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Abstract

X-ray computed tomography (CT) has been playing an important role
in diagnostic of cancer and radiotherapy. However, high imaging dose
added to healthy organs during CT scans is a serious clinical concern.
Imaging dose in CT scans can be reduced by reducing the number of
X-ray projections. In this paper, we consider 2D CT reconstructions
using very small number of projections. Some regularization based re-
construction methods have already been proposed in the literature for
such task, like the total variation (TV) based reconstruction [1-4] and
balanced approach with wavelet frame based regularization [5]. For most
of the existing methods, at least 40 projections is usually needed to get
a satisfactory reconstruction. In order to keep radiation dose as mini-
mal as possible, while increase the quality of the reconstructed images,
one needs to enhance the resolution of the projected image in the Radon
domain without increasing the total number of projections. The goal of
this paper is to propose a CT reconstruction model with wavelet frame
based regularization and Radon domain inpainting. The proposed model
simultaneously reconstructs a high quality image and its corresponding
high resolution measurements in Radon domain. In addition, we discov-
ered that using the isotropic wavelet frame regularization proposed in [6]
is superior than using its anisotropic counterpart. Our proposed model,
as well as other models presented in this paper, is solved rather efficiently
by split Bregman algorithm [7,8]. Numerical simulations and comparisons
will be presented at the end.
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1 Introduction

X-ray computed tomography (CT), e.g. cone-beam or regular CT, has been
widely used for cancer detection and radiation therapy, among many other ap-
plications. However, the major clinical concern for CT is the radiation dose
imposed to the patients during imaging procedure (see e.g. [9]). The imaging
dose can be controlled by reducing the number of projections or decreasing
the tube current and pulse duration. However, all these methods of restricting
imaging dose lead to degradations of image quality due to insufficiency of infor-
mation in the data collected. The filtered back-projection (FBP) algorithm [10],
which is a conventional algorithm that has been widely used, cannot produce
high quality image reconstruction if the information collected by the machine
is not sufficient enough (e.g. when small number of projections are used). As
a result, it is necessary to design new methods to reconstruct high quality CT
images from limited and noisy projection data.

One of the common CT systems is the cone-beam CT system. In 2 di-
mensional cases, it is known as the fan-beam CT, which will be the scanning
geometry that we focus in this paper. For simplicity, we assume the the source
rotates the object following a circle with a fixed radius by 360 degrees.

For a given angle § and X-ray beamlet r, the X-ray projection operator P%"
is defined as follows:

L(t)
PO [u)(t) = /0 u(xg + nl)dl. (1)

where u is the unknown image (X-ray attenuation coefficients) that needs to
be reconstructed, xo = (¢, yg) represents the coordinate of the X-ray source
which is different for different projection angle 6, n = (n,,n,) is the direction
vector of beamlet r, ¢ is the coordinate on the X-ray imager which is precisely
the intersection of the beamlet r with the X-ray imager, L(¢) is the length of the
X-ray beamlet from the source to the location ¢ on the imager. Now if P [u](t)
is sampled with respect to t for each angle 6, the resulting data projection can
essentially be written as a vector fy. Now putting the vectors fy together for all
different angles 6, we obtain an image denoted as f whose columns are formed
by fo. We always assume that the increments of angles are equal.
We can now write the CT image reconstruction problem as a linear inverse
problem
Pu=f, @)

where P is the linear operator represents the collection of discrete line inte-
grations at different projection angles and along different beamlets. In other
words, the CT image reconstruction problem is to recover image u from its
partial Radon transform [11]. Notice that the matrix P only depends on the
location and direction of each beamlet. Therefore, we can construct the huge
sparse matrix P beforehand. In our simulations, the matrix P is generated by
Siddon’s algorithm [12].

In order to reduce the imaging dose, we can simply reduce the total number
of projections. Since each row of the matrix P corresponds to each beamlet



used to acquire the projected image data, reducing the total number of pro-
jections can make the matrix P to be under-determined. Consequently, the
linear system Pu = f will have infinitely many solutions. There are some direct
methods solving the linear system, e.g. the FBP algorithm [10] and algebraic
reconstruction techniques (ART) [13]. However, solutions obtained from such
methods are usually lack of regularity and contain artifacts, especially when the
total number of projections is small.

In practice, the projected image f usually contains noise. Therefore, it is
generally not a good idea to directly solve the system Pu = f or the corre-
sponding least square problem. To suppress noise and artifacts while main-
taining quality of the reconstructed images, various differential operator based
regularization methods, known as variational models, have been proposed in
the literature, among which the total variation (TV) based regularization is one
of the popular models and is proven to be effective, especially for images that
are piecewise constant. TV-based image regularization model (known as the
ROF model) was first proposed by [14] in the context of image denoising, and
it was later extended and applied to other image processing and analysis tasks
(see [15-19] and the references therein). TV-based regularization model was
first applied to cone-beam CT image reconstruction in [1,2], and later in [3] a
GPU based implementation was proposed that greatly speeds up the computa-
tion efficiency of TV-based regularization. TV-based model was also applied to
equally-slopped tomography in [20]. One of the standard forms for TV-based
image reconstruction model can be written as follows

.1
min <|[Pu— fI3 4+ N|Val . 3)

where f is the projected image, V is the gradient operator and P is the projec-
tion operator.

Another regularization based image reconstruction technique is the wavelet
frame based approach. The basic idea for wavelet frame based approaches is that
images can be sparsely approximated by properly designed wavelet frames, and
hence, the regularization used for wavelet frame based models is the ¢;-norm
of frame coefficients. Although wavelet frame based approaches take similar
forms as variational models (e.g. TV-based model (3)), they were generally
considered as different approaches. Such impression was changed by the recent
paper [6], where the authors established a rigorous connection between one of
the wavelet frame based approaches, namely the analysis based approach, and
variational models. It was shown in [6] that the analysis based approach can
be regarded as a finite difference approximation of a certain type of general
variational model, and such approximation will be exact when image resolution
goes to infinity. Furthermore, the solutions of the analysis based approach also
approximates, in some proper sense, the solutions of corresponding variational
model. Such connections not only grant geometric interpretation to wavelet
frame based approaches, but also lead to even wider applications of them, e.g.
image segmentation [21] and 3D surface reconstruction from unorganized point
sets [22]. On the other hand, the discretizations provided by wavelet frames



were shown, in e.g. [6,8,23-26], to be superior than the standard discretizations
for TV-based model (3), due to the multiresolution structure and redundancy of
wavelet frames which enable wavelet frame based models to adaptively choose
a proper differential operators in different regions of a given image according to
the order of the singularity of the underlying solutions.

For these reasons, as well as the fact that images data are always discrete,
we use wavelet frames as the tool for CT image reconstruction. We note that
wavelet frame based regularization was first applied for cone-beam CT image
reconstruction in [5]. The model in that paper is essentially balanced approach
(see [23,27]). In this paper, we propose a new model that uses the analysis based
approach of wavelet frame method instead, because it is more effective in terms
of removing artifacts and keeping key features. More importantly, the model
proposed here automatically builds in a Radon domain inpainting mechanism
which enables us to reconstruct high quality images with very small number of
projections.

Notice that all the above-mentioned work treats the projected image f as
given and try to recover a desirable u from the given f. The challenge here is
when only few number of projections are used, the information contained in f is
far from being enough. All regularization based methods assume certain prior
knowledge on the desired recovery u which, to some extent, overcomes the lack
of information in f. However, the prior knowledge on the projected image f
has yet not been utilized. We observe that when measurements are sufficient,
the projected image f should be piecewise smooth and hence can be sparsely
approximated by wavelet frames. Therefore, motivated by wavelet frame based
image super-resolution models [23,27-29], we will propose a model that simul-
taneously reconstruct the CT image and its corresponding higher resolution
projected image by penalizing £1-norm of their wavelet frame coefficients. Note
that the attempt of increasing image resolution can be regarded as an image
inpainting problem [30,31]. Our numerical simulations show that the recovered
images u from our proposed model are of higher quality than the images recov-
ered by TV-based model and analysis based approach without Radon domain
inpainting. These experiments indicate that utilizing the prior knowledge of the
projected image f, in addition to the prior knowledge of u, can further improve
the quality of the reconstructed CT image.

The rest of the paper is organized as follows. In Section 2 we will present our
wavelet frame based CT image reconstruction model, together with an efficient
algorithm. Numerical simulations will be provided in Section 3 and concluding
remarks will be given in Section 4.

2 Models and Algorithms

2.1 Tight Wavelet Frames

We now briefly introduce the concept of tight frames and framelets. Inter-
esting readers should consult [32-34] for theories of frames and framelets, [35]



for a short survey on theory and applications of frames, and [26] for a more
detailed survey.
A countable set X C Lo(R) is called a tight frame of Ly(R) if

f= (fihh V€ Ly(R),

heX

where (-, ) is the inner product of La(R). The tight frame X is called a tight
wavelet frame if the elements of X is generated by dilations and translations
of finitely many functions called framelets. The construction of framelets can
be obtained by the unitary extension principle (UEP) of [33]. In our imple-
mentations, we will use the piecewise linear B-spline framelets constructed
by [33]. Given a 1-dimensional framelet system for Lo(R), the s-dimensional
tight wavelet frame system for Lo(IR®) can be easily constructed by using tensor
products of 1-dimensional framelets (see e.g. [26,32]).

In the discrete setting, a discrete image u is an s-dimensional array. We will
use W to denote fast tensor product framelet decomposition and use W' to
denote the fast reconstruction. Then by the unitary extension principle [33], we
have WTW = I, i.e. w = W' Wu for any image u. We will further denote an
L-level framelet decomposition of u as

WU = {Wl,i,ju 01 S l S L,(l,j) S I},

where I denotes the index set of all framelet bands. More details on discrete
algorithms of framelet transforms can be found in [26].

2.2 Wavelet Frame Based CT Image Reconstruction Mod-
els

We start with some simple notations. We denote fj as the observed projected
image defined on grid A of size Np, x N, where N, is the number of grid
points on the X-ray imager and N, is the number of projections used to acquire
fo- Denote the higher resolution projected image as f defined on the grid
Q) O A. From a practical concern, we will only consider inpainting with respect
to projection angles (See Figure 1). Therefore, as a typical configuration, {2
is an N, x 2N, grid whose even columns are the columns of A. Hence, the
number of projections for the operator P that corresponds to f is 2/V,. Let
Ra be the restriction operator defined as (Rav)li, j] := v[i, j] for (i,j) € A and
zero elsewhere. Then the constraint f should satisfy is Rpf = fo, meaning
the recovered high resolution projected image should be consistent with the
observed image fy. In our model, however, we will not enforce such constraint
to be exactly satisfied since fp always contains noise. We note that one can
also replace Ry by some other operators that enforce data consistency (see
e.g. [36,37]).
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Figure 1: The strategy of inpainting in Radon domain.

Now, we propose our CT image reconstruction model as follows

1
min §||R(Q\A)(PU = NI+ MW fll1p + AellWaul|1p
’u (4)
K 1
+ §||RAf — foll3 + §||RA(PU) — fol3,

where the norm || - ||1,, is defined as

L
Waullp =D > WaguP)#|| . p=12 ()

I=1 (i,5)#(0,0) .

When p = 1, we shall refer to the norm || - ||1,1 as the anisotropic ¢1-norm of the
frame coefficients, which is the standard ¢;-norm used for frame based image
restoration problems. When p = 2, we shall refer to the norm || - ||1,2 as the
isotropic ¢1-norm of the frame coefficients, which was proposed in [6]. It was
shown [6] that for image restoration problems, isotropic ¢;-norm outperforms
anisotropic ¢1-norm for analysis based approach in terms of both quality of the
restoration and efficiency of the corresponding numerical algorithm. In this
paper, we will show that for CT image reconstruction, isotropic ¢1-norm is also
superior than anisotropic £;-norm.

In model (4), W7 and W5 denote two different tight wavelet frame transform.
In our simulations, we will use cubic B-spline framelet system for W7 with 3
levels of decomposition, and linear B-spline framelet system for Wy with 1 level
of decomposition.

The first term || R\ ) (Pu— f)||3 together with the last term 1 [|Rx (Pu)—
foll3 serve as the data fidelity terms for our model. The reason that we are



not using the simpler fidelity term %||(Pu — f)|3 is because f is the estimated
projection data which is generally not as reliable as fy. Therefore, in the domain
A where the actual projected image f; is available, we should make sure that
Pu = foon A. The term 2||Rxf — fol|3 makes sure that the recovered higher
resolution projected image f is consistent with fo on A. The terms A1 ||Wiul1,p
and Ao ||Waf||1,p are regularization terms which guarantee that the reconstructed
images v and f are piecewise smooth.

We observe that the model (4) is general and includes the analysis based
approach for CT reconstruction without Radon domain inpainting as a spe-
cial case. Indeed, if we assume Q = A and kK = oo, then we can rewrite (4)
equivalently as

o1
min §||PU_fH§+)‘||Wu”1,p’ (6)

where we simply use W to denote Wy in (4). When p = 1 in (6), model (6)
is the analysis based approach proposed for general image restoration problems
[8,38,39]. Throughout the rest of this paper, we shall refer to model (6) with
p = 1 as anisotropic wavelet frame based model; and refer to model (6) with
p = 2 as isotropic wavelet frame based model.

2.3 Alternative Optimization Algorithms

To solve the model (4), we propose an alternative optimization algorithm
summarized in Algorithm 1.

Algorithm 1 Wavelet Frame Based CT Image Reconstruction

Step 0. Solve model (6) to obtain an initial reconstruction u°.

while stopping criteria is not met do
Step 1. Solve

1 K
= arg min §||R(sz\A)(PUk — N5+ MlWaflx + §||RAf — foll3-
Step 2. Solve
L1 1
uFth = arg min 5\\R(S2\A)(Pu—fk+1)|\§+)\2||W2UH1 +§||RA(PU)—fo||§-

end while

To solve model (6) as well as step 1 and 2 in Algorithm 1, we shall use the
split Bregman algorithm. The split Bregman algorithm was first proposed in [7]
which was shown to be convergent and powerful in [7,40] when it is applied
to various variational models used for image restoration, e.g., ROF [14] and
nonlocal variational models [41]. Convergence analysis of the split Bregman was
given in [8]. Here we briefly review the basic ideas of split Bregman algorithm.
Interested readers can refer to [7,8] for more details.



Consider the following minimization problem
min () + AWl 7

where E(u) is a smooth convex functional. Letting d = Wu, then (7) can be
rewritten as

Jmin B(w)+ Ald]1 8)

Note that both v and d are variables now. The derivation of splitting Bregman
iteration for solving (8) is based on Bregman distance ( [7,8]). It was recently
shown (see e.g. [42,43]) that the split Bregman algorithm can also be derived by
applying augmented Lagrangian method (see e.g. [44]) to (8). The connection
between split Bregman algorithm and Douglas-Rachford splitting was addressed
by [45]. We shall skip the detailed derivations and directly describe the split
Bregman algorithm that solves (7) through (8) as follows,

uF ! = argmin, E(u) + §[|[Wu — d* + b3,
d* 1 = argming A||d||1,, + &||d — WurT! — b3, 9)

bk+1 — bk + Wuk+1 _ dk+1_

By [46—48], the second subproblem has a simple analytical solution based on
soft-thresholding operator. Therefore, (9) can be written equivalently as

uFtt = argmin, E(u) + §||Wu — d* + b*||3,
A" =TY, (Wuk 4 bk), (10)
bk+1 — bk 4 (Wuk—l-l _ dk+1),

where TP is the soft-thresholding operator defined by

Vli g if (4,7) = (0,0)
(TF W)ig = { oy max(fo | —1,0), if (4,5) # (0,0),p=1  (11)
le%maX(Rl_t?O)a if (Z,])#(O,O),pZQ

with R = (32 j)2(0.0) i j|?)2.

Note that the last two steps of (10) are simple and computationally effi-
cient, while computation costs for the first step is usually more expensive as
it involves solving some linear system. In our simulations, we use conjugate
gradient method to solve such linear system.

By the split Bregman algorithm (9), we solve Step 1 of Algorithm 1 as
follows:

= (R(Q\A) + I+ HRA)il(R(Q\A)(PUk) + M1W1T(dlf — blf) + kR fo),
B T (WA 40,
DEF = b+ (WA — i),

(12)



Note that if £ = 1, in the first equation we have Rq\a)+ R = I. The stopping
criteria is posed as [|d} —Wju*| < €; with €; being a given tolerance. Conjugate
gradient method is used to solve the linear system in the first step.

The algorithm for Step 0 and Step 2 of Algorithm 1 is given as follows: (The
algorithms for Step 0 and Step 2 are almost the same except the operator P
corresponds to different number of projections and we have 2 = A for Step 0.)

uFt = (PTP + po )M (P (Rionay s + fo) + p2Wy' (d5 — b5)),
dy =T, (Wau 4 b5), (13)
DT = bk + (Woukt! — abth).

The stopping criteria is posed as ||d5 — Wau®|| < €, with €, being a given
tolerance. Conjugate gradient method is used to solve the linear system in the
first step.

We want to remark that at each exterior iteration of Algorithm 1, we initial-
ize Step 1 using the estimated projection image f, as well as dy and b; calculated
from a previous exterior iteration, except for the very first iteration, we choose

O =0and &) = b} = 0. Similarly, we initialize Step 2 using the recovered
CT image u, as well as do and by calculated from a previous exterior iteration,
except for the very first iteration, we choose u°, d° and b° from Step 0 as initial
guesses.

2.4 Convergence Analysis

Convergence of alternative optimization methods, also called coordinate de-
scent methods, have been well-studied in the literature [49-53]. In particu-
lar, [52, Theorem 4.1] can be directly applied to prove the convergence of Algo-
rithm 1. On the other hand, each of the subproblem of Algorithm 1 is solved
by the split Bregman algorithm and its convergence is studied by [8, 54, 55].
However, since the split Bregman algorithm is an iterative algorithm, the sub-
problems of Algorithm 1 cannot be solved exactly in practice. In that case, [52,
Theorem 4.1] is no longer applicable to ensure convergence. In this section, we
provide a convergence analysis of Algorithm 1 when each of the subproblem is
solved inexactly with some error. We will show that if the errors decay fast
enough with respect to k, then the sequence {(u*, f¥)}; is bounded and any
cluster point is a solution to (4).

Let F(u, f) : R™ x R™ — R be the objective function of (4), i.e.

1
F(u, f) = 51 Rqa) (Pu — PIE + MW fllrp + Ao Waul1p 14

K 1
+ §HRAf — foll3 + §||RA(PU) — foll3-

All the parameters A1, A2 and  are positive constants. It is clear that F'(u, f)
is convex and continuous. We say that (4, f) is a coordinatewise minimizer of



F(u, f)if
F(u,f) < F(i+vy, f) and F(a, f) < F(ua, f +vf) Y, € R" Yoy € R™.

In general, a coordinatewise minimizer is not necessarily a global minimizer.
However, we will show in the following lemma that for our F(u, f) defined
by (14), any coordinatewise minimizer is also a global minimizer. Note that
this lemma can also be derived using [52, Lemma 3.1]. For completeness of
this paper, we include a direct proof of this lemma. We first recall that the
subgradient of a convex subdifferentiable function G : RN — R at z € RV,
denoted as (0G)(x), is defined by the following inequality

Gz +y) = G(2) + (y, (0G)(x)).

In general, OG is a set belonging to RY. By Fermat’s rule (see e.g. [56, Theorem
10.1]), Z is a global minimizer of the convex subdifferentiable function G if and
only if 0 € (0G)(Z).

Lemma 2.1. Any coordinatewise minimizer of the objective function F(u, f)
defined by (14) is also a global minimizer.

Proof. First, we denote F'(u, f) := Fi(u, f) + Fa(u) + F5(f) with

1 1
Fi(u, f) = Sl Ry (Pu — PIE. Fau) = N[ Waull1p + 1 Ba(Pu) = foll3

and .
F3(f) = M|Wifllip + §||RAf — foll3-

It is clear that Fj is differentiable, and F; and Fj3 are subdifferentiable. Suppose

(@, f) is a coordinatewise minimizer of F. Then, by Fermat’s rule, we have

0€ (0uF)(af) and 0e (9:F)(a,f). (15)

Since F1, the only term of F where v and f are not separable, is differentiable,
F5 only depends on u and F3 only depends on f, we thus have

OF = OF, + 0F, + 0F; = (0,F1, 01 Fy) + (0uF,0) + (0,0, F3) = (9,F, 0, F).

In other words, OF is set formed by the tensor of 0,F and dyF. Therefore, it

is obvious from (15) that 0 € (OF)(a, f). O

Suppose each subproblem of Algorithm 1 is not solved exactly and at each
iteration we introduce errors €, > 0 and §; > 0 defined as

F(uk+17fk) < F(ak+17fk) + ek

F(uk+17fk+l) < F(uk+17fk+l> + 5k; (16)

where @**t! = argmin, F(u, f*) and f**! = argmin; F(u**1, ). Now, we
analyze the convergence of the sequence {(u*, f¥)}; defined by (16). We have
the following convergence theorem.

10



Theorem 2.2. Assume that 3777 (e + d)) < 00. Then the sequence {(uk, f*) )y
defined by (16) is bounded and any of its cluster point is a global minimizer of

F(u, f).
Proof. By (16), we have

F(uk+1,fk+1) < F(uk""l,ka) +6k < F(uk+1,fk)+5k < F(fbk+17fk) +5k+6k
< F(u”, f*) + &g, + 6.

Thus, we have
k
F(uk+1,fk+1) + Z E] +5
7=0

Since 77 (ex + k) < oo and all level sets of F, i.e. {(u,f) € R* x R™ :
F(u, f) < C}, is compact, it is clear that the sequence {(u”, f¥)}, is indeed
bounded and hence has convergent subsequence. Without loss of generality, we
assume that the sequence itself converges and has limit (u, f). Using (16) again,
we have

F(uF*1, f*) < FM 4oy, f5) + e, Vo, €R”
F(u*h [ S F M g + 6, Yop € R™

Letting k — oo, and using the continuity of F' and the fact that ¢ — 0 and
dr — 0, we have

F(a,f) < Fa+u,, f) Yo, €R

F(u, f) < F(u, f +v) Yoy € R™.
We have thus shown that (@, f) is a coordinatewise minimizer of F' and the rest
of the proof follows from Lemma 2.1. O

3 Numerical Simulations

In this section, we shall compare our proposed model (4) (using p = 2) with
TV-based model (3), anisotropic wavelet frame based model ((6) with p = 1)
and isotropic wavelet frame based model ((6) with p = 2). In all experiments,
for model (4) we always set kK = 1, Ao = 0.01, uo = 0.00002. The parameter
is set up as 200 for Catphan phantom and 1000 for other phantoms. Only the
parameter \; varies due to the strength of the noise and number of projections.
Stronger noise or less projections will make the parameter A\; larger, which
is the same as the parameter A in model (3) and (6) with both p = 1 and
p = 2. We test these models using a digital NURBS-based cardiac-torso (NCAT)
phantom [57-59].

In our experiments, all the projection data is created by set f = P(a@) + ¢,
where € is a noisy signal corresponding to an X-ray tube current of certain

11



mA used in a typical scanning protocol [60]. Roughly speaking, at each pixel
location the noise is generated from a Guassian distribution with zero mean and
a variance depending on the value of projected image at that location. We will
choose two different noise levels: mild and strong noise which can be seen in
Figure 2. To get some ideas of the actual strength of noise comparing to signal,
we remark that the pixel values of the projected image with 20 projections for
example range within [0, 5.7613] with mean 2.3967. For each model, we calculate
the relative error, correlation and the total computation time. The relative error
and the correlation is defined in (17) and (18) respectively as follows:

[[u — afl

a2 (17)

err(u) =

corr(u) = (u— @)@ — @) (18)

u—ull2fla —all»

where 4 denotes the ground truth, @ and @ denote the mean values of u and @
respectively.

300 T T T T T T T T 300
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Figure 2: The distribution of the noise adding in the Radon domain with 20
projections. Images from left to right represent the mild and strong noise,
respectively.

Table 1 and 2 show that our proposed model performs best among all tested
models. The trend of the relative error can be seen in Figure 4 and 6, which
gives us the conclusion that our proposed model (4) has the fastest decreasing
speed of relative error. Also, both the anisotropic wavelet frame based model
and isotropic wavelet frame based model generate better results than TV-based
model (3). It is worth noticing that the isotropic wavelet frame based model,
the relative error is lower and the correlation is higher comparing to anisotropic
wavelet frame based model, since the isotropic £;-norm can protect edges in all
directions.

The reconstructed images for all the tested models and cases are shown in
Figure 3 and Figure 5. We observe that the reconstructed images have almost
no artifacts using either isotropic wavelet frame based model or our proposed

12



model (4). In particular, for N, = 15, some of the key structures in the lung
region are lost for TV-based model, the anisotropic wavelet frame based model
recovers more structure than TV-based model, while our proposed model (4)
recovers even more structure than the anisotropic wavelet frame based model.

In addition to simulated CT data, we also test our algorithm to real CT data.
We apply all algorithms to reconstruct a transverse slice on the source rotation
plane of the physical Catphan phantom (The Phantom Laboratory, Inc., Salem,
NY) using GE CT scanner at mA level 100 with 984 projections being acquired
by the scanner. We select 30 projections among the 984 projections (i.e. N, =
30) for reconstruction. Reconstructed images are shown in Figure 7. Judging
from the spatial resolution of the reconstructed CT images, it is clear that all
wavelet frame based models produce better results than the TV-based model,
among which our inpainting model (4) performs the best.

Finally we note that if we use model (4) and do inpainting in Radon domain
twice, the relative error can be further reduced and the correlation will be
enhanced at the cost of more computation time (see Table 3).

Table 1: Comparison of relative error (in percentage), correlation (in percentage)
and the running time (in seconds) of the algorithm with mild real noise.

N TV-based Model Anisotropic Tsotropic Inpainting Model (4)
P I i T - :
error ___corr ___Time | error __corr __ Time | error _ corr __ Time | error corr Time
10 19.3 96.8 107 15.2 98.0 100 13.6 98.4 113 12.4 98.7 285
15 12.4 98.7 124 9.9 99.1 121 8.4 99.4 138 7.2 99.6 369
20 8.8 99.4 137 7.7 99.5 128 6.2 99.7 140 5.2 99.8 396
30 6.3 99.7 172 5.8 99.7 151 4.7 99.8 173 4.1 99.8 523
40 5.1 99.8 204 4.5 99.8 188 3.4 99.9 203 2.9 99.9 640
60 3.8 99.9 265 3.5 99.9 427 2.7 99.9 370 2.2 100.0 807

Table 2: Comparison of relative error (in percentage), correlation (in percentage)
and the running time (in seconds) of the algorithm with strong real noise.

TV-Based Model Anisotropic Tsotropic Tnpainting Model (4)

Np - - - -
error _ _corr _ Time | error _ corr _ Time | error _ corr _ Time | error _ corr __ Time
15 15.3  98.1 146 1.1 99.0 130 10.2  99.1 126 9.5 99.2 338
20 12.6  98.6 295 8.9 99.3 142 8.2 99.4 159 7.9 99.4 430
30 11.2 98.9 354 7. 99.5 186 7.1 99.6 177 7.0 99.6 526
40 10.4  99.1 398 7.1 99.6 218 6.6 99.6 207 6.5 99.6 654

Table 3: Comparison of relative error (in percentage), correlation (in percentage)
and the running time (in seconds) of the multiple inpainting in Radon domain
with the regularization of wavelet frame for mild real noise.

N Isotropic Inpainting Once Inpainting Twice

P error correlation Time error correlation Time error correlation Time
10 13. 98.4 113 12.4 98.7 285 12.3 98.7 411
15 8.4 99.4 138 7.2 99.6 369 7.0 99.6 550
20 6.2 99.7 140 5.2 99.8 396 5.0 99.8 818

4 Conclusions

In this paper, we proposed a simultaneous CT image reconstruction and
Radon domain inpainting model using wavelet frame based regularization. The

13



Figure 3: The tomographic result with mild real noise. The image on top
is the true data . The following rows represent the results using 15, 20, 30
and 40 projections, respectively. Images from left to right in each row are the
results obtained by TV-based model, anisotropic wavelet frame based model,
our proposed isotropic wavelet frame based model and our proposed model (4)
with inpainting in Radon domain.
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Figure 4: The change of relative error during the iteration for the cases with mild
real noise. The two graphs represent the results using 15 and 20 projections,
respectively.

proposed model reconstructs high quality CT images as well as high resolu-
tion projected images based on the observed low resolution projected images.
Fast numerical algorithms were also introduced base on the split Bregman algo-
rithm. Our numerical simulations show that the proposed model outperforms
the TV-based model, as well as analysis based approach without Radon domain
inpainting.
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