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Abstract. Image segmentation is vital to medical image analysis and
clinical diagnosis. Recently, convolutional neural networks (CNNs) have
achieved tremendous success in this task, however, it performs poorly
at recognizing precise object boundary due to the information loss in
the successive downsampling layers. To overcome this problem, we inte-
grate an active contour model (convexified Chan-Vese model) into the
CNN structure (DenseUNet), forming a new framework called deep ac-
tive contour network (DACN). Instead of manual setting, DACN applies
a CNN backbone to learn the initialization and parameters of active
contour model (ACM) automatically. The proposed DACN leverages the
advantage of ACM to detect object boundaries accurately, which can
be trained in an end-to-end differential manner. The experimental re-
sults on two public datasets demonstrate the effectiveness of DACN, and
the trimap experiment confirms the superior ability of DACN to obtain
precise boundary delineation.
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1 Introduction

Semantic segmentation is a central theme in the area of medical image process-
ing. It is a process of splitting an image into several sub regions. In the past
decades, various algorithms have been implemented for this topic ranging from
thresholding [21], region growing [1], clustering [20] to active contour models
(ACMs) [14, 3,2]. Nowadays, convolutional neural networks (CNN) have signifi-
cantly improved the performance of many segmentation tasks, mainly benefiting
from its powerful ability to learn informative hierarchical features directly from
data. However, as illustrated in [10,25], it is rather difficult for CNN to recog-
nize the object boundary precisely. On the other hand, active contour models
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(ACMs) are a series of approaches to fit a curve for the object contour in the
image, which tend to generate accurate localization of boundaries. In this cir-
cumstance, an intuitive idea is to leverage the advantage of ACM to compensate
for the defects of deep learning models.

Recently, researchers have developed many techniques to combine ACM with
CNN. Some works presented a novel loss function based on the energy functional
of ACM, such as Mumford-Shah loss [16], AC loss [5], level set loss [17] and active
contour loss [9]. At the meantime, some investigators attempted to incorporate
ACM into deep learning methods in an end-to-end fashion. For instance, the work
[11] utilized level set method to assist networks in detecting salient objects more
precisely, however, its performance depends heavily on the fine tuning of parame-
ters v and A in the level set formulation. In contrast, in order to avoid parameter
tuning, DSAC [23] and DARNet [5] trained a CNN to learn ACM parameter-
izations automatically, nevertheless, they still lack robustness and efficiency as
the result is sensitive to the manual initialization of target contours. In addition,
Hatamizadeh et al. [10] presented a new architecture named DALS combining
ACM and CNN to segment various lesions in medical imaging, however, the
ACM module in DALS is not trainable only working as a post-processing step.

In this work, to overcome these limitations, we propose an end-to-end deep
active contour network (DACN) for segmentation in medical imaging. In the pro-
posed DACN, both the pixel-wise parameter maps and initial contours of ACM
are learned directly from data by a CNN. It is a completely automatical and
differentiable framework. More specifically, we use the classic DenseUNet as the
CNN backbone, and select an improved active contour model (convexified Chan-
Vese model) which reduces the original energy functional to a convex minimiza-
tion. We evaluate our DACN method on two public datasets: Herlev dataset and
ISIC 2017 Skin Lesion dataset, where the new framework yields superior results
compared to UNet, DenseUNet as well as other competitive models. Moreover,
segmentation maps obtained by DACN have more sophisticated delineation of
object edges, demonstrated by the additional trimap experiment.

The main contributions of this paper are listed as follows:
1) We present deep active contour network (DACN) for image segmentation,
taking advantage of ACM to detect precise boundaries in CNN architecture.
2) We choose an improved Chan-Vese model as the ACM module, and utilize a
auxiliary CNN loss function to enhance feature extraction.
3) DACN obtains good performance on Herlev and ISIC dataset, more generally,
it can also be used in other segmentation tasks to improve boundary accuracy.

There are 3 main differences between the recent DALS and our DACN: 1) The
ACM exploited in DALS is the classic Chan-Vese model [3] with local evolution
[19], while the proposed DACN adopts an improved model of Chan-Vese which
can find the global minimizer; 2) The ACM used in DALS is not involved into
the training process, only serving as a post-processing step, however, our DACN
is a fully end-to-end trainable framework; 3) In DALS, parameters of ACM are
estimated from the network output by an exponential transformation, while that
of DACN are learned directly via the CNN backbone.
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Algorithm 1 Split Bregman for model (2)
Given an input image f, select the parameter A and u.
Initialize the algorithm by choosing u® = 0, & = 0, = 0,8 =1,c3 =0, and k = 0.
while stopping criteria are not met do
1: Define r* = (c’f - f)2 — (c‘éC — f)2
: uFt = GSacs (rk,d_k,gk)
s d*T = shrink (Vuk'H +b", %)
LB = B vkt g
: Find 2% = {z : u*(2) >~}
: Update ¢i ™" = [, fdz, and 5" = f(m)c fdx
: k=k+1
end while
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2 Method

2.1 Convexified Chan-Vese Model

Active contour models (ACMs), also referred as snakes, are firstly proposed
by Kass et al. [14] to evolve the contours by solving an energy minimization
problem. In contrast to parametric snakes, level set based ACMs define contours
implicitly via a level set function in a higher dimension, where the object contours
are denoted by the zero level set. In the past decades, a variety of ACMs have
been developed to improve the performance of image segmentation, among which
the region-based Chan-Vese model [3] is widely used. The energy functional of
Chan-Vese model is formulated as:

F (c1,c2,C) =p - Length(C) + v - Area(inside(C))

—|—/\1/ lug(z,y) — c1|* dedy
inside(C) (1)

e [ i) - ol dod,
outside(C)

where ug(z,y) is the raw image, C' is a closed curve, the first term Length(C)
represents the length of C, the second term denotes the area inside C, and
1,V,A1,A2 are scalar parameters to be regulated. Moreover, c1,co represent the
mean values of image ug(z,y) inside and outside the curve C respectively.

In order to solve the minimal partition problem, the level set method was
introduced and the problem amounted to solving a partial differential equa-
tion (PDE) by gradient descent [3]. More recently, Chan et al. [2] proposed a
convexified version of Chan-Vese model to obtain the global minimizer, which
significantly improved the efficiency of computation. Following [2, 8], the original
problem can be reduced to a simple convex minimization:
min [Vuly +plu,r), r=(f =)’ = (f — ). (2)

0<u<
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Fig. 1. The structure of DenseUNet. The raw image has a resolution of 256 x 256, and
the setting of channels follows the original work [22].

Here f is the image to be segmented, c1, co are arbitrary fixed scalars, p is
the parameter balancing the regularization process and data term. Finally, the
segmentation output can be defined as:

2 ={x:u(x) >~}, for ae. v€][0,1]. (3)

The work [8] applied the split Bregman algorithm to solve the above problem,
while the procedure is summarized in Algorithm 1. GSgcg represents one iter-
ation of the Gauss-Seidel method:

o gz gz x y Wy y
Qg = di_1;—diy = biyj+bi;tdi; o —di;—bi; 1+
1

Bij = 1 (ui—l,j + Ui, + U1+ U1 — %T + ai,j) ) (4)
u;,; = max {min {5, ;,1},0},

where b7 ; (df ;) denotes the value of the X-direction component of b (d) at pixel

(i,7), b and d are the intermediate variables in Algorithm 1. In the third step,
shrink denotes the shrinkage operator. For more details about Algorithm 1, we
refer the reader to [8].

2.2 The CNN Backbone

In this paper, we choose DenseUNet [22] as our CNN backbone. As shown in
Fig. 1, DenseUNet is an encoder-decoder framework which integrates the dense
block [12] into the classic UNet. More specifically, in the dense block, output
feature maps of each layer are transmitted to all subsequent layers as inputs,
making it competent in enhancing feature propagation and alleviating gradient
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Fig. 2. The architecture of DACN. DACN is an end-to-end trainable framework with
a differential ACM module. In contrast to the traditional ACM algorithm, parame-
ters learned by the CNN backbone are pixel-wise functions pu(x,y), A(z,y) rather than
scalars (u, A in Algorithm 1).

vanishing. The transition layer is composed of a 1 x 1 convolution followed by
an average pooling operation with stride of 2. More details about DenseUNet
can be found in the original work [22].

2.3 The DACN Architecture

In this section, we present deep active contour network (DACN) to deal with
medical image segmentation. As shown in Fig. 2, the proposed DACN integrates
the classic ACM (convexified Chan-Vese model) with a CNN backbone (Dense-
UNet) in an end-to-end differentiable manner. Firstly, the initial contours and
pixel-level parameter maps (u(z,y), A(z,y)) of ACM are learned from data by
the CNN backbone. Secondly, these contours, maps as well as raw image are
transmitted to ACM to evolve the curve iteratively via Algorithm 1. Finally, the
output of ACM is compared with ground truth to produce a cross-entropy loss
function (named ACM loss). In the same way, the initial contours can also yield
a loss function (named CNN loss) to provide auxiliary supervision for the CNN
backbone. As shown in Fig. 2, the final loss is established by the CNN loss and
ACM loss as follow:

Liina = - Lonn + Lacu, (5)

where «a is a balancing parameter. By minimizing the final loss, the error can
be back-propagated through the entire DACN architecture to guide the weights
updating in the CNN backbone.

3 Experiments

We compare DACN with the widely used UNet, the baseline DenseUNet as well
as recent state-of-the-art methods. To quantify the performance, we utilize sev-
eral metrics including Dice, Precision, Recall, Accuracy and Hausdorff Distance.
Furthermore, in order to evaluate the boundary accuracy, we also conduct the
trimap experiment [4, 18]. In the trimap experiment, evaluation metrics are not



6 M. Zhang et al.

computed over the entire image, but only in the region surrounding the object
boundary. Specifically, the evaluation region is generated by taking a w pixel
band around the edges of objects, where w denotes the width of the target re-
gion. Trimap experiment is a more appropriate measurement for users concerned
about fine contours. In this work, we calculate Dice in such edge-adjacent area
with different widths to measure the model capability to delineate boundaries.

Data Description. We extensively validate DACN on two public medical image
datasets: 1) Herlev dataset [13], which contains 917 images from Pap smear tests
and corresponding annotations of cervical cell. The entire set is divided into three
parts: 562 for training, 171 for validation and 184 for testing; 2) International
Skin Imaging Collaboration (ISIC-2017) dataset [6], which aims to segment the
skin lesion in dermatoscope images. The training, validation, and testing sets
comprise 2000, 150, and 600 images respectively with various resolutions. As for
image preprocessing, all images are resized to 256 x 256, followed by normaliza-
tion and Contrast Limited Adaptive Histogram Equalization (CLAHE).

Implementation Details. Our implementation is based on the TensorFlow
framework and all experiments are carried out on a single NVIDIA GTX1080ti
GPU. We apply the Adam algorithm with default parameters to minimize the
cross entropy loss function. All models are trained for 30000 epochs with batch
size of 4. Each convolutional layer is followed by RELU activation and batch
normalization. The hyperparameter a in the loss function is set to 0.01. Both
parameter maps (u(z,y), A(z,y)) of ACM are initialized to null matrix.

Table 1. Quantitative analysis of different methods on Herlev dataset.

Model Dice Precision Recall Accuracy Hausdorff Distance
SP-CNN [7] ]0.9000 0.8900 0.9100 - -
PSPNet [24] |{0.9070 0.9280 0.9090 - -
DeeplabV3 [24] 0.9130 0.9170 0.9260 - -
ASCNet [24] [0.9150 0.9100 0.9380 - -
UNet 0.9042 0.9053 0.9308 0.9588 36.4990

DenseUNet |0.9327 0.9308 0.9459 0.9731 17.3826
DACN 0.9454 0.9474 0.9508 0.9763 15.5814

Table 2. Quantitative analysis of different methods on ISIC dataset.

Model Dice Precision Recall Accuracy Hausdorff Distance
FocusNetAlpha [15]] 0.8404 0.8002 0.8222 0.9349 -
UNet 0.7826 0.8766 0.7683 0.9135 39.1774
DenseUNet 0.8403 0.9364 0.8087 0.9316 26.1643
DACN 0.8463 0.9076 0.8432 0.9319 24.4691
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Fig. 3. Comparison of segmentation maps of different models. Top row: an example
on Herlev dataset. Bottom row: an example on ISIC dataset. Compared to UNet and
DenseUNet, DACN produces more accurate prediction maps.

4 Results

Evaluation of the performance of DACN. Table 1 shows the quantita-
tive comparison of different approaches on Herlev dataset. The proposed DACN
outperforms all other models including the CNN backbone DenseUNet and exist-
ing state-of-the-art frameworks on this dataset. Table 2 shows the experimental
results on ISIC dataset. DACN performs best in Dice (0.8463), Recall (0.8432)
and Hausdorff Distance (24.4691). Compared to the baseline DenseUNet, DACN
yields a higher Recall (0.8432) with a considerable improvement (3.45%), sug-
gesting that DACN produces less false negatives (FN). Accuracy (0.9319) of
DACN is close to the optimal one (0.9349). Although Precision of DACN is
lower than that of DenseUNet, it is still at a high level. Besides, it is worth
mentioning that DACN gets good performance in Hausdorff Distance on both
datasets. Hausdorff Distance measures the boundary distance between two sur-
faces, indicating that DACN tends to produce more precise localization of object
boundary. Segmentation results of different methods are shown in Fig. 3. It can
be observed that the target boundaries are really complex and low-contrast to
background, thus resulting in the failure of UNet and DenseUNet. However, in
such case, DACN still generates relatively accurate prediction maps.

Evaluation of the edge location precision. Specifically, we make trimap
experiment to quantify the performance of boundary delineation. In order to
compare the property of different models, we display the bar charts about re-
lated results in Fig. 4. Compared to the CNN backbone (DenseUNet), DACN
gains higher Dice in all settings on both datasets. When the band widths of
evaluation region are 5, 10, 15, 20 pixels, on ISIC dataset, the improvements of
DACN across Dice coefficient are 4.40%, 3.59%, 3.12% and 2.45% respectively.
With the increasing of band width, the gap between the CNN backbone and
DACN reduces gradually, which may account for the slight improvement of Dice
computed over the entire image. The above results demonstrate that DACN has



8 M. Zhang et al.

—_— Comparison for Dice coefficient on Herlev dataset Comparison for Dice coefficient on ISIC dataset
mmm DACN s DACN
s DenseUNet B DenseUNet
2 08501 UNet - 2 0651 UNet -
Q Xl
O 0.825 "]
O 0.800 o
o o
[ (V]
©0.775 2 0.55 1
(a) [a)
. .
0.50 1
0725 | N
5 10 15 20 5 10 15 20
Trimap width (pixels) Trimap width (pixels)
(a) (b)

Fig. 4. The results of trimap experiment on two datasets. (a) The bar chart about
trimap experiment on Herlev dataset. (b) The same bar chart on ISIC dataset. Dice
is calculated in the region surrounding the object boundaries, where trimap width
represents the band of this region.

strong capability to identify accurate boundaries, benefiting from the utilization
of active contour models (ACMs).

For the sake of exploring the working mechanism of DACN, we show the
learned initial contours and pixel-level parameter maps p(z,y), A(z,y) in Fig. 5.
In the initial contours, some pixels around the object boundary are difficult
samples with weak confidence, making it necessary to evolve the contour more
accurately by ACMs. In addition, in the p(z,y) map, locations which have sim-
ilar intensity with the target in raw image are inclined to generate higher p
values. One possible explanation is that the learned parameter maps can pro-
vide additional guidance for DACN to evolve towards the object boundary, which
compensates for the faults of CNN.

5 Conclusion

In this paper, we present a novel deep active contour network (DACN) for med-
ical image segmentation, which integrates ACM (convexified Chan-Vese model)
into the DenseUNet architecture in an end-to-end differential manner. By lever-
aging the advantage of ACM to locate object edges, the proposed DACN tends
to generate more accurate segmentation of contours. Our DACN has better per-
formance on two public datasets compared to UNet, DenseUNet as well as sev-
eral state-of-the-art models, especially for boundary delineation. Additionally,
DACN can also be applied to multi-class semantic segmentation, where the issue
of multi-class semantic segmentation should be decomposed into several single-
class segmentations. In the future, it is worth further investigation about the
working mechanism of DACN.
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Fig. 5. Illustrations of the learned initial contours and pixel-wise parameter maps by
the CNN backbone. The top two rows: examples on Herlev dataset. Bottom row: an
example on ISIC dataset.
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