0, k /∈ 2lZ2.

Notice that a0,i = ai.

We denote the inverse framelet transform as W⊤, which is the adjoint operator of W , and we
will have the perfect reconstruction formula

u = W⊤Wu, for all u ∈ I2.
We use H and H⊤ to denote the decomposition and reconstruction using Haar framelets. We will
also denote the general fast framelet decomposition and reconstruction as Wn and W⊤

n , whenever
the image resolution level n becomes relevant.
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3. Wavelet Frame Based Model for Piecewise Smooth Functions

In this section, we present our wavelet frame based image restoration model for piecewise smooth
functions. In this paper, we say a function is a piecewise smooth function if the function itself and its
derivatives (especially the first order derivatives) belong to certain Sobolev spaces on sub-domains
and have a relatively regular jump discontinuity set. In this section, the proposed model and
algorithm are all in discrete setting, where all data are discrete arrays that are sampled from the
underlying functions. The solutions we seek should be understood as sampled data from piecewise
smooth functions. We will provide the precise definition of piecewise smooth functions and the
sampling associated to the wavelet frame systems in Section 5, where we study the asymptotic
property of the proposed discrete model as image resolution goes to infinity.

3.1. Image Restoration Model. The basic linear image restoration model is usually given as

(3.1) f = Au+ η,

where A is some linear operator (not invertible in general) mapping I2 into itself, e.g., the iden-
tity operator for image denoising, a convolution operator for image deconvolution, or partial
Radon/Fourier transform for CT/MR imaging; and η denotes a perturbation caused by the additive
noise in the observed image (or measurements), which is typically assumed to be a white Gaussian
noise. Since the linear inverse problem (3.1) for image restoration is often ill-posed, which means A
usually has a large or even infinite condition number. Therefore, at the presence of noise η, solving
(3.1) without any further restrictions on the solution u usually leads to very undesirable restored
images. Hence, all modern image restoration models and algorithms enforce additional regularity
requirements to the restored images.

The basic idea of wavelet frame based image restoration is to approximate a solution of (3.1)
while maintaining desirable regularity of the solution via proper penalization of the wavelet frame
coefficients. The regularity that is normally used in the literature is the minimization of the ℓ1-
norm [8,9,11,12,16–21,29–33] or the ℓ0-norm [35–37] of the wavelet frame coefficients. Since wavelet
frames can sparsely approximate piecewise smooth functions such as images, the penalization of
the ℓ1- or ℓ0-norm has the effect of smoothing the restored image while maintaining key features
such as edges. However, since neither of the ℓ1- nor ℓ0-norm penalization explicitly identifies the
locations of singularity of images, neither of them is able to protect sharp image features (such as
edges) and maintain smoothness away from these sharp features at the same time. As a result,
simply applying ℓ1- or ℓ0-norm penalization may not always produce ideal image reconstruction
results. For instance, the penalization of the ℓ1- or ℓ0-norm may introduce artifact, or in other
words, unwanted singularities, in smooth parts of images. Tuning the regularization parameter(s)
in the model may reduce these artifacts, while it may smear out edges (wanted singularities) at the
same time.

Since images are better modeled as piecewise smooth functions, instead of passively using a
sparsity promoting norm (such as the ℓ1- or ℓ0-norm) hoping the paradox between smoothness and
sharpness can be resolved automatically, an ideal model should actively split images into smooth
and rough (singularities) regions and use different norms that are most suitable to each of these
regions. If we can estimate fairly accurately the locations of the singularities (sharp edges, ridges,
etc.) in the image, we can easily avoid smoothing across singularities while maintaining smoothness
in smooth regions, which will further improve image restoration quality. Here, we propose a wavelet
frame based image restoration model that explicitly model images as piecewise smooth functions by
simultaneously recovery of the corrupted image and estimation of the locations of the singularities.
In other words, our proposed model is to obtain a piecewise smooth solution of the linear inverse
problem (3.1).

We denote by O2 := {0, 1, . . . , N − 1}2 the set of indices of the N × N Cartesian grid that
discretize the domain Ω = (0, 1)2. Recall that the space of all 2-dimensional array on the grid O2

is denoted as I2. Let Γ ⊂ O2 be the set of singularities that needs to be estimated. We propose
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our wavelet frame based image restoration model as

(3.2) inf
u∈I2, Γ⊂O2

‖[λ ·Wu]
Γc‖22 + ‖[γ ·Wu]

Γ
‖1 +

1

2
‖Au− f‖22,

where

‖[λ ·Wu]
Γc‖22 :=

∑

k∈O2\Γ

L−1∑

l=0

∑

i∈B
λl,i[k]

∣∣∣∣(Wl,iu)[k]

∣∣∣∣
2

and

‖[γ ·Wu]
Γ
‖1 :=

∑

k∈Γ



L−1∑

l=0

(
∑

i∈B
γl,i[k]

∣∣∣∣(Wl,iu)[k]

∣∣∣∣
2
) 1

2


 .

Note that the type of singularity in Γ that we shall specifically focus on is not only jump discon-
tinuities (or simply jumps), but also hidden jumps which means jump discontinuities after certain
orders of differentiations. Both jumps and hidden jumps are important image features. As will
be rigourously analyzed in Section 5 that to extract jumps and hidden jumps, we only need to
properly choose the parameter γ in the second term of (3.2). More specifically, the terms in
‖[γ ·Wu]

Γ
‖1 that correspond to the wavelet frame band {|i| = 1 : i ∈ B} can extract jumps, while

the terms correspond to {|i| = 2 : i ∈ B} can extract first order hidden jumps (jumps after first
order differentiations). We can easily extract higher order hidden jumps (jumps after higher order
differentiation) by using a higher order B-spline wavelet frame system and properly choosing γ for
{|i| ≥ 2 : i ∈ B}. However, we shall only focus on jumps and first order hidden jumps in this paper,
since they are more important image features.

The proposed model (3.2) is particularly effective for images that can be well approximated by
piecewise smooth functions. Many types of real images satisfy such assumption. Examples of these
images will be shown in Section 3.3, where numerical studies are presented. We further note that
textures cannot be modeled as piecewise smooth functions [15]. However, since textures are sparse
under systems of oscillating patterns, such as local cosine basis, we can use a two-system model to
handle textures gracefully (see e.g. [9, 13, 14, 17, 38]). We will not discuss details of a two-system
version of the proposed model, since it is outside the scope of this paper. We shall focus on the
single-system model (3.2) for images.

3.2. Algorithm for Model (3.2). We present an algorithm that approximates a solution of (3.2).
Since this model is nonconvex, good initialization of u and Γ may be preferable to get a satisfactory
result. We delay the detailed choice of initialization to Section 3.3.

We propose the following alternative minimization algorithm for (3.2).

Alternative Minimization of (3.2). Let u0 and Γ0 be some initial data. For k = 1, 2, . . .,

(1) Given Γk−1, compute uk by

uk = arg min
u∈I2

∥∥∥[λ ·Wu](Γk−1)c

∥∥∥
2

2
+ ‖[γ ·Wu]

Γk−1‖1 +
1

2
‖Au− f‖22.

Note that uk can be solve by the split Bregman algorithm [9, 39–41], which is recently
widely used in solving optimization problems in variational and wavelet frame based image
restoration. For a given exterior iteration k, we see an approximation of uk by iterating
the following split Bregman algorithm: let d0 = b0 = 0, for j = 1, 2, . . .

(3.3)





uk,j = argmin
u

1
2‖Au− f‖22 + µ

2‖Wu− dj−1 + bj−1‖22,

dj = argmin
d

∥∥∥[λ · d](Γk−1)c

∥∥∥
2

2
+
∥∥∥[γ · d](Γk−1)

∥∥∥
1
+ µ

2‖d−Wuk,j − bj−1‖22,
bj = bj−1 + (Wuk,j − dj).
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(2) Given uk, estimate Γk by

Γk = arg min
Γ⊂O2

∥∥∥
[
λ ·Wuk

]
Γc

∥∥∥
2

2
+
∥∥∥
[
γ ·Wuk

]
Γ

∥∥∥
1
.

It is easy to see that Γk has a closed form solution given as

Γk =



p ∈ O

2 :
L−1∑

l=0

(
∑

i∈B
γl,i[p]

∣∣∣∣(Wl,iu
k)[p]

∣∣∣∣
2
) 1

2

≤
L−1∑

l=0

∑

i∈B
λl,i[p]

∣∣∣∣(Wl,iu
k)[p]

∣∣∣∣
2


 .

3.3. Numerical Simulations. In this subsection, we conduct some numerical simulations using
our proposed approach described in Section 3, and compare the results with the analysis based
approach that has been widely used recently in image restoration. We note, however, that numerical
simulation is not the emphasis of this paper.

We compare our proposed model (3.2) and the associated algorithm described in Section 3 with
the following analysis based model solved by split Bregman algorithm [9,39]:

inf
u∈I2

‖γ ·Wu‖1 +
1

2
‖Au− f‖22.

The analysis based model is recently widely used in image restoration with success. Comparing to
the total variation based model, which is the other model that is widely used in image restoration,
the analysis based model can generate higher quality images for various image restoration problems
(see e.g. [9,42,43]). Furthermore, the analysis based model can be regarded as a special case of the
proposed model (3.2). Therefore, we shall focus on comparisons of the proposed model with the
analysis based model.

The specific image restoration problem we shall consider here is image deblurring. The reason
we choose deblurring is because it is a fundamental while challenging image restoration problem
that also has wide applications. To be more precise, the operator A is taken to be the convolution
operator with the kernel generated in MATLAB by “fspecial(’gaussian’,15,1.5)”. Additive Gaussian
noise (with standard deviation= 4 and images taking integer values in [0, 255]) is also added. To
measure quality of the restored image, we use the PSNR value defined by

PSNR := −20 log10
‖u− ũ‖2

N
,

where u and ũ are the original and restored images respectively, and N is the total number of
pixels.

We initialize our algorithm by choosing u0 = 0. For Γ0, we first compute an edge function g

from the observed image f by

g0[k] :=
∑

0≤l≤L−1,i∈B
|(Wl,if)[k]|2 and g = g0/‖g0‖∞.

Then, we compute Γ0 by

Γ0 =
{
k ∈ O

2 : g[k] ≥ τ
}
.

The wavelet frame system used to compute Γ0 is the piecewise linear B-spline tight frame system
given in (2) of Example 2.3 and the level of decomposition is taken to be one, i.e. L = 1. Throughout
our numerical experiments, the threshold τ is fixed to be 0.1 (numerically, the reconstruction results
of our approach is relatively stable w.r.t. the choice of τ).

Note that we use piecewise linear B-spline framelet system for both the analysis based model
and our model (3.2). In order to achieve best image restoration quality (numerically), the level of
decomposition of wavelet frame transform for the analysis based model is chosen to be 4, while the
level of decomposition for our proposed models chosen to be 2. The parameters λ and γ of (3.2) is
chosen as λl,i = λ and γl,i = γ for all 0 ≤ l ≤ L− 1 and i ∈ B, where λ and γ are scalars manually
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chosen for optimal restoration quality. Note that the ratio λ/γ determines the estimation of the
jump set Γ. The bigger is the ratio, the larger is the set of Γ.

3.3.1. Synthetic Images. We start with two synthetic images which are presented in Figure 1. The
image on the left has one set of jump discontinuities that forms a centaur-shaped boundary; and
the image on the right has multiple jump sets. The comparisons of our approach with the analysis
based model solved by split Bregman algorithm is shown in Figure 2 and Figure 3. The estimated
jump set Γ for both synthetic images are shown in Figure 4.

Our results shown in Figure 2 and Figure 3 indicate that the proposed approach is significantly
better than the analysis based model which indicates the great potential of our proposed model
(3.2). In fact, our proposed model is particularly good for images that have relatively sparse jump
set with the rest of the regions smooth (such as the synthetic images we used here). In order to
further support this claim, in the next subsection, we will choose some non-synthetic images as test
images which has relatively sparse jump set. We note that for images that have relatively dense
jump set, such as textures, the propose model has a comparable performance with the analysis
based model. In fact, for textures, neither model is suitable since textures cannot be modeled as
piecewise smooth functions.

Figure 1. Synthetic images: original (first row) and observed (second row). The
PSNR values of the observed images are 31.5046 and 24.6239 respectively.

3.3.2. Non-Synthetic Images. We downloaded several non-synthetic images from “google/image”,
which are shown in Figure 5. We shall refer to these images (from left to right in Figure 5) as:
“Car”, “Goldengate”, “Interior”, “Pitt” and “Samantha”. The comparison of our approach with
the analysis based model solved by split Bregman algorithm is shown in Figure 6. The estimated
jump set Γ is also given in Figure 6. The PSNR values of the reconstructed images for both
methods are summarized in Table 1. As one can easily see from the table that our approach
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Figure 2. The first row of images are the observed image and one of its zoom-in
view. The second row are the results of the analysis based model with PSNR=
35.2572. The third row are the results of our proposed approach with PSNR=
35.9223.

outperform the analysis based approach. The improvements of image restoration quality are also
visually observable from Figure 6 and Figure 7.

To see the stability of the proposed model (3.2) in recovering u and estimating Γ, we tested our
algorithm on deblurring of a relatively complex image data with three different noise levels with
standard deviation = 2, 4, 6. Same blur kernel as before is used. Original and observed images are
given in Figure 8. Results are presented in Figure 9. As we can see that, the restored image u is
gradually degrading as noise level increases. The estimated jump set Γ also degrades as noise level
increases, but the degradation is rather slow. This shows the stability of the proposed model to
increased noise level.
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Figure 3. The first row of images are the observed image and one of its zoom-in
view. The second row are the results of the analysis based model with PSNR=
31.7154. The third row are the results of our proposed approach with PSNR=
34.2676.

Table 1. Comparisons for image deconvolution using the images given in Figure 5.

Image Name Analysis Based Model Our Approach
Car 27.3194 27.5443

Goldgate 27.5312 27.8618
Interior 29.6087 30.0355
Pitt 29.4654 29.6716

Samantha 30.9207 31.0085



14 JIAN-FENG CAI, BIN DONG, AND ZUOWEI SHEN

Figure 4. The estimated jump set Γ is enclosed in the red curves.

Figure 5. Non-synthetic images: original (first row) and observed (second row).
The PSNR values of the observed images are 22.5976, 24.1189, 26.1993, 25.9306
and 27.0862 respectively.

4. Variational Model for Piecewise Smooth Functions

Model (3.2) works well because, in wavelet domain, the large wavelet frame coefficients reflect
the positions of jumps of different orders, while small wavelet frame coefficients normally reflect
the “smooth components” of the images. Here, we view images as data samples of functions at a
given resolution. The discrete wavelet frame coefficients are obtained by applying wavelet frame
filters to given image data. Since the wavelet frame filters are designed to be standard difference
operators with various orders, the locations of big wavelet frame coefficients indicate jumps of give
images and their discrete differentiations. The locations of small wavelet frame coefficients indicate
the region where image is smooth. It is natural to ask that, in which sense, this discrete model
(3.2) does describe piecewise smooth functions, since in discrete setting, the concept of piecewise
smoothness is unclear. Therefore, we need (and will) establish an asymptotic property of the model
(3.2) as image resolution goes to infinity. In particular, we shall establish a variational model to
which the discrete model (3.2) converges in a proper sense. Furthermore, this variational model
clearly shows that it selects an optimal solution in a piecewise smooth function space. Finally,
the detailed analysis shows that model (3.2) can be viewed as an approximation of this variational
model. Consequently, it implies that model (3.2) is designed for piecewise smooth functions.
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Figure 6. The first row of images are the ground truth images. The second row of
images are the observed noisy and blurry images. The third row of images are the
results of the analysis based model. The fourth row of images are the results of our
proposed approach. The last row shows the computed jump set Γ.

This section focus on the introduction of the variational model, a precise definition of piecewise
smooth function space, and the relation between the discrete model (3.2) and the variational model.
The rigorous analysis of the convergence and approximation of the variational model by the discrete
model (3.2) will be given in Section 5.

4.1. Space of Piecewise Smooth Functions and Properties. In this section, we give the
precise definition of the space of piecewise smooth functions and introduce some of the properties
of such functions that will be needed in later sections.

Piecewise smooth functions are functions that have different regularities in different sub-domains
of the domain Ω = (0, 1)2 ⊂ R2. In this paper, we shall focus on piecewise smooth functions satisfy
the following two conditions:

(1) First order weak derivatives are integrable in sub-domains {Ωj} of Ω with jump disconti-
nuities at the boundaries of these sub-domains, which is the jump set.

(2) Second order or higher weak derivatives are integrable in the sub-domains {Ωj,j̃} ⊂ Ωj and
the first order derivatives have jump discontinuities at the boundaries of Ωj,j̃, which shall

be called the (first order) hidden jump set.



16 JIAN-FENG CAI, BIN DONG, AND ZUOWEI SHEN

Figure 7. Zoom-in views of the images in Figure 6.

Note that we can define similarly the piecewise smooth functions with higher order hidden jumps
sets, i.e. jump discontinuities of their second or higher order derivatives. However, we shall focus
on the aforementioned space since jumps and first order hidden jumps are most important image
features.

Now, we give the precise definitions of these sets and the space of piecewise smooth func-
tions. Let Hs(Ω), with s = 1, 2, . . ., be the Sobolev space equipped with the norm ‖f‖Hs(Ω) =
∑

0≤|i|≤s ‖Dif‖L2(Ω), where Di(f(x, y)) = ∂|i|f
∂xi1∂yi2

. Let {Ωj : j = 1, 2, . . . ,m} be a collection of

open subsets of Ω satisfying

(4.1)
⋃

j

Ωj = Ω and L(Ωj1

⋂
Ωj2) = 0, for j1 6= j2,

with L(·) being the Lebesgue measure. We assume that Ωj are Lipschitz domains [44] and ∂Ωj are
piecewise C1. Let the set of curves {Γj : j = 1, 2, . . . , m̃} (see Figure 10), with smallest possible m̃,
be such that

(4.2)
⋃

j

Γj =
⋃

j

∂Ωj \ ∂Ω,

and for each j, Γj has exactly one domain of {Ωj} at each side (see Figure 10 for an illustration
of Γj and Ωj). We denote the two domains on each side of Γj as Ω+

j and Ω−
j . Obviously, Ω±

j ∈
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Figure 8. First row shows the original and the observed noisy and blurry images
with noise’s standard deviation = 2, 4, 6 respectively. The PSNRs of the observed
images are 23.9284, 23.7344 and 23.4290 respectively. Second row shows the
zoom-in views.

{Ωi : i = 1, 2, . . . ,m} for each j. Similarly, let the set of Lipschitz domains {Ωj,j̃ : j̃ = 1, 2, . . . ,mj}
be a partition of Ωj for each j = 1, . . . , m̃ and satisfies a similar condition as (4.1). Let {Γj,j̃ :

j̃ = 1, 2, . . . , m̃j} be the piecewise C1 boundary curves associated to {Ωj,j̃} that satisfy a similar

condition as (4.2). We denote the two domains on each side of Γj,j′ as Ω
+
j,j′ and Ω−

j,j′.

Now, we define the space of piecewise smooth functions (with jumps and first order hidden
jumps) as

H1,s({Ωj,j̃}) := {f ∈ L2(Ω) : ‖f‖H1,s({Ω
j,j̃

}) <∞},
where

‖f‖H1,s({Ωj,j̃}) :=
m∑

j=1


‖f‖H1(Ωj) +

mj∑

j̃=1

‖f‖
H

s
j,j̃ (Ωj,j̃)


 ,(4.3)

where s = min{sj,j̃} and sj,j̃ ≥ 2. Now, we have the following property of the space of piecewise
smooth functions.

Proposition 4.1. The space of piecewise smooth functions H1,s({Ωj,j̃}) ⊂ L2(Ω) is a Hilbert space

equipped with the inner product 〈·, ·〉Ω =
∑m

j=1〈·, ·〉Ωj
, with 〈u, v〉Ωj

=
∫
Ωj
uv.

Note that we shall drop the subscript in the inner products and simple use 〈·, ·〉 whenever the
domain of integration is clear in context.

Recall that, the trace operator T : H1(B) 7→ H
1
2 (∂B), for a general Lipschitz domain B ⊂ R2, is

a continuous linear operator (see e.g. [45,46]). The trace operator is defined on the dense subspace
C∞(B) ⊂ Hs(B) as: T(u) = u|∂B for u ∈ C∞(B). With the trace operator, we can define the
generalized integration by parts formula for functions in the Sobolev space Hs(B). Given 〈u,Div〉
for |i| ≥ 2, there exists multiple paths for integration by parts that can lead us to (−1)|i|〈Diu, v〉
plus boundary terms which depend on the specific path we take. Therefore, to be more precise
in our analysis, we introduce a notation, i.e. the index set Di, for the path we take when doing
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Figure 9. The three columns of images from left to right are the results of restored
u and estimated Γ from the observed images with noise level 2, 4, and 6 respectively.
Row one and two: restored images and their zoom-in views. The PSNRs of the
restored images are 24.5950, 24.3374 and 24.0700 respectively. Row three and
four: estimated jump sets and the their zoom-in views.

integration by parts of 〈u,Div〉. We define the set Di as

(4.4) Di := {jl < i : |jl| = l − 1; jl < jl+1; l = 1, 2, . . . , |i|}.
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Figure 10. Illustrations of domains Ωj and curves Γj.

Note that, for a given i, the set Di may not be uniquely defined. However, the integration by parts
formula given in Proposition 4.2 holds for any instance of Di. The vector nj = n1 if j = (1, 0)⊤

and nj = n2 if j = (0, 1)⊤ with n = (n1, n2)
⊤ being the outward normal of ∂B.

Example 4.1. The set Di indicates the type of differential operators that appears on u at the
boundary after the operation of integration by parts on 〈u,Diϕ〉. Here we provide a few examples.

(1) For i = (1, 0)⊤ or (0, 1)⊤: Di = {(0, 0)⊤}.
(2) For i = (1, 1)⊤:

Di = {(0, 0)⊤, (1, 0)⊤} or Di = {(0, 0)⊤, (0, 1)⊤}.
(3) For i = (2, 1)⊤:

Di = {(0, 0)⊤, (1, 0)⊤, (1, 1)⊤}, Di = {(0, 0)⊤, (0, 1)⊤, (1, 1)⊤}, or Di = {(0, 0)⊤, (1, 0)⊤, (2, 0)⊤}.

Proposition 4.2. Let u ∈ Hs(B) and ϕ ∈ Cs(B) with B ⊂ Ω a Lipschitz domain with piecewise
C1 boundary ∂B. Then, for any 1 ≤ |i| ≤ s, we have the following formula of integration by parts

〈u,Diϕ〉 =
∑

jl∈Di,1≤l≤|i|
(−1)l−1

∫

∂B
T(Djlu)Di−jl+1

ϕnjl+1−jlds+ (−1)|i|〈Diu, ϕ〉,

where T(·) is the trace operator defined on Hs(B).

Proof. Given any u ∈ Hs(B) and the sequence um ∈ C∞(B) such that um → u in Hs(B), we have

〈um,Diϕ〉 =
∑

jl∈Di,1≤l≤|i|
(−1)l−1

∫

∂B
T(Djlum)Di−jl+1

ϕnjl+1−jlds + (−1)|i|〈Dium, ϕ〉,

where T(Djlum) = (Djlum)|∂B . First of all, by Cauchy-Schwartz inequality, we have

|〈um,Diϕ〉 − 〈u,Diϕ〉| ≤ ‖um − u‖Hs(B)‖Diϕ‖L2(B),
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which implies that 〈um,Diϕ〉 → 〈u,Diϕ〉 as m → ∞. Similarly, we can prove that 〈Dium, ϕ〉 →
〈Diu, ϕ〉. It remains to show that for each l and jl ∈ Di, we have

∫

∂B
T(Djlum)Di−jl+1

ϕnjl+1−jlds→
∫

∂B
T(Djlu)Di−jl+1

ϕnjl+1−jlds.

Indeed, since T : H1(B) 7→ H
1
2 (∂B) is linear and bounded, and ∂B is of finite length, we have

∣∣∣∣
∫

∂B
T(Djlum)Di−jl+1

ϕnjl+1−jlds−
∫

∂B
T(Djlu)Di−jl+1

ϕnjl+1−jlds

∣∣∣∣
≤ ‖T(Djlum −Djlu)‖L2(∂B)‖Di−jl+1

ϕnjl+1−jl‖L2(∂B)

≤ ‖T(Djlum −Djlu)‖H 1
2 (∂B)

‖Di−jl+1
ϕnjl+1−jl‖L2(∂B)

≤ C‖Djl(um − u)‖H1(B)‖Di−jl+1
ϕnjl+1−jl‖L2(∂B)

≤ C‖um − u‖Hs(B)‖Di−jl+1
ϕnjl+1−jl‖L2(∂B).

This concludes the proof of the proposition. �

4.2. Variational Model for Image Restoration. In this subsection, we present a new vari-
ational model, which can be approximated by (3.2) (for any fixed jump set) under suitable as-
sumptions. From the variational model, one can clearly see that the discrete model (3.2) does
approximate piecewise smooth solutions of the underlying linear inverse problem. This subsection
focuses on the introduction of the variational model, while a detailed convergence analysis between
(3.2) and the variational model will be given in Section 5.

The continuum counterpart of the linear inverse problem (3.1) can be written as

(4.5) f = Au+ η,

where A is some linear bounded operator mapping L2(Ω) into itself. Here, and throughout the rest
of this paper, we assume that the solution u that we seek for is a piecewise smooth function in
H1,s({Ωj,j̃}) ⊂ L2(Ω). To obtain a piecewise smooth function as an approximated solution of the

linear inverse problem (4.5), we consider the following variational model

inf
u∈H1,s({Ωj,j̃}), {Γj}, {Γj,j̃}

‖ν ·Du‖22 +
m̃∑

j=1

[
µ1

∫

Γj

∣∣∣T+
j (u)− T

−
j (u)

∣∣∣ ds

+ µ2

m̃j∑

j̃=1

∫

Γj,j̃


∑

|i|=1

∣∣∣T+
j,j̃
(Diu)− T

−
j,j̃
(Diu)

∣∣∣
2




1
2

ds

]
+

1

2
‖Au− f‖2L2(Ω),

(4.6)

where

‖ν ·Du‖22 :=
m∑

j=1


ν1

∑

|ij |=1

‖Diju‖2L2(Ωj)
+ ν2

mj∑

j̃=1




∑

1≤|ij,j̃ |≤sj,j̃

‖Dij,j̃
u‖2L2(Ωj,j̃)




 ,

and T
±
j,j̃

is the trace operator defined for Hsj,j̃(Ω±
j,j̃
). Note that by definition of the curves {Γj}

and {Γj,j̃}, they are (part of the) boundaries of {Ωj} and {Ωj,j̃} respectively. Therefore, the sets

{Ωj} and {Γj} (resp. {Ωj,j̃} and {Γj,j̃}) are in direct correspondence to each other.

Remark 4.1. The variational model (4.6) is related, but more general than the Mumford-Shah
model [1] in a certain sense. Recall the Mumford-Shah functional

E(u,Γ) = ν

∫

Ω\Γ
|∇u|2 + µ|Γ|+ 1

2
‖u− f‖2L2(Ω),

where |Γ| denotes the length of Γ. Then, we can see that:
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(1) The variational model (4.6) has a more general regularization term (i.e. ‖Du‖22) than that
used by Mumford-Shah model.

(2) The term
∫
Γ
j,j̃

(∑
|i|=1

∣∣∣T+
j,j̃
(Diu)− T

−
j,j̃
(Diu)

∣∣∣
2
) 1

2

ds that measures the size of the first

order hidden jumps of u at Γ is not considered in the Mumford-Shah model. Hidden jumps
are also important image features and a proper recovery of them will help with the quality
of image restoration.

(3) We have a general image restoration problem embedded in the term 1
2‖Au− f‖2L2(Ω), while

Mumford-Shah model only has 1
2‖u− f‖2L2(Ω) (denoising).

(4) When we take D = ∇, ν = ν µ1 = µ µ2 = 0 and A = I, the variational model (4.6) reduces
to

(4.7) inf
u∈H1,s({Ωj,j̃}), {Γj}

ν‖∇u‖22 + µ
m̃∑

j=1

‖vj(u)‖L1(Γj) +
1

2
‖u− f‖2L2(Ω),

where vj(u) = T
+
j (u)− T

−
j (u) which represents the jump function of u on Γj. Let ‖v‖L0(Γ)

denote the measure of the length of support of v on Γ. Then we can see that, if we replace
the term ‖vj(u)‖L1(Γj) by ‖vj(u)‖L0(Γj ), the energy function of (4.7) becomes the Mumford-
Shah functional. In other words, our model penalizes the jump values of the image on the
jump set instead of the length of the jump set, which is more suitable for image restoration.
In addition, the L1-minimization is easier to compute than the L0-minimization. When
‖ · ‖L0 is chosen instead of ‖ · ‖L1 in (4.7), the computation result will be highly sensitive
to the estimation of the support set of vj(u), and normal numerical algorithms such as
Algorithm 3.3 may easily stuck at an unfavorable local minimum. This explains why our
proposed model has significant computational advantage over the Mumford-Shah model.

(5) When finite difference method is used to discretize the Mumford-Shah model, the relation
between the discrete and the continuum functionals was established in [24, 47] through
Gamma-convergence. Their work seems related to ours. However, the analysis here is
entirely different from that of [24, 47]. Furthermore, the model given here is more general
and complex than Mumford-Shah model; the discrete model is much more sophisticated
and has shown in [22,23] to be superior than some standard finite difference discretization.

In Section 5, relations between the discrete model (3.2) and the variational model (4.6) will be
established through an asymptotic analysis as the image resolution goes to infinity. This leads to
the conclusion that images are indeed modeled as piecewise smooth functions when model (3.2) is
used. Furthermore, this also implies that the discrete model (3.2) can be used to obtain approximate
solution of the variational model (4.6).

5. Asymptotic Analysis

This section is devoted to establish the assertion that the image restoration model (3.2) assumes
that the underlying solutions are piecewise smooth functions. This is established by an asymptotic
analysis as the image resolution goes to infinity. In particular, we will show that, under suitable
assumptions and as the image resolution going to infinity, the energy functional of (3.2) converges
to the variational model (4.6) for some fixed jump set {Γj} and {Γj,j̃} if the parameters of (3.2)
are properly chosen. Consequently, through such convergence, we can draw connections between
the discrete (approximated) solutions of (3.2) with those of the variational model for some fixed
jump set.

The reason that we only consider the case with fixed jump set, is because it makes the analysis
possible, which is already very technical. This is also justified by the facts that the jump set
can be robustly estimated by wavelet frame transform numerically due to multiscale structure of
wavelet frames and their multiple orders of vanishing moments. Recall that the major purpose of
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the introduction of (4.6) is to support our claim that the discrete model (3.2) is to find piecewise
smooth solutions of the linear inverse problem in discrete setting, and thus, analyzing (4.6) with
the jump set fixed is sufficient for such purpose. Therefore, this section is focused on studying the
relation between the following discrete and continuum models, for fixed Γ:

(5.1) inf
u∈I2

‖[λ ·Wu]
Γc‖22 + ‖[γ ·Wu]

Γ
‖1 +

1

2
‖Au− f‖22, (discrete)

inf
u∈H1,s({Ω

j,j̃
})

‖ν ·Du‖22 +
m̃∑

j=1

[
µ1

∫

Γj

∣∣∣T+
j (u)− T

−
j (u)

∣∣∣ ds

+ µ2

m̃j∑

j̃=1

∫

Γ
j,j̃


∑

|i|=1

∣∣∣T+
j,j̃
(Diu)− T

−
j,j̃
(Diu)

∣∣∣
2




1
2

ds

]
+

1

2
‖Au− f‖2L2(Ω),

(continuum)

(5.2)

5.1. Wavelet Frame Based Model: Revisited. For convenience, we introduce some symbols
and notation that will be used throughout the rest of the paper. In particular, it will be helpful in
precisely stating the assumptions we make to the wavelet frame based model (5.1) so that it can
be proved to converge to the variational model (5.2).

Notation 5.1. We focus our analysis on R2, i.e., the 2-dimensional cases. All the 2-dimensional
refinable functions and framelets are assumed to be constructed by tensor products of univariate
B-splines and the associated framelets obtained from the UEP [25].

(1) We assume all functions we consider are defined on the open unit square Ω := (0, 1)2 ⊂ R2,
and that their discrete versions, i.e. digital images, are defined on an N ×N Cartesian grid
on Ω̄ with N = 2n + 1 for n ≥ 0. We denote by h = 2−n the meshsize of the N ×N grid.

(2) We use bold-face letters i, j, and k to denote double indices in Z2. We denote by O2 :=
{0, 1, . . . , N − 1}2 as the set of indices of the N ×N Cartesian grid.

(3) For 2-dimensional cases, φn,k (also ϕn,k and ψn,k, etc.) takes the form

φn,k = 2nφ(2n · −k).

Since we focus on the quasi-affine system, we have

φn−1,k = 2n−2φ(2n−1 · −k/2).

(4) For simplicity, we assume that the level of wavelet frame decomposition is 1, i.e. L = 1. In
that case, we have

Wu = {Wiu : 0 ≤ i1, i2 ≤ r}, Wiu := ai[−·]⊛ u, with u ∈ R
M2
.

Recall that the wavelet frame bands (high frequency bands) is denoted as B = {i : 0 ≤
i1, i2 ≤ r} \ {0}. Let

B1 := {(1, 0), (0, 1)}, B2 := {(1, 1), (2, 0)(0, 2)}, etc,

where Bl denotes the wavelet frame bands corresponding to the framelets of vanishing
moment l.

(5) We shall divide the index set O2 into different subsets, where each of them plays a specific
role of characterizing the locations of jumps and hidden jumps, or smooth regions. The
supports of φ and the framelets ψi are important in properly defining these index sets.
We denote Λn,k the intersection of the supports of φn,k and ψi,n,k for all i ∈ B. Note
that for the tensor-product B-spline wavelet frame systems constructed in [25], we have
suppφn,k = suppψi,n,k for each i ∈ B. Therefore, the support Λn,k is the common support
of both the refinable function and the framelets. Although this property will be used in the
proofs, it is not essential and can be easily removed.
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(6) Given a wavelet frame system and its corresponding refinable function φ, we denote M2

the set of indices k ∈ O2 such that Λn,k is completely supported in Ω. Then obviously,

M2 ⊂ O2. We denote the set of sequences defined on the grids M2 as RM2
with M2 the

cardinality of M2.
(7) We denote K2 ⊂ M2 as the index set when the boundary condition of ai[−·]⊛u is inactive

for all i, or in other words, ai[−·] ∗ u is well defined for all i, where “∗” is the standard

discrete convolution operator. Let K2 be the cardinality of K2. Then Wi : R
M2 7→ RK2

for
each (0, 0) ≤ i ≤ (r, r). Note that the index sets O2, M2 and K2 all depend on the image
resolution n.

(8) Given a partition {Ωj} of Ω satisfying (4.1) and its associated boundary curves {Γj}, we
define M2

j ⊂ M2 to be the index set such that Λn,k ⊂ Ωj. Define G2
j ⊂ K2 to be the index

set such that the interior of Λn−1,k has a nonempty intersect with Γj and has an empty
intersection with all Γj′ for j

′ 6= j. The latter requirement of G2
j is to exclude index k such

that Λn−1,k include a multi-junction in its interior. For simplicity, we use Γj ∩ Λn−1,k 6= ∅
to denote that the interior of Λn−1,k has a nonempty intersect with Γj. Similar to the
definition of K2, we can define the index sets K2

j ⊂ M2
j be such that the boundary condition

of ai[−·]⊛ u, for u ∈ R
M2

j , is inactive for all i.
(9) Similarly, given a partition {Ωj,j̃} of Ωj satisfying (4.1) and its associated boundary curves

{Γj,j̃} for each j = 1, . . . , m̃, we define M2
j,j̃

⊂ M2
j to be the index set such that Λn−1,k ⊂

Ωj,j̃. Define G2
j,j̃

⊂ K2
j to be the index set such that the interior of Λn−1,k has a nonempty

intersect with Γj,j̃ and has an empty intersection with all Γj,j̃′ for j̃
′ 6= j̃. We define the

index sets K2
j,j̃

⊂ M2
j,j̃

be such that the boundary condition of ai[−·]⊛ u, for u ∈ R
M2

j,j̃ , is

inactive for all i.
(10) In order to link the continuous and discrete settings, we need to take resolution into account.

Therefore, for any array v ∈ RM2
, the discrete ℓp-norm we are using now is defined as

(5.3) ‖v‖pp :=
∑

i∈M2

|v[i]|p h2.

Given a partition {Ωj,j̃} of the domain Ω and the associated boundary curves {Γj,j̃}, if we assume

that both {Ωj,j̃} and {Γj,j̃} are known and fixed, and if we only consider the second order band B2

for the term ‖[γ ·Wu]
Γ
‖1, then (5.1) can be explicitly written as:

inf
u∈RM2

m∑

j=1



∥∥∥[λj ·Wu]Ωj

∥∥∥
2

2
+

m′∑

j̃=1

∥∥∥∥
[
λ̃j,j̃ ·Wu

]
Ωj,j̃

∥∥∥∥
2

2




+
m̃∑

j=1



∥∥∥[γj ·Wu]Γj

∥∥∥
1
+

m̃j∑

j̃=1

∥∥∥∥
[
γ̃j,j̃ ·Wu

]
Γj,j̃

∥∥∥∥
1


+

1

2
‖Au− f‖22,

(5.4)

where
∥∥∥[λj ·Wu]Ωj

∥∥∥
2

2
:= h2

∑

k∈K2
j

∑

i∈B
λi,j[k]

∣∣∣∣(Wn,iu)[k]

∣∣∣∣
2

,

∥∥∥[γj ·Wu]Γj

∥∥∥
1
:= h

∑

k∈G2
j


∑

i∈B1

γi,j[k]

∣∣∣∣(Wn,iu)[k]

∣∣∣∣
2



1
2

,
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∥∥∥∥
[
λ̃j,j̃ ·Wu

]
Ω

j,j̃

∥∥∥∥
2

2

:= h2
∑

k∈K2
j,j̃

∑

i∈B
λ̃i,j,j̃[k]

∣∣∣∣(Wn,iu)[k]

∣∣∣∣
2

and

∥∥∥∥
[
γ̃j,j̃ ·Wu

]
Γ
j,j̃

∥∥∥∥
1

:= h
∑

k∈G2
j,j̃


∑

i∈B2

γ̃i,j,j̃[k]

∣∣∣∣(Wn,iu)[k]

∣∣∣∣
2



1
2

.

Here, we recall that

B1 = {(1, 0), (0, 1)} and B2 = {(1, 1), (2, 0), (0, 2)}.

In the next subsection, we will show that the wavelet frame based model (5.4) is related to the
variational model (5.2) in the sense that the energy function of (5.4) convergence to the energy func-
tional of (5.2). The specific type of convergence we establish implies Gamma-convergence. More
importantly, based on such convergence, the approximated solutions of (5.4) can be shown to ap-
proximate those of (5.2). Therefore, we can regard (5.4) as a certain discretization of the variational

model (5.2). We finally note that the use of wavelet frame band B1 in the term
∥∥∥[γj ·Wu]Γj

∥∥∥
1
is

to approximate the jumps of function values across Γj , and the use of wavelet frame band B2 in

the term

∥∥∥∥
[
γ̃j,j̃ ·Wu

]
Γj,j̃

∥∥∥∥
1

is to approximate the jumps of the values of the first order derivatives

across Γj,j̃. The model (5.1) is in fact more general than (5.4) since it contains bands other than

B1 and B2. We can apply a similar analysis to show that (5.4) converges to a variational model
similar to (5.2) with higher order hidden jumps. However, we shall focus on jumps and first order
hidden jumps for our theoretical analysis, i.e. we focus on the relation between (5.4) and (5.2).

5.2. Connection between Model (5.4) and Model (5.2). To find a connection between (5.4)
and (5.2), we need to convert (5.4) to another equivalent optimization problem on the function
space H1,s({Ωj,j̃}). Define the operator Tn on the space L2(Ω) as

(5.5) Tnu = {2n〈u, φn,k〉 : k ∈ M
2} ∈ R

M2
, u ∈ L2(Ω).

Then the optimization problem (5.4) is equivalent to the following one

(5.6) inf
u∈H1,s({Ωj,j̃})

En(u),

where

En(u) =

m∑

j=1



∥∥∥[λj ·WnTnu]Ωj

∥∥∥
2

2
+

m′∑

j̃=1

∥∥∥∥
[
λ̃j,j̃ ·WnTnu

]
Ω

j,j̃

∥∥∥∥
2

2




+

m̃∑

j=1



∥∥∥[γj ·WnTnu]Γj

∥∥∥
1
+

m̃j∑

j̃=1

∥∥∥∥
[
γ̃j,j̃ ·WnTnu

]
Γj,j̃

∥∥∥∥
1


+

1

2
‖AnTnu− Tnf‖22.

where the subscript “n” of Wn and An is to emphasize the dependence of the operators on image
resolution level n. The equivalence between (5.4) and (5.6) can be shown similarly as [22, Propo-
sition 3.1]. The equivalence is in the sense that (5.4) and (5.6) have the same infimum value, and
the minimizers, should they exist, can be constructed from each other (see [22, Proposition 3.1] for
details).
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Therefore, we can focus on analyzing the relation between the energy functional of (5.2) and
that of (5.6). We denote the energy functional of (5.2) as

E(u) := ‖ν ·Du‖22 + µ1

m̃∑

j=1

∫

Γj

∣∣∣T+
j (u)− T

−
j (u)

∣∣∣ ds

+ µ2

m̃∑

j=1

m̃j∑

j̃=1

∫

Γj,j̃


∑

|i|=1

∣∣∣T+
j,j̃
(Diu)− T

−
j,j̃
(Diu)

∣∣∣
2




1
2

ds+
1

2
‖Au− f‖2L2(Ω)

=: E(1)(u) + E(2)(u) + E(3)(u) + E(4)(u)

and

En(u) =

m∑

j=1



∥∥∥[λj ·WnTnu]Ωj

∥∥∥
2

2
+

m′∑

j̃=1

∥∥∥∥
[
λ̃j,j̃ ·WnTnu

]
Ωj,j̃

∥∥∥∥
2

2




+

m̃∑

j=1

∥∥∥[γj ·WnTnu]Γj

∥∥∥
1
+

m̃∑

j=1

m̃j∑

j̃=1

∥∥∥∥
[
γ̃j,j̃ ·WnTnu

]
Γ
j,j̃

∥∥∥∥
1

+
1

2
‖AnTnu− Tnf‖22.

=: E(1)
n (u) + E(2)

n (u) + E(3)
n (u) + E(4)

n (u).

Without loss of generality, we take µ1 = µ2 = 1 and ν = (1, 1) for E(u). To draw an asymptotic
relation between En and E, we need some proper assumption on An, which needs to be a proper
discretization of the operator A. The assumption we need is given as follows

(5.7) lim
n→∞

‖TnAu−AnTnu‖ = 0 for all u ∈ L2(Ω),

where A : L2(Ω) 7→ L2(Ω) is a continuous linear operator. Note that operator A that corresponds
to image denoising, deblurring and inpainting indeed satisfies the above assumption [22].

The first relation between the wavelet frame based model (5.6) (equivalently (5.4)) and the vari-
ational model (5.2) is given by the following Theorem 5.1, which shows the pointwise convergence
of En(u) to E(u) for each u. The proof of this theorem is technical and will be presented in a later
part of this section.

Theorem 5.1. (Pointwise Convergence) Given any tensor-product B-spline wavelet frame system
and its associated energy functional En(u) and assuming that (5.7) is satisfied, then, with proper

choices of the parameters {λj}, {γj}, {λ̃j,j̃} and {γ̃j,j̃},
lim
n→∞

En(u) = E(u) for every u ∈ H1,s({Ωj,j̃}).

If we assume that Theorem 5.1 is true, we can further show that the sequence En is equicontin-
uous.

Proposition 5.1. Given any tensor-product B-spline wavelet frame system and its associated en-
ergy functional En(u) with proper choices of the parameters {λj}, {γj}, {λ̃j,j̃} and {γ̃j,j̃}, and

assuming that (5.7) is satisfied, then for an arbitrary u ∈ H1,s({Ωj,j̃}) and any ǫ > 0, there

exist an integer N and δ > 0 (independent of n) such that for all v ∈ H1,s({Ωj,j̃}) satisfying

‖u− v‖H1,s({Ωj,j̃}) < δ and n > N , we have |En(v)− En(u)| < ǫ.

Proof. Note that the property that needs to be shown for E
(1)
n (u) and E

(4)
n (u) follows from [22,

Proposition 3.2] if the parameters {λj} and {λ̃j,j̃} are properly chosen. In addition, the proof of

E
(3)
n is entirely analogous to that of E

(2)
n . Therefore, we shall skip the repeated proof and focus on

the proof of E
(2)
n .
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Define the space ℓ⋆1(Z) := {b : ‖b‖⋆1 < +∞} with

‖b‖⋆1 =
∑

k∈Z


∑

i∈B1

|bi[k]|2



1
2

,

which can be regarded as a finite tensor of the space of all absolute summable sequences on Z. By

the definition of ℓ1-norm for E
(2)
n (5.6) (except now the sequence is on Z instead of Z2), we have

‖b‖1 =
∑

k∈Z


∑

i∈B1

|bi[k]|2



1
2

2−n.

Since for any given n and v ∈ H1,s({Ωj,j̃}), and for each j = 1, 2, . . . , m̃, we have [γj ·WnTnv]Γj
∈

ℓ⋆1(Z) and

‖2−n [γj ·WnTnv]Γj
‖⋆1 = ‖ [γj ·WnTnv]Γj

‖1.
Since Tn is a bounded linear operator on L2(Ω) and Wn is a linear operator on a finite dimensional
space, then we have

‖2−nλn ·WnTnv‖⋆1 ≤ Cn‖v‖L2(Ω) ≤ C̃n‖v‖H1,s({Ωj,j̃}).

This shows that

2−n [γj ·WnTn(·)]Γj
: H1,s({Ωj,j̃}) 7→ ℓ⋆1(Z)

is a bounded linear operator. In addition, for any fixed v ∈ H1,s({Ωj,j̃}), Theorem 5.1 gives us

∥∥∥[γj ·WnTnv]Γj

∥∥∥
1
→
∫

Γj

∣∣∣T+
j (v)− T

−
j (v)

∣∣∣ ds,

if the parameters {γj} are properly chosen. Therefore,

sup
n

‖2−n [γj ·WnTnv]Γj
‖⋆1 = sup

n
‖ [γj ·WnTnv]Γj

‖1 < +∞

for every v ∈ H1,s({Ωj,j̃}). By applying the uniform boundedness principle, we get

sup
n

‖2−n [γj ·WnTnv]Γj
‖op ≤ Cj ,

where ‖ · ‖op stands for the operator norm and Cj is a constant independent of n. Then,

|E(2)
n (u)− E(2)

n (v)| =

∣∣∣∣∣∣

∥∥∥∥∥∥

m̃∑

j=1

[γj ·WnTnu]Γj

∥∥∥∥∥∥
1

−

∥∥∥∥∥∥

m̃∑

j=1

[γj ·WnTnv]Γj

∥∥∥∥∥∥
1

∣∣∣∣∣∣

≤
m̃∑

j=1

∥∥∥[γj ·WnTn(u− v)]Γj

∥∥∥
1
=

m̃∑

j=1

∥∥∥2−n [γj ·WnTn(u− v)]Γj

∥∥∥
⋆

1

≤C‖u− v‖H1,s({Ω
j,j̃

}),

with C =
∑m̃

j=1Cj. This implies that E
(2)
n is Lipschitz continuous with Lipschitz constant inde-

pendent of n. Therefore, by choosing N = 1 and δ = ǫ/C, we shall have the desired property for

E
(2)
n . �

With Theorem 5.1 and Proposition 5.1, we can show that the convergence of En to E is
stronger than merely pointwise. A direct consequence of such stronger convergence is the Gamma-
convergence of En to E in H1,s({Ωj,j̃}). These results are summarized by Theorem 5.2. We shall
first recall the definition of Gamma-convergence, followed by the statement of Theorem 5.2.
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Definition 5.1. Given En(u) : H1,s({Ωj,j̃}) 7→ R̄ and E(u) : H1,s({Ωj,j̃}) 7→ R̄, we say that En

Gamma-converges to E if:

(i) for every sequence un → u in H1,s({Ωj,j̃}), E(u) ≤ lim infn→∞En(un);

(ii) for every u ∈ H1,s({Ωj,j̃}), there is a sequence un → u in H1,s({Ωj,j̃}), such that

E(u) ≥ lim supn→∞En(un).

Theorem 5.2. Given any tensor-product B-spline wavelet frame system and its associated energy
functional En(u) (5.6) and assuming that (5.7) is satisfied, then, with proper choices of the param-

eters {λj}, {γj}, {λ̃j,j̃} and {γ̃j,j̃}, we have limn→∞En(un) = E(u) for every sequence un → u in

H1,s({Ωj,j̃}). Consequently, En Gamma-converges to E in H1,s({Ωj,j̃}).
The proof of Theorem 5.2 follows similarly as in [22, Theorem 3.2] provided that the following

Theorem 5.1 and Proposition 5.1 are established. We postpone the more technical proof of Theorem
5.1 to the latter part of this section. Also, when we say “with properly chosen parameters {λj},
{γj}, {λ̃j,j̃} and {γ̃j,j̃}”, the exact meaning of it will be revealed by the proof of Theorem 5.1. In

particular, the choices of {γj} and {γ
j,j̃

} are given in the proof of Lemma 5.2.

In numerical computations, the task is to find an approximate minimizer, i.e., the one on which
the value of the corresponding objective functional is close to its infimum. We say that u⋆ is an
ǫ-optimal solution to a given objective functional E if

(5.8) E(u⋆) ≤ inf
u
E(u) + ǫ, for some ǫ > 0.

We say that u⋆ is a minimizer of E if E(u⋆) = infuE(u). It is clear that ǫ-optimal solutions of E
and En always exist because each of them has an infimum. In this paper, whenever we say that
u⋆ is an approximate minimizer of E we mean that u⋆ is an ǫ-optimal solution to E with some
sufficiently small ǫ. In other words, E(u⋆) is very close to inf E.

The main task for both the variational and wavelet frame based approaches for image restoration
is to find sparse approximate solutions in transform domains. These solutions are usually those at
which the underlying objective functionals assume smaller values. The actual minimizers for either
variational or wavelet frame based models are not the focus here. This is because in numerical
computations, exact minimizers are usually difficult and, in fact, unnecessary to find. Indeed, most
of the numerical algorithms solving these models are iterative in nature and the minimizer is only
attained when the iteration goes to infinity. Therefore, in practice, we have to stop at a finite
iteration, which inevitably leads to an approximate solution.

Since En pointwise converges to E by Theorem 5.1, it is natural to use En as a discrete approxi-
mation of E. Then it is natural to ask whether the approximate solutions to E can be approximated
by those to En in some proper sense. The following corollary answers this question, which follows
from Theorem 5.2.

Corollary 5.1. Suppose the assumptions of Theorem 5.2 are satisfied. Let u⋆n be an ǫ-optimal
solution of En for a given ǫ > 0 and for all n.

(1) We have

(5.9) lim sup
n→∞

En(u
⋆
n) ≤ inf

u
E(u) + ǫ.

In particular, when u⋆n is a minimizer of En, we have

lim sup
n→∞

En(u
⋆
n) ≤ inf

u
E(u).

(2) If, in addition, the set {u⋆n} has a cluster point u⋆, then u⋆ is an ǫ-optimal solution to E.
In particular, when u⋆n is a minimizer of En and u⋆ a cluster point of the set {u⋆n}, then

E(u⋆) = lim sup
n→∞

(En(u
⋆
n)) = inf

u
E(u)

and u⋆ is a minimizer of E.
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Proof. Part (1): For any u ∈ H1,s({Ωj,j̃}), let {un} be the sequence as given in item (ii) of the
definition of Γ-convergence. Then, we have

E(u) ≥ lim sup
n→∞

En(un) ≥ lim sup
n→∞

(
inf
u
En(u)

)
≥ lim sup

n→∞
En(u

⋆
n)− ǫ,

which implies (5.9).
Part (2): If u⋆ is a cluster point of {u⋆n}, let {u⋆nk

} be a subsequence of {u⋆n} such that u⋆nk
→ u⋆

in H1,s({Ωj,j̃}) as k → ∞. Then by item (i) of the definition of Γ-convergence, we have

E(u⋆) ≤ lim inf
k→∞

Enk
(u⋆nk

) ≤ lim sup
k→∞

Enk
(u⋆nk

) ≤ lim sup
n→∞

En(u
⋆
n) ≤ inf

u
E(u) + ǫ,

where the last inequality follows from (5.9). This shows that u⋆ is an ǫ-optimal solution to E. �

5.3. Proof of Theorem 5.1. To prove Theorem 5.1, we show that E
(q)
n (u) → E(q)(u) for each

u ∈ H1,s({Ωj,j̃}) and q = 1, 2, 3, 4. Note that the convergence E
(4)
n (u) → E(4)(u) for every u ∈ L2(Ω)

is guaranteed by [22, Lemma 3.2] under assumption (5.7). Therefore, we focus on the convergence

of E
(q)
n (u) → E(q)(u) for each u ∈ for q = 1, 2, 3.

5.3.1. Convergence of E
(1)
n → E(1). We first recall the following approximation lemma from [22].

Lemma 5.1. ( [22, Lemma 4.1]) Let ϕ and ϕ̃ be two compactly supported bounded functions
satisfying

∫
R2 ϕdx = 1 and

∫
R2 ϕ̃dx = 1. In addition, we assume that ϕ satisfies the partition of

unity, i.e.
∑

j∈Z2 ϕ(·+ j) = 1. Let S2 be the index set for k such that ϕn,k is completely supported

in B with B ⊂ Ω an open Lipschitz domain whose boundary ∂B is piecewise C1. In addition, we
assume that the support of ϕ is contained within the support of ϕ̃. Then, for any u ∈ Lp(B), for
1 ≤ p ≤ ∞, we have

(5.10) lim
n→∞

∥∥∥∥∥∥
u−

∑

k∈S2
〈u, ϕ̃n,k〉ϕn,k

∥∥∥∥∥∥
Lp(B)

= 0.

Remark 5.1. In [22], the domain B is taken to be (0, 1)2. However, the proof of [22, Lemma 4.1]
stays the same when B satisfies the assumptions in Lemma 5.1.

Recall that

E(1)(u) =
m∑

j=1


 ∑

|ij|=1

‖Diju‖2L2(Ωj)
+

mj∑

j̃=1


 ∑

1≤|i
j,j̃

|≤s
j,j̃

‖Di
j,j̃
u‖2L2(Ωj,j̃

)




 ,

and

E(1)
n (u) =

m∑

j=1



∥∥∥[λj ·WnTnu]Ωj

∥∥∥
2

2
+

mj∑

j̃=1

∥∥∥∥
[
λ̃j,j̃ ·WnTnu

]
Ωj,j̃

∥∥∥∥
2

2


 .

To show that for each u ∈ H1,s({Ωj,j̃}), E
(1)
n (u) → E(1)(u) as n→ ∞, it suffices to show

(5.11)

∥∥∥∥
[
λ̃j,j̃ ·WnTnu

]
Ω

j,j̃

∥∥∥∥
2

2

→
∑

1≤|ij,j̃ |≤sj,j̃

‖Dij,j̃
u‖2L2(Ωj,j̃)

, for each j and j̃,

with a properly chosen λ̃j,j̃. Since the proof is identical for every j and j̃, for simplicity of notation,

we drop the subscripts “j, j̃” in (5.11) and switch Ωj,j̃ to some generic domain B ⊂ (0, 1)2 satisfying
the assumption in Lemma 5.1. Then, we consider the convergence

(5.12) ‖[λ ·WnTnu]B‖22 →
∑

1≤|i|≤s

‖Diu‖2L2(B), for each u ∈ Hs(B)
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with a properly chosen λ = {λi : i ∈ B}. The proof of (5.12) is similar to that of [22, Lemma
3.3], except that: (1) the ℓ1-norm of the wavelet frame coefficients and the L1-norm of Diu was
used in [22]; (2) the domain B was taken as B = (0, 1)2 in [22]. For completeness of this paper, we
present a detailed proof here.

Consider

‖[λ ·Wu]B‖22 = h2
∑

k∈K2

∑

i∈B
λi[k]

∣∣∣∣(Wn,iu)[k]

∣∣∣∣
2

= h2
∑

k∈K2



∑

i∈I
λi
∣∣(ai[−·] ∗ Tnu)[k]

∣∣2 +
∑

j∈J
λj
∣∣(aj [−·] ∗ Tnu)[k]

∣∣2

 ,

where we have dropped the subscript “j, j̃” of K2
j,j̃

as well. From now on, the index set M2 ⊂ O2

is such that Λn,k is completely supported in B, and K2 ⊂ M2 is such that the boundary condition
of ai[−·]⊛ u is inactive for all i. We define the index sets I and J as

I := {i : Di is in D} and J := B \ I.
Note that we may choose λj = 0 for j ∈ J and the proof will be simpler. However, as shown in [22,23]
that having inactive wavelet frame bands J in the system is beneficial in image restoration, or in
other words, it makes a better discretization of Du.

Given a system of tensor-product B-spline wavelet frame system Ψ = {ψi : i ∈ B}, there exists
an si-differentiable function ϕi for each i ∈ B with ci =

∫
R2 ϕidx 6= 0 such that Diϕi = ψi and ϕi

has the same support as ψi (see [22] for more details). Same as in [22], the parameter λ needs to

be properly chosen. We choose λ0,0 = 0. For every i ∈ I, we set λi =
1
ci
22si(n−1). For every j ∈ J,

we set 0 ≤ λj ≤ O
(
22sj′ (n−1)

)
for some j ′ ∈ B ∪ {0} such that 0 ≤ j ′ < j and sj′ ≤ s.

Let us first show (5.12) when J = ∅. Note that Diϕi = ψi implies

Diϕi,n−1,k = 2(si+1)(n−1)−1ψi(2
n−1 · −k/2) = 2si(n−1)ψi,n−1,k.

Since ϕi is smooth and compactly supported and both ψi,n−1,k and ϕi,n−1,k are supported on B
for k ∈ K2, according to the definition of weak derivatives, we have

〈Diu, ϕi,n−1,k〉 = (−1)si〈u,Diϕi,n−1,k〉 = (−1)si2si(n−1)〈u, ψi,n−1,k〉 for k ∈ K
2.

Notice that

λi (ai[−·] ∗ Tnu) [k] = λi
∑

j∈Si+k

ai[j − k](Tnu)[j] = 2nλi
∑

j∈Si+k

ai[j − k]〈u, φn,j〉

= 2nλi〈u,
∑

j∈Si+k

ai[j − k]φn,j〉 = 2nλi〈u, ψi,n−1,k〉,

where Si is the support of the filter ai. Thus,

λi|(ai[−·] ∗ Tnu)[k]|2 = 22n
1

ci
22si(n−1)|〈u, ψi,n−1,k〉|2,

and hence

‖λn ·WnTnu‖22 = h2
∑

k∈K2

∑

i∈I
λi|(ai[−·] ∗ Tnu)[k]|2

=
∑

k∈K2

∑

i∈I
|〈Diu,

1

ci
ϕi,n−1,k〉|2.

Let ✷k be the rectangular domain ( k12n ,
k1+1
2n ]× ( k22n ,

k2+1
2n ] where k = (k1, k2). Since ✷k ⊂ Λn,k, we

have ✷k ⊂ B for all k ∈ K2. Note that for any a, b, c ≥ 0, we have the inequality |
√
a+ b−√

c| ≤
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|√a−√
c|+

√
b. Then, we have

|‖Du‖2 − ‖λn ·WnTnu‖2|

=

∣∣∣∣∣∣∣


∑

k∈K2

∫

✷k

∑

i∈I
|Diu|2dx+

∫

B\∪
k∈K2✷k

∑

i∈I
|Diu|2dx




1
2

−


∑

k∈K2

∑

i∈I
|〈Diu,

1

ci
ϕi,n−1,k〉|2




1
2

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣



∑

k∈K2

∫

✷k

∑

i∈I
|Diu|2dx




1
2

−



∑

k∈K2

∑

i∈I
|〈Diu,

1

ci
ϕi,n−1,k〉|2




1
2

∣∣∣∣∣∣∣
+

(∫

B\∪
k∈K2✷k

∑

i∈I
|Diu|2dx

) 1
2

=

∣∣∣∣∣∣∣



∑

k∈K2

∑

i∈I

∫

✷k

|Diu|2dx




1
2

−



∑

k∈K2

∑

i∈I

∫

✷k

|2n〈Diu,
1

ci
ϕi,n−1,k〉|2dx




1
2

∣∣∣∣∣∣∣
+

(∫

B\∪
k∈K2✷k

∑

i∈I
|Diu|2dx

)1
2

≤


∑

k∈K2

∑

i∈I

∫

✷k

∣∣∣∣Diu− 2n〈Diu,
1

ci
ϕi,n−1,k〉

∣∣∣∣
2



1
2

+

(∫

B\∪
k∈K2✷k

∑

i∈I
|Diu|2dx

)1
2

.

(5.13)

It is easy to show that limn→∞ L(B \ ∪k∈K2✷k) = 0. Therefore,

(∫

B\∪
k∈K2✷k

∑

i∈I
|Diu|2dx

) 1
2

→ 0 as n→ ∞.

It remains to show that


∑

k∈K2

∑

i∈I

∫

✷k

∣∣∣∣Diu− 2n〈Diu,
1

ci
ϕi,n−1,k〉

∣∣∣∣
2



1
2

→ 0 as n→ ∞.

Let S2 ⊂ O2 be the index set of k such that ✷k is completely supported in B. Since K2 ⊂ S2, we
have

(
∑

k∈K2

∑

i∈I

∫

✷k

∣∣∣∣Diu− 2n〈Diu,
1

ci
ϕi,n−1,k〉

∣∣∣∣
2
) 1

2

≤
(
∑

k∈S2

∑

i∈I

∫

✷k

∣∣∣∣Diu− 2n〈Diu,
1

ci
ϕi,n−1,k〉

∣∣∣∣
2
) 1

2

=


∑

i∈I

∫

B

∣∣∣∣∣∣
Diuχ∪

k∈S2✷k
−
∑

k∈S2
2n〈Diu,

1

ci
ϕi,n−1,k〉χ✷k

∣∣∣∣∣∣

2

dx




1
2

≤
∑

i∈I

∥∥∥∥∥∥
Diuχ∪

k∈S2✷k
−
∑

k∈S2
2n〈Diu,

1

ci
ϕi,n−1,k〉χ✷k

∥∥∥∥∥∥
L2(B)

≤
∑

i∈I



∥∥∥Diuχ∪

k∈S2✷k
−Diu

∥∥∥
L2(B)

+

∥∥∥∥∥∥
Diu−

∑

k∈S2
2n〈Diu,

1

ci
ϕi,n−1,k〉χ✷k

∥∥∥∥∥∥
L2(B)


 .

(5.14)
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The identity above follows from the fact that L(✷k ∩ ✷j) = 0 for k 6= j. It remains to show that

(5.15) lim
n→∞

∥∥∥Diuχ∪
k∈S2✷k

−Diu
∥∥∥
L2(B)

= 0

and

(5.16) lim
n→∞

∥∥∥∥∥∥
Diu−

∑

k∈S2
2n〈Diu,

1

ci
ϕi,n−1,k〉χ✷k

∥∥∥∥∥∥
L2(B)

= 0, for i ∈ I.

For (5.15), it is easy to show that limn→∞ χ∪
k∈S2✷k

= 1 on B. Therefore, by the Lebesgue dominated

convergence theorem, we get (5.15). For (5.16), notice that 2nχ✷k
= φ

(H)
n,k , where φ(H) is the

characteristic function on the unit square, i.e., the tensor product of the piecewise constant B-
spline which satisfies the partition of unity property. Furthermore, by the definition of quasi-affine
systems given in (3) of Notation 5.1, we have

1

ci
ϕi,n−1,k =

1

4ci
2nϕi(2

n−1x− k/2) =

(
ϕi(·/2)
4ci

)

n,k

and
∫
B

ϕi(·/2)
4ci

dx = 1. We also note that the support of ϕi(·/2) contains the support of φ(H).

Together with Diu ∈ L2(B), we establish (5.16) by Lemma 5.1.
In the case of J 6= ∅, if we can show that, for all j ∈ J,

(5.17) lim
n→∞

λj‖aj[−·] ∗ Tnu‖22 = 0,

then we get (5.12). Note that there exist ϕj and ϕj′ such that Djϕj = ψj and Dj′ϕj′ = ψj′ .
Choose j ′ satisfying 0 ≤ j ′ < j and sj′ ≤ s. Note that such a j ′ always exists, since, for example,
one may pick j ′ = 0. Let ψ̄j = Dj−j′ϕj . Then obviously we have Dj′ψ̄j = ψj , due to the tensor
product structure of ϕj that ensures Dj′Dj−j′ϕj = Djϕj . For any real number t ≥ 0, the function

ϕ̃t :=
1

cj′
ϕj′ + tψ̄j ,

with cj′ =
∫
R2 ϕj′dx, is smooth, compactly supported, and of integral 1 (since obviously

∫
R2 ψ̄jdx =

0). This together with Dj′ϕ̃t =
1
cj′
ψj′ + tψj leads to, for u ∈ Hs(B),

〈Dj′u, ϕ̃t,n−1,k〉 = (−1)sj′2sj′ (n−1)〈u, 1

cj′
ψj′,n−1,k + tψj,n−1,k)〉.

Therefore,

‖2sj′ (n−1)(
1

cj′
aj′ [−·] + taj[−·]) ∗ Tnu‖22 =

∑

k∈K2

|〈Dj′u, ϕ̃t,n−1,k〉|2.

Following the exact same steps as in (5.13) and (5.14), by removing the summation with respect
to i ∈ I, replacing ϕ by ϕ̃t, Di by Dj′ and ci by cj′ , we have

‖Dj′u‖2 = lim
n→∞

‖2sj′ (n−1)(
1

cj′
aj′ [−·] + taj [−·]) ∗ Tnu‖2.

In particular, when t = 0, we have

‖Dj′u‖2 = lim
n→∞

‖2sj′ (n−1) 1

cj′
aj′ [−·] ∗ Tnu‖2.

These two equations imply that

t lim sup
n→∞

‖2sj′ (n−1)aj[−·] ∗ Tnu‖2 ≤ 2‖Dj′u‖2.
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Since t is arbitrary, we must have

lim
n→∞

‖2sj′ (n−1)aj[−·] ∗ Tnu‖2 = 0.

In view of 0 ≤ λj ≤ O(22sj′ (n−1)), we get (5.17). This concludes the proof of the convergence

E
(1)
n → E(1).

5.3.2. Convergence of E
(2)
n → E(2). It suffices to show that

(5.18)
∥∥∥[γj ·WnTnu]Γj

∥∥∥
1
→
∫

Γj

∣∣∣T+
j (u)− T

−
j (u)

∣∣∣ ds, for each j.

Notice that

γi,j (ai[−·] ∗ Tnu) [k] = γi,j
∑

j∈Si+k

ai[j − k](Tnu)[j] = 2nγi,j
∑

j∈Si+k

ai[j − k]〈u, φn,j〉

= 2nγi,j〈u,
∑

j∈Si+k

ai[j − k]φn,j〉 = 2nγi,j〈u, ψi,n−1,k〉,

where Si is the support of the filter ai. Let ϕi be such that Diϕi = ψi and suppϕi = suppψi.
Then

Diϕi,n−1,k = 2si(n−1)ψi,n−1,k.

and thus, for each k ∈ G2
j , we have

γi,j[k] |(ai[−·]⊛ Tnu) [k]|2 = 22nγi,j[k] |〈u, ψi,n−1,k〉|2 = 22si(1−n)22nγi,j[k] |〈u,Diϕi,n−1,k〉|2 .
Thus

∥∥∥[γj ·WnTnu]Γj

∥∥∥
1
= h

∑

k∈G2
j



∑

i∈B1

γi,j[k]

∣∣∣∣(Wn,iTnu)[k]

∣∣∣∣
2



1
2

=
∑

k∈G2
j


∑

i∈B1

22si(1−n)γi,j[k] |〈u,Diϕi,n−1,k〉|2



1
2

.

To apply Proposition 4.2, we split 〈u,Diϕi,n−1,k〉 into two parts as follows

〈u,Diϕi,n−1,k〉 =
∫

Ω+
j ∩Λn−1,k

u(x) (Diϕi,n−1,k) (x)dx+

∫

Ω−
j ∩Λn−1,k

u(x) (Diϕi,n−1,k) (x)dx,

where Ω±
j , Λn−1,k and Γj are illustrated in Figure 11. By the definition of the set G2

j , for any

k ∈ G2
j , the above splitting of the integration domain is always valid. Now, we apply Proposition

4.2 for the case |i| = 1 to each of the two integrals and obtain

〈u,Diϕi,n−1,k〉 =
∫

Γj∩Λn−1,k

vjϕi,n−1,knids

−
∫

Ω+
j ∩Λn−1,k

Diuϕi,n−1,k −
∫

Ω−
j ∩Λn−1,k

Diuϕi,n−1,k.
(5.19)

where

vj = T
+
j (u)− T

−
j (u) ∈ L2(Γj) ⊂ L1(Γj)

and T
±
j is the trace operator defined on Hsj (Ω±

j ).
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Figure 11. Illustrations of domains Ω±
j , Γn−1,k and curve Γj.

Consider,
∣∣∣∣∣
∥∥∥[γj ·WnTnu]Γj

∥∥∥
1
−
∫

Γj

|vj |ds
∣∣∣∣∣

=

∣∣∣∣∣
∑

k∈G2
j


∑

i∈B1

22si(1−n)γi,j[k] |〈u,Diϕi,n−1,k〉|2



1
2

−
∫

Γj

|vj |ds
∣∣∣∣∣

=

∣∣∣∣∣∣∣

∑

k∈G2
j





∑

i∈B1

22si(1−n)γi,j[k] |〈u,Diϕi,n−1,k〉|2



1
2

−
∫

Γj∩✷̃n,k

|vj |ds




∣∣∣∣∣∣∣
+ o(1)

=

∣∣∣∣∣∣∣

∑

k∈G2
j






∑

i∈B1

22si(1−n)γi,j[k] |〈u,Diϕi,n−1,k〉|2



1
2

−
∫

Γj∩✷̃n,k



∑

i∈B1

|vjni|2



1
2

ds




∣∣∣∣∣∣∣
+ o(1),

where ✷̃n,k is the rectangular domain (k1−1/2
2n , k1+1/2

2n ] × (k2−1/2
2n , k2+1/2

2n ] with k = (k1, k2) ∈ M2.
The second identity above follows from the fact that ✷̃n,k ⊂ Λ◦

n−1,k. Indeed, whenever ✷̃n,k has a

nonempty intersection with Γj, so does Λ◦
n−1,k except only when k ∈ G2

j is near the boundary of

Ω or a junction of multiple Γj′ . Therefore, we have
⋃

k∈G2
j
Γj ∩ ✷̃n,k → Γj as n → ∞, in the sense

that ∑

k∈G2
j

χΓj∩✷̃n,k
(s) → 1 for almost all s ∈ Γj.

In fact, the above convergence holds everywhere on Γj except at the end-points of Γj.
Notice that Γj may have an empty intersection with ✷̃n,k for k ∈ G2

j . Define the index set

H2
j ⊂ G2

j be such that

H
2
j :=

{
k ∈ G

2
j : L(Γj ∩ ✷̃n,k) = 0

}
,
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where L is the 1-D Lebesgue measure. Note that H2
j is not generally an empty set (see Figure 12).

For the rest of the proof we choose

γi,j[k] = 0, for k ∈ H
2
j , i ∈ B1.

Letting

(5.20) wi,j[k] =
22si(1−n)

L2(Γj ∩ ✷̃n,k)
γi,j[k], for k ∈ G

2
j \H2

j ,

we have
∣∣∣∣∣
∥∥∥[γj ·WnTnu]Γj

∥∥∥
1
−
∫

Γj

|vj |ds
∣∣∣∣∣

=

∣∣∣∣∣∣∣

∑

k∈G2
j\H2

j

∫

Γj∩✷̃n,k





∑

i∈B1

wi,j[k] |〈u,Diϕi,n−1,k〉|2



1
2

−


∑

i∈B1

|vjni|2



1
2


 ds

∣∣∣∣∣∣∣
+ o(1)

≤
∑

k∈G2
j\H2

j

∫

Γj∩✷̃n,k

∣∣∣∣∣∣∣



∑

i∈B1

wi,j[k] |〈u,Diϕi,n−1,k〉|2



1
2

−



∑

i∈B1

|vjni|2



1
2

∣∣∣∣∣∣∣
ds+ o(1)

≤
∑

k∈G2
j\H2

j

∫

Γj∩✷̃n,k

∑

i∈B1

∣∣∣∣
√
wi,j[k]〈u,Diϕi,n−1,k〉 − vjni

∣∣∣∣ ds+ o(1).

Using the integration by parts formula (5.19), we have
∣∣∣∣∣
∥∥∥[γj ·WnTnu]Γj

∥∥∥
1
−
∫

Γj

|vj |ds
∣∣∣∣∣

≤
∑

k∈G2
j\H2

j

∫

Γj∩✷̃n,k


∑

i∈B1

∣∣∣∣∣
√
wi,j[k]

∫

Γj∩Λn−1,k

vjϕi,n−1,knids̃− vjni

∣∣∣∣∣


 ds

+
∑

k∈G2
j\H2

j

∫

Γj∩✷̃n,k



∑

i∈B1

√
wi,j[k]

∣∣∣∣∣

∫

Ω+
j ∩Λn−1,k

Diu, ϕi,n−1,k +

∫

Ω−
j ∩Λn−1,k

Diu, ϕi,n−1,k

∣∣∣∣∣


 ds+ o(1)

=: G(1)
n (u) +G(2)

n (u) + o(1).

We first show that there exists wi,j[k], i.e. γi,j[k] for k ∈ G2
j \ H2

j , such that G
(1)
n (u) → 0 as

n→ ∞. Consider

G(1)
n (u) =

∑

k∈G2
j\H2

j

∫

Γj∩✷̃n,k

∑

i∈B1

∣∣∣∣∣
√
wi,j[k]

∫

Γj∩Λn−1,k

vjϕi,n−1,knids̃− vjni

∣∣∣∣∣ ds

=
∑

k∈G2
j\H2

j

∫

Γj

∑

i∈B1

∣∣∣∣∣
√
wi,j[k]

(∫

Γj∩Λn−1,k

vjϕi,n−1,knids̃

)
χΓj∩✷̃n,k

− vjniχΓj∩✷̃n,k

∣∣∣∣∣ds

=

∫

Γj

∑

i∈B1

∣∣∣∣∣
∑

k∈G2
j\H2

j

√
wi,j[k]

(∫

Γj∩Λn−1,k

vjϕi,n−1,knids̃

)
χΓj∩✷̃n,k

− vjni

∣∣∣∣∣ds + o(1),
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where the last identity follows from the fact that {Γj ∩ ✷̃n,k : k ∈ G2
j \H2

j} are disjoint for different
k, the curve Γj is of finite length, and

(5.21)
∑

k∈G2
j\H2

j

χΓj∩✷̃n,k
(s) → 1 for almost all s ∈ Γj .

Notice that for i ∈ B1, si = |i| = 1. Letting
(5.22)

Kn(s, s̃) :=
∑

k∈G2
j\H2

j

√
wi,j[k]ϕi,n−1,k(s̃)χΓj∩✷̃n,k

(s) =
∑

k∈G2
j\H2

j

2(1−n)
√
γi,j[k]

L(Γj ∩ ✷̃n,k)
ϕi,n−1,k(s̃)χΓj∩✷̃n,k

(s),

then we have

G(1)
n (u) =

∑

i∈B1

∫

Γj

∣∣∣∣∣

∫

Γj

vj(s̃)ni(s̃)Kn(s, s̃)ds̃− vj(s)ni(s)

∣∣∣∣∣ ds+ o(1).

To show that G
(1)
n (u) → 0 as n→ ∞, we need the following lemma.

Lemma 5.2. Let Kn(s, s̃) be defined in (5.22) with i ∈ B1 = {(1, 0)⊤, (0, 1)⊤} and ϕi being
nonnegative and continuous.

(1) There exists 0 ≤ γi,j ≤ O(1) such that, as n→ ∞,
∫

Γj

Kn(s, s̃)ds̃ → 1 for almost all s ∈ Γj.

(2) For any δ > 0 and an n large enough, we have

Kn(s, s̃) = 0

for (s, s̃) ∈ {(s, s̃) ∈ Γj × Γj, |s − s̃| ≥ δ}.
(3) We have

∫
Γj

|Kn(s, s̃)|ds̃ ≤M uniformly for all s ∈ Γj

Consequently, with the choices of {γi,j} in (1),

(5.23) lim
n→∞

∥∥∥∥∥

∫

Γj

Kn(·, s̃)f(s̃)ds̃ − f(·)
∥∥∥∥∥
L1(Γj)

= 0,

for any f ∈ L1(Γj).

Proof. We first note that, for each i ∈ B1 and k ∈ G2
j , ϕi,n−1,k is nonnegative and continuous on

the interior of its support Λn−1,k. Consider (1). Let Ij,n,k := Γj ∩ ✷̃n,k. We have
∫

Γj

Kn(s, s̃)ds̃ =
∑

k∈G2
j\H2

j

[
2(1−n)

√
γi,j[k]

L(Ij,n,k)

∫

Γj

ϕi,n−1,k(s̃)ds̃

]
χIj,n,k

(s).

Then, if we choose

(5.24)
√
γi,j[k] =

{
2n−1L(Ij,n,k)

(∫
Γj
ϕi,n−1,k(s̃)ds̃

)−1
for k ∈ G2

j \H2
j

0 otherwise,

equation (5.21) leads to
∫
Γj
Kn(s, s̃)ds̃ → 1 for almost all s ∈ Γj. It now remains to show that

γj,k = O(1) for k ∈ G2
j \ H2

j , which means γj,k is well defined and is a reasonable parameter to
choose in practice.

Let k ∈ G2
j \H2

j be fixed. Since L(Ij,n,k) = O(2−n), it suffices to show that
∫
Γj
ϕi,n−1,k(s̃)ds̃ ≥ C

for some C > 0. Let ∆n,k be the square box whose center is the common center of ✷̃n,k and Λn−1,k

and side length their average (see Figure 12). Then, since ϕ is strictly positive in the interior of
its support, ϕi,n−1,k(x) ≥ C12

n−2 for all x ∈ ∆n,k, where C1 > 0 is a constant. Furthermore, since
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Γj ∩ ✷̃n,k 6= ∅ and Γj ∩ Λn−1,k 6= ∅, for sufficiently large n, the continuous curve Γj passes though
the boundary of Λn−1,k and an interior point of ✷̃n,k. Therefore, L(Γj ∩∆n,k) ≥ C22

−n. Finally,

(5.25)

∫

Γj

ϕi,n−1,k(s̃)ds̃ ≥ C12
n−2C22

−n = C1C2/4 > 0.

For (2), we observe that for any s, s̃ ∈ Γj, when n is large enough, we should have either
ϕi,n−1,k(s̃) = 0 or χIj,n,k

(s) = 0, or both, on {|s − s̃| ≥ δ} for k ∈ G2
j \H2

j .

For (3), the uniform boundedness of
∫
Γj

|Kn(s, s̃)|ds̃ is obvious from the proof of (1) and the fact

that Γj is of finite length.
Finally, by (1) and (3) and the fact that Γj is of finite length, the Lebesgue dominated convergence

theorem implies that ∥∥∥∥∥f(·)− f(·)
∫

Γj

Kn(·, s̃)ds̃
∥∥∥∥∥
L1(Γj)

= o(1).

Therefore, for some δ > 0,∥∥∥∥∥

∫

Γj

Kn(·, s̃)f(s̃)ds̃− f(·)
∥∥∥∥∥
L1(Γj)

≤
∫

Γj

∣∣∣∣∣

∫

Γj

Kn(s, s̃)f(s̃)ds̃ − f(s)

∫

Γj

Kn(s, s̃)ds̃

∣∣∣∣∣ ds+ o(1)

≤
∫

Γj

∫

Γj

Kn(s, s̃) |f(s̃)− f(s)| ds̃ds+ o(1)

=

∫

Γj

∫

|s−s̃|≥δ
Kn(s, s̃) |f(s̃)− f(s)| ds̃ds

+

∫

Γj

∫

|s−s̃|<δ
Kn(s, s̃) |f(s̃)− f(s)| ds̃ds+ o(1).

For n large enough, part (2) implies that
∫

Γj

∫

|s−s̃|≥δ
Kn(s, s̃) |f(s̃)− f(s)| ds̃ds = 0.

Now, if we can show that Kn(s, s̃) |f(s̃)− f(s)| ∈ L1(Γj × Γj), then by continuity of Lebesgue
integral, we establish the desired limit (5.23).

Using (3) and Fubini’s theorem, we have
∫

Γj×Γj

|Kn(s, s̃)f(s)|d(s, s̃) =
∫

Γj

|f(s)|
(∫

Γj

|Kn(s, s̃)|ds̃
)
ds ≤M‖f‖L1(Γj),

which means Kn(s, s̃)|f(s)| ∈ L1(Γj × Γj). It remains to show that Kn(s, s̃)|f(s̃)| ∈ L1(Γj × Γj).
By Fubini’s theorem again, we have

∫

Γj×Γj

|Kn(s, s̃)f(s̃)|d(s, s̃) =
∫

Γj

(∫

Γj

|Kn(s, s̃)|ds
)
|f(s̃)|ds̃.

Consider
∫

Γj

|Kn(s, s̃)|ds =
∑

k∈G2
j\H2

j

2(1−n)
√
γi,j[k]

L(Ij,n,k)
ϕi,n−1,k(s̃)

∫

Γj

χIj,n,k
(s)ds

=
∑

k∈G2
j\H2

j

2(1−n)
√
γi,j[k]ϕi,n−1,k(s̃)

=
1

2

∑

k∈G2
j\H2

j

√
γi,j[k]ϕi(2

n−1x(s̃)− k/2).
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Since γi,j = O(1) and the support Λn−1,k overlaps finitely many times (independent of n) for all
k ∈ M2, we have ∥∥∥∥∥

∫

Γj

Kn(s, ·)ds
∥∥∥∥∥
L∞(Γj)

≤ C‖ϕi‖L∞(Ω) <∞.

Then Hölder’s inequality implies Kn(s, s̃)|f(s)| ∈ L1(Γj × Γj). �

Figure 12. Illustrations for the proof of part (1) of Lemma 5.2 for the case of
piecewise constant B-spline.

With Lemma 5.2, it is clear that G
(1)
n (u) → 0. Now, we show that, with γi,j = O(1), we have

G
(2)
n (u) → 0. Indeed,

G(2)
n (u) =

∑

k∈G2
j\H2

j

∑

i∈B1

21−n
√
γi,j[k]

∣∣∣∣∣

∫

Ω+
j ∩Λn−1,k

Diuϕi,n−1,k +

∫

Ω−
j ∩Λn−1,k

Diuϕi,n−1,k

∣∣∣∣∣

≤
∑

k∈G2
j\H2

j

∑

i∈B1

21−nO(1) |o(1) + o(1)| = o(1),

where we have used the fact that |G2
j \ H2

j | = O(2n). Therefore, we have concluded the proof of

E
(2)
n (u) → E(2)(u).

5.3.3. Convergence of E
(3)
n → E(3). Most part of the proof of E

(3)
n → E(3) is analogous to that

of E
(2)
n → E(2). Note that it suffices to prove that, for each j and j̃ and a properly chosen set of

parameters {γ̃j,j̃[k] : k ∈ G2
j,j̃
},

∥∥∥∥
[
γ̃j,j̃ ·WnTnu

]
Γ
j,j̃

∥∥∥∥
1

→
∫

Γ
j,j̃


∑

|i|=1

∣∣∣T+
j,j̃
(Diu)− T

−
j,j̃
(Diu)

∣∣∣
2




1
2

ds.
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Letting

ṽi,j,j̃ := T
+
j,j̃
(Diu)− T

−
j,j̃
(Diu),

we have
∣∣∣∣∣∣∣

∥∥∥∥
[
γ̃j,j̃ ·WnTnu

]
Γj,j̃

∥∥∥∥
1

−
∫

Γ
j,j̃



∑

|i|=1

∣∣∣ṽi,j,j̃
∣∣∣
2




1
2

ds

∣∣∣∣∣∣∣

=

∣∣∣∣∣
∑

k∈G2
j,j̃



∑

i∈B2

22si(1−n)γ̃i,j,j̃[k] |〈u,Diϕi,n−1,k〉|2



1
2

−
∫

Γj,j̃



∑

|i|=1

∣∣∣ṽi,j,j̃
∣∣∣
2




1
2

ds

∣∣∣∣∣.

We now rewrite 〈u,Diϕi,n−1,k〉 using Proposition 4.2. We first split 〈u,Diϕi,n−1,k〉 into two parts
as follows

〈u,Diϕi,n−1,k〉 =
∫

Ω+

j,j̃
∩Λn−1,k

u(x) (Diϕi,n−1,k) (x)dx+

∫

Ω−

j,j̃
∩Λn−1,k

u(x) (Diϕi,n−1,k) (x)dx,

Now, we apply Proposition 4.2 and obtain

〈u,Diϕi,n−1,k〉 = −
∫

Γj,j̃∩Λn−1,k

ṽ(1,0)⊤,j,j̃ϕi,n−1,kn(0,1)⊤ds (for i = (1, 1)⊤: version 1)

+

∫

Ω+

j,j̃
∩Λn−1,k

Diuϕi,n−1,k +

∫

Ω−

j,j̃
∩Λn−1,k

Diuϕi,n−1,k;

(5.26)

〈u,Diϕi,n−1,k〉 = −
∫

Γj,j̃∩Λn−1,k

ṽ(0,1)⊤,j,j̃ϕi,n−1,kn(1,0)⊤ds (for i = (1, 1)⊤: version 2)

+

∫

Ω+

j,j̃
∩Λn−1,k

Diuϕi,n−1,k +

∫

Ω−

j,j̃
∩Λn−1,k

Diuϕi,n−1,k;

(5.27)

〈u,Diϕi,n−1,k〉 = −
∫

Γ
j,j̃

∩Λn−1,k

ṽ(1,0)⊤,j,j̃ϕi,n−1,kn(1,0)⊤ds (for i = (2, 0)⊤)

+

∫

Ω+

j,j̃
∩Λn−1,k

Diuϕi,n−1,k +

∫

Ω−

j,j̃
∩Λn−1,k

Diuϕi,n−1,k;

(5.28)

and

〈u,Diϕi,n−1,k〉 = −
∫

Γj,j̃∩Λn−1,k

ṽ(0,1)⊤,j,j̃ϕi,n−1,kn(0,1)⊤ds (for i = (0, 2)⊤)

+

∫

Ω+

j,j̃
∩Λn−1,k

Diuϕi,n−1,k +

∫

Ω−

j,j̃
∩Λn−1,k

Diuϕi,n−1,k.

(5.29)

Notice that

∫

Γ
j,j̃


∑

|i|=1

∣∣∣ṽi,j,j̃
∣∣∣
2




1
2

ds =

∫

Γ
j,j̃


∑

|i|=1

∑

|ĩ|=1

∣∣∣ṽi,j,j̃nĩ

∣∣∣
2




1
2

ds.
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Define the index set H2
j,j̃

⊂ G2
j,j̃

as

H
2
j,j̃

:=
{
k ∈ G

2
j,j̃

: L(Γj,j̃ ∩ ✷̃n,k) > 0
}
,

where ✷̃n,k is the rectangular domain (k1−1/2
2n , k1+1/2

2n ]× (k2−1/2
2n , k2+1/2

2n ]. Now, letting γi,j,j̃[k] = 0

for k ∈ H2
j,j̃

and

wi,j,j̃[k] =





22si(1−n)

L2(Γj,j̃∩✷̃n−1,k)
γ̃i,j,j̃[k], k ∈ G2

j,j̃
\H2

j,j̃
,

0, k ∈ H2
j,j̃
,

we have∣∣∣∣∣∣∣

∥∥∥∥
[
γ̃j,j̃ ·WnTnu

]
Γ
j,j̃

∥∥∥∥
1

−
∫

Γ
j,j̃


∑

|i|=1

∣∣∣ṽi,j,j̃
∣∣∣
2




1
2

ds

∣∣∣∣∣∣∣

=

∣∣∣∣∣
∑

k∈G2
j,j̃



∑

i∈B2

22si(1−n)γ̃i,j,j̃[k] |〈u,Diϕi,n−1,k〉|2



1
2

−
∫

Γ
j,j̃



∑

|i|=1

∣∣∣ṽi,j,j̃
∣∣∣
2




1
2

ds

∣∣∣∣∣

≤
∑

k∈G2
j,j̃

\H2
j,j̃

∫

Γj,j̃∩✷̃n,k

(∣∣∣∣
1√
2

√
w(1,1)⊤,j,j̃[k]〈u,D(1,1)⊤ϕ(1,1)⊤,n−1,k〉 − ṽ(1,0)⊤,j,j̃n(0,1)⊤

∣∣∣∣

+

∣∣∣∣
1√
2

√
w(1,1)⊤ ,j,j̃[k]〈u,D(1,1)⊤ϕ(1,1)⊤ ,n−1,k〉 − ṽ(0,1)⊤ ,j,j̃n(1,0)⊤

∣∣∣∣

+
∣∣∣
√
w(2,0)⊤ ,j,j̃[k]〈u,D(2,0)⊤ϕ(2,0)⊤ ,n−1,k〉 − ṽ(1,0)⊤,j,j̃n(1,0)⊤

∣∣∣

+
∣∣∣
√
w(0,2)⊤ ,j,j̃[k]〈u,D(0,2)⊤ϕ(0,2)⊤ ,n−1,k〉 − ṽ(0,1)⊤,j,j̃n(0,1)⊤

∣∣∣
)
ds+ o(1).

We shall prove that each of the four terms above goes to 0 as n → ∞ by using the integration
formula (5.26)-(5.29) respectively for each term. Since the proof for each term is entirely analogous,
we only focus on proving the convergence of the first term, i.e.

(5.30)
∑

k∈G2
j,j̃

\H2
j,j̃

∫

Γj,j̃∩✷̃n,k

∣∣∣∣
1√
2

√
w(1,1)⊤,j,j̃[k]〈u,D(1,1)⊤ϕ(1,1)⊤ ,n−1,k〉 − ṽ(1,0)⊤,j,j̃n(0,1)⊤

∣∣∣∣ ds→ 0

as n→ ∞. Using the integration by parts formula (5.26), we have

∑

k∈G2
j,j̃

\H2
j,j̃

∫

Γj,j̃∩✷̃n,k

∣∣∣∣
1√
2

√
w(1,1)⊤,j,j̃[k]〈u,D(1,1)⊤ϕ(1,1)⊤,n−1,k〉 − ṽ(1,0)⊤,j,j̃n(0,1)⊤

∣∣∣∣ ds

≤
∑

k∈G2
j,j̃

\H2
j,j̃

∫

Γj,j̃∩✷̃n,k

∣∣∣∣∣
1√
2

√
w(1,1)⊤,j,j̃[k]

∫

Γj,j̃∩Λn−1,k

ṽ(1,0)⊤,j,j̃ϕ(1,1)⊤ ,n−1,kn(0,1)⊤ds̃− ṽ(1,0)⊤,j,j̃n(0,1)⊤

∣∣∣∣∣ ds

+
∑

k∈G2
j,j̃

\H2
j,j̃

∫

Γ
j,j̃

∩✷̃n,k

1√
2

√
w(1,1)⊤ ,j,j̃[k]

∣∣∣∣∣

∫

Ω+

j,j̃
∩Λn−1,k

D(1,1)⊤uϕ(1,1)⊤ ,n−1,k

+

∫

Ω−

j,j̃
∩Λn−1,k

D(1,1)⊤uϕ(1,1)⊤ ,n−1,k

∣∣∣∣∣ds

=: G̃(1)
n (u) + G̃(2)

n (u).
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Same as in the proof of convergence E
(2)
n (u) → E(2)(u), G̃

(1)
n can be written as

G̃(1)
n (u) =

∫

Γj,j̃

∣∣∣∣∣

∫

Γj,j̃

v(1,0)⊤,j,j̃(s̃)n(0,1)⊤(s̃)K̃n(s, s̃)ds̃− v(1,0)⊤ ,j,j̃(s̃)n(0,1)⊤(s)

∣∣∣∣∣ ds+ o(1),

where

K̃n(s, s̃) :=
1√
2

∑

k∈G2
j,j̃

\H2
j,j̃

√
w(1,1)⊤,j,j̃[k]ϕ(1,1)⊤ ,n−1,k(s̃)χΓ

j,j̃
∩✷̃n,k

(s)

=
1√
2

∑

k∈G2
j,j̃

\H2
j,j̃

2(2−2n)
√
γ̃(1,1)⊤,j,j̃[k]

L(Γj,j̃ ∩ ✷̃n,k)
ϕ(1,1)⊤ ,n−1,k(s̃)χΓj,j̃∩✷̃n,k

(s).

(5.31)

To show that G̃
(1)
n → 0, we need the following lemma, which is a similar one as Lemma 5.2.

Lemma 5.3. Let K̃n(s, s̃) be defined in (5.31) with i = (1, 1)⊤ and ϕi being nonnegative and
continuous.

(1) There exists 0 ≤ γ̃i,j,j̃ ≤ O(22n) such that, as n→ ∞,
∫

Γj,j̃

K̃n(s, s̃)ds̃ → 1 for almost all s ∈ Γj,j̃.

(2) For any δ > 0 and an n large enough, we have

K̃n(s, s̃) = 0

for (s, s̃) ∈ {(s, s̃) ∈ Γj,j̃ × Γj,j̃, |s − s̃| ≥ δ}.
(3) We have

∫
Γj,j̃

|K̃n(s, s̃)|ds̃ ≤M uniformly for all s ∈ Γj,j̃

Consequently, for any f ∈ L1(Γj,j̃), we have

(5.32) lim
n→∞

∥∥∥∥∥

∫

Γj,j̃

K̃n(·, s̃)f(s̃)ds̃ − f(·)
∥∥∥∥∥
L1(Γj,j̃

)

= 0.

Proof of Lemma 5.3. The proof of (2), (3) and (5.32) is the same as that of Lemma 5.2, whence
we establish (1). In fact, the proof for (1) is also similar to that of Lemma 5.2. However, we shall
still provide more detail on the proof of (1).

We first note that ϕi,n−1,k is nonnegative and continuous on the interior of its support Λn−1,k.
Let Ij,j̃,n,k := Γj,j̃ ∩ ✷̃n,k. We have

∫

Γj,j̃

K̃n(s, s̃)ds̃ =
∑

k∈G2
j,j̃

\H2
j,j̃



2(3/2−2n)

√
γ̃i,j,j̃[k]

L(Ij,j̃,n,k)

∫

Γj,j̃

ϕi,n−1,k(s̃)ds̃


χIj,j̃,n,k

(s).

Then, we choose

(5.33)
√
γ̃i,j,j̃[k] =

{
22n−3/2L(Ij,j̃,n−1,k)

(∫
Γ
j,j̃
ϕi,n−1,k(s̃)ds̃

)−1
for k ∈ G2

j,j̃
\H2

j,j̃

0 otherwise,

which leads to
∫
Γj
Kn(s, s̃)ds̃ → 1 a.e. because

∑

k∈G2
j,j̃

\H2
j,j̃

χIj,j̃,n,k
(s) → 1 for almost all s ∈ Γj,j̃.

Also, similar as in Lemma 5.2, we can show that 0 ≤ γ̃i,j,j̃ ≤ O(22n). This concludes the proof of
Lemma 5.3. �
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With Lemma 5.3, it is clear that G̃
(1)
n (u) → 0. Now, we show that, with γ̃(1,1)⊤,j,j̃ = O(22n), we

have G̃
(2)
n (u) → 0. Indeed,

G̃(2)
n (u) =

∑

k∈G2
j,j̃

\H2
j,j̃

∫

Γj,j̃∩Λn−1,k

1√
2

√
w(1,1)⊤,j,j̃[k]

∣∣∣∣∣

∫

Ω+

j,j̃
∩Λn−1,k

D(1,1)⊤u, ϕ(1,1)⊤ ,n−1,k

+

∫

Ω−

j,j̃
∩Λn−1,k

D(1,1)⊤u, ϕ(1,1)⊤ ,n−1,k

∣∣∣∣∣ds

=
∑

k∈G2
j,j̃

\H2
j,j̃

23/2−2n
√
γ̃(1,1)⊤,j,j̃[k]

∣∣∣∣∣

∫

Ω+

j,j̃
∩Λn−1,k

D(1,1)⊤u, ϕ(1,1)⊤ ,n−1,k

+

∫

Ω−

j,j̃
∩Λn−1,k

D(1,1)⊤u, ϕ(1,1)⊤ ,n−1,k

∣∣∣∣∣ds

≤
∑

k∈G2
j,j̃

\H2
j,j̃

23/2−2nO(2n) |o(1) + o(1)| = o(1).

This concludes the proof of E
(3)
n (u) → E(3)(u), hence the proof of Theorem 5.1.
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