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Abstract. We are living in the era of big data. The discovery, interpretation and usage of the information,
knowledge and resources hidden in all sorts of data to benefit human beings and to improve everyone’s day to
day life is a challenge to all of us. The huge amount of data we collect nowadays is so complicated, and yet
what we expect from it is so much. It is hard to imagine that one can characterize these complicated data sets
and solve real life problems by solving merely a few mathematical equations. However, generic mathematical
models can be used to obtain a coarse level approximation (or low accuracy solution) to the answers we are
seeking. The first question is how to use generic prior knowledge of the underlying solutions of the problem in
hand and to set up a proper model for a good low level approximation? The second question is whether we
are able to use the knowledge and information from the approximate solution derived from the given data to
further improve the model itself so that more accurate solutions can be obtained? That is: how to engage an
interactive data-driven approach to solve complex problems?

As images are one of the most useful and commonly used types of data, in this article, we review the
development of the wavelet frame (or more general redundant system) based approach for image restoration
from a data-driven perspective. We will observe that a good system for approximating any function, including
images, should be capable of effectively capturing both global patterns and local features of the function. A
wavelet frame is one of the examples of such system. We will show how algorithms of wavelet frame based image
restoration are developed via the generic knowledge of images. Then, we will show how specific information of
a given image can be used to further improve the models and algorithms. Through this process, we shall reveal
some insights and understandings of the wavelet frame based approach for image restoration. We hope that this
also leads to new ideas on how to analyze more complex data sets generated from other real life problems.
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1. Introduction

As we are living in a digital world now, the creation, distribution, integration, interpretation and
manipulation of data have become an important part of our society. Digital images are no doubt
one of the most important components of data. This is not only because image is a powerful and
widely used medium of communication, but also because it is an easy, compact, and widespread way
to represent the physical world. Advances in computer technology have made it possible to apply some
of the most sophisticated developments in mathematics and sciences to the design and implementation
of fast algorithms running on a large number of processors to process image data. As a result, image
processing and analysis techniques are now widely applied to natural sciences, technical disciplines and
social medias; and digital images have come into everyone’s life.

Image restoration, including image denoising, deblurring, inpainting, medical imaging, etc., is one of
the most important areas in imaging science. Its major purpose is to obtain high quality reconstructions
of images that are corrupted in various ways during the process of imaging, acquisition and communi-
cation, and enable us to see crucial but subtle objects that reside in the images. Mathematics has been
playing an important role in image restoration from the very beginning. In fact, it has been one of the
driving forces of the modern development of image restoration. Conversely, image restoration brings to
mathematics a host of challenging new problems and fascinating applications that gave birth to many
new mathematical tools whose application has even gone beyond the scope of image restoration.

Most of the existing models and algorithms for image restoration are transformation based. A good
transformation for image restoration should be capable of capturing both global patterns and local
features of images. The global patterns are smooth image components that provide a global view of
images, while the local features are “sharp” image components that characterize local singularities (or
fine details) of images such as edges and hidden edges (jump discontinuities after 1st order differenti-
ations). For example, when the transform deduced by convolution of a certain filter bank is used, the
global patterns are normally encoded by dense coefficients obtained from low-pass filtering; and the
local features are often encoded by coefficients obtained from high-pass filtering whose magnitudes are
concentrated at zero with only a small portion of large (in magnitude) coefficients which are mostly
located near image singularities. Such property is known as “sparsity”. A good example of such filter
bank based transform is the tight wavelet frame transform.
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One of the earliest transform used is the Fourier transform, which is effective on signals that are
smooth and sinusoidal like. However, Fourier transform can only well capture global patterns due to
its poor spatial localization. This makes Fourier transform much less effective on signals with multiple
localized frequency components. Windowed Fourier transforms [1] were introduced to overcome the
poor spatial localization of the Fourier transform. A window Fourier transform provides a “global
patterns plus local features” type of decomposition of signals. However, the high frequency coefficients
in the transform domain are not ideally sparse for images due to the fixed time-frequency resolution
of windowed Fourier transforms. This is why wavelets and wavelet frames are much more effective for
images than Fourier or windowed Fourier transforms, because of their varied time-frequency resolution
which enables them to provide better sparse approximation to local image features. This leads to a
very successful application of orthonormal or biorthogonal wavelets in image compression (see e.g. [2]).
In this paper, we shall present a story of image restoration by redundant systems, especially wavelet
frames that can provide a good sparse approximation to local image features, while at the same time,
capture global patterns of images as well.

Images can be regarded as a certain discrete realization of piecewise smooth functions (see (3.4) for
the definition of piecewise smooth function space). Image restoration problems can be formulated as
the following linear inverse problem

f=Au+n (1.1)

where the matrix A is some linear operator (not invertible in general) and 1 denotes a perturbation
caused by the additive noise in the observed image, which is typically assumed to be white Gaussian
noise. Different image restoration problem corresponds to a different type of A, e.g., the identity
operator for image denoising, a restriction operator for inpainting, a convolution operator for image
deconvolution, a partial collection of line integrations for CT imaging, a partial Fourier transform for
MR Imaging, etc.

The problem (1.1) is usually ill-posed, which makes solving (1.1) non-trivial. A naive inversion
of A, such as pseudo-inversion or via Tikhonov regularization [3], may result in a recovered image
with amplified noise and smeared-out edges. A good image restoration method should be capable
of smoothing the image so that noise is suppressed to the greatest extend, while at the same time,
preserving important image features such as edges, ridges, corners, etc. This is a rather challenging
task since smoothing and preservation of features are often contradictory to each other. Therefore, the
key to the success of any transformation based image restoration method is to find a transform that
can identify local features from the given image, or in other words, to separate singularities and smooth
image components.

Wavelet frames represent images as an addition of global patterns, i.e. smooth image components,
and local features, i.e. image singularities. In wavelet frame domain, global patterns are represented by
densely distributed coeflicients obtained from low-pass filtering, while local features are represented by
sparse coefficients obtained from high-pass filtering. This makes it easy for us to differentiate between
smooth and sharp image components. Therefore, wavelet frames can effectively separate smooth image
components and image features, which is the key to their success in image restoration. In addition to
provide sparse approximation to local image features, the large coefficients from high-pass filtering can
also be used to accurately detect the locations and estimate the types of image singularities [2,4,5]. In
other words, the coefficients from high-pass filtering also provide reliable analysis and classifications of
image features in the transform domain. For simplicity, we shall refer to the wavelet frame coefficients
obtained from low-pass filtering as dense coefficients and those obtained from high-pass filtering as
sparse coefficients.

Most of the transformation based image restoration methods conduct processing in the transform
domain. For wavelet frame transforms, the dense coefficients are normally untouched since the regularity
of the smooth image components they approximate is automatically granted by the low-pass filtering.
On the other hand, since the sparse coefficients of wavelet frame transforms are highly concentrated, it
is natural to set small coefficients to zero since they are most likely to be noise; and sharpen the large
coefficients so that image features are enhanced. Such processing is known as shrinkage, whose main
purpose is to enhance image features while maintaining smoothness in smooth image regions. Simplest
examples of shrinkage operators include the well-known soft- and hard-thresholding that are widely used
in transformation based image restoration. However, there are more sophisticated shrinkage operators
used in the literature, such as the adaptive wavelet frame shrinkage [6], which works better than soft-
thresholding. The soft-thresholding operator was later shown to be equivalent as the minimization of an
¢1-norm based optimization model [7]. The hard-thresholding operator is equivalent as the minimization
of an £p-“norm” based optimization model [8,9]. These discoveries laid the foundation for the recent
development of transformation based image restoration models and algorithms.

Redundant systems such as wavelet frames have been implemented with excellent results in both
classical and some more challenging image restoration problems. Their applications in classical image
restoration problems include image inpainting [10], super-resolution [11], deblurring [12-15], demosaic-
ing [16] and enhancement [17]. Wavelet frames are also applied to more challenging image restoration
problems such as blind deblurring [18,19], blind inpainting [20], and denoising with unknown noise
type [21]. Wavelet frame related algorithms have been developed to solve medical and biological image
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processing problems as well, e.g. X-ray computer tomography (CT) image reconstruction [22,23], and
protein molecule 3D reconstruction from electron microscopy images [24]. Frames provide large flexibil-
ity in designing adaptive and non-local filters with improved performance in applications. For example,
the filters used for image restoration in [25-27] are learned from the image, resulting in filters that
capture certain features of the image and lead to a transform that gives better sparse approximations
for local feature. In [28], Gabor frame filter banks are designed to achieve high orientation selectivity
that adapts to the geometry of image edges for sparse image approximation. The application of wavelet
frames has gone beyond image restoration. They have been successfully used in video processing [29],
4D CT image reconstruction [30,31], image segmentation [32,33] and classifications [34,35]. More re-
cently, wavelet frames are constructed on non-flat domains such as surfaces [36,37] and graphes [38-41]
with applications to denoising [36,37,41] and graph clustering [41].

Another class of methods for image restoration that have been developed through a rather different
path is the PDE based approach [42-44], which includes variational and (nonlinear) PDE based methods.
The basic idea of variational methods is to characterize images as functions living in a certain function
space, such as BV space [45] (space of functions with bounded variations), and an energy functional
is designed according to the function space assumption. While wavelet frame based approach also
has a function space interpretation of the underlying solutions, i.e. piecewise smooth function space
(3.4), variational methods can be understood as a transformation based methods as well, where the
transformations are the differential operators involved in the variational models. PDE models, on the
other hand, do not seem to be transformation based at the first glance. Most of the design of (nonlinear)
PDEs for image restoration is based on geometric or physical properties of the images to be recovered.
It is not clear what transformation is essentially being used in these PDE models. However, based on
the recent findings by [6], PDE models can be understood as transformation based methods as well,
where the transformation is the discretization of the differential operators involved in the PDEs.

In recent work by [46,47], fundamental connections between wavelet frame based approach and
variational methods were established. In particular, connections to the total variation model [45] was
established in [46], and to the Mumford-Shah model [48] was established in [47]. Furthermore, in [6], the
authors established a generic connection between iterative wavelet frame shrinkage and general nonlinear
evolution PDEs. The authors showed that wavelet frame shrinkage algorithms are discretizations of a
generic type of nonlinear evolution PDEs that includes the Perona-Malik equation [49] and the shock-
filters [50]. The series of three papers [6,46,47] showed that wavelet frame transforms are discretization
of differential operators in both variational and PDE frameworks, and such discretization is superior
to some of the traditional finite difference schemes for image restoration. This new understanding
essentially merged the two seemingly unrelated areas: wavelet frame base approach and PDE based
approach. It also gave birth to many innovative and more effective image restoration models and
algorithms.

In this paper, we focus on a review of some classical and recent wavelet frame based image restoration
methods from a data-driven point of view. In fact, one of the earliest papers on wavelet frame based
image restoration [11] followed a data-driven intuition, which inspired many later research on the
subject. Many algorithms developed afterwards can be understood as having the same algorithmic
structure and obeying the same image processing philosophy as [11].

The algorithm of [11], as well as some of the later wavelet frame based image restoration methods,
uses a generic prior knowledge of images, i.e. local image features can be sparsely approximated by
wavelet frames. However, such generic representation and the associated shrinkage based algorithm may
not be ideal for a specifically given image. How can we utilize the prior knowledge on a given image to
improve the classical wavelet frame methods that were designed based on generic prior knowledge on
images?

Many recent successful frame based methods are adaptive to a specifically given image. These meth-
ods respect the features of the observed image and exploit those features in the modeling or algorithmic
design to achieve better image restoration results. In this paper, we will discuss three approaches to
improve classical wavelet frame based methods by making them adaptive to any specifically given im-
age. One approach is to design tight frames for the specifically given image, instead of using generic
tight frames. We shall review two types of tight frames learned from a given image so that the image
can be more effectively decomposed to its global patterns plus local features. They are the adaptive
tight frames of [26] and the data-driven non-local tight frames of [25]. The second approach is the
piecewise smooth image restoration models by [47,51], whose idea is to actively estimate the locations
of local image features so that the underlying wavelet frame system can have a better approximation to
global patterns and sparser approximation to local features specifically for a given image. Moreover, the
models by [47,51] even went beyond the scope of low level image processing and opened a door to the
unified low and high level modeling for image restoration, object identification and image classification.
The third data-driven approach is to design shrinkage operators that are adaptive to the local features
of the given image. We will review the adaptive wavelet frame shrinkage algorithm proposed in [6]
which also has generic and natural link to nonlinear evolution PDEs.

The paper is organized as follows. In Section 2, we start with a brief review of some basics of wavelet
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frames followed by a discussion on how functions and images are approximated by wavelet frames. Then,
we discuss wavelet frame based image restoration algorithms and models based on generic data-driven
designs. Finally, we show how the same idea of algorithmic design can be applied to problems beyond
image restoration, such as matrix completion. In Section 3, we discuss how one can create algorithms
and models that are adaptive to a specific image. We will start with the constructoin of adaptive tight
frames and data-driven non-local tight frames, followed by the piecewise smooth image restoration
models and the adaptive wavelet frame shrinkage algorithm.

2. Generic Data-Driven Algorithms and Models

The key to image restoration is to preserve smooth image components and enhance image features
which are normally image singularities. The generic prior knowledge we assume on images is that
images have rich local features with some global patterns. The advantage of using wavelet frames for
image restoration is their capability of effectively decomposing images to their “global patterns” plus
their “local features”, or in other words, densely approximating smooth image components and sparsely
approximating image features. In this section, we start with a review of some basic concepts of wavelet
frames, followed by a detailed description of the “global patterns plus local features” decomposition
of images. Then, we describe the basic idea of iterative frame wavelet shrinkage for image denoising.
We discuss how a similar idea can be applied to wavelet frame shrinkage for generic image restoration
problems or even some data processing problems. These methods are of data-driven nature based on
some key observations of the class of images or data to be processed. Therefore, we shall refer to these
methods as generic data-driven methods.

2.1. Short Review of Wavelet Frames. In this section, we briefly introduce the concept
of wavelet frames. The interested readers should consult [52-55] for theories of frames and wavelet

frames, [56] for a short survey on the theory and applications of frames, and [57] for a more detailed
survey.

Frame theory and its applications, notably the Gabor frames (see e.g. [1,2,54]) and generic wavelet
frames (see e.g. [2,54]), were developed long before the discovery of the multiresolution analysis (MRA)
of [58,59] and the systematic construction of the MRA-based compactly supported orthonormal wavelets
of [60]. The concept of frame can be traced back to [61]. The rich literature of Gabor and wavelet
frames provides a wide range of applications including time frequency analysis for signal processing,
coherent state in quantum mechanics, filter bank design in electrical engineering, edge and singularity
detection in image processing, and etc.

Comprehensive characterization and construction of MRA-based wavelet frames, especially tight
wavelet frames, started with the analysis of shift-invariant systems and generalized shift-invariant sys-
tems of functions by [52,53,62-64]. The duality principle for Gabor frames [63] and the unitary and
mixed extension principles for wavelet frames [52,53] are two central results that follow from this anal-
ysis. Wavelet (or affine) systems are not shift-invariant systems and hence the theory of shift-invariant
systems by [64] cannot be directly applied. It was shown by [52] that a wavelet system is a tight frame
if and only if its corresponding quasi-affine system generated by the same set of functions is a tight
frame. This striking fact not only led to a characterization of tight frames without MRA, but also led
to the unitary extension principle of [52] which provided a generic characterization of MRA-based tight
wavelet frames and made construction of tight wavelet frames painless [55,65-69]. Further theoretical
developments on MRA-based wavelet frames can be found in e.g. [55,70,71] and the references therein.
More recently in [72], connection between the unitary extension principle and the duality principle
was established, which led to a simple construction scheme for MRA-based multivariate tight wavelet

frames.
Aset X ={g;:j € Z} C La(R?), with d € N, is called a frame of Lo(R?) if

AN ey < D0 U901 < BllFIZy@ey Y € La(RY),
JEZ
where (-,-) is the inner product of Ly(R%). We call X a tight frame if it is a frame with A = B = 1.
For any given frame X of Ly(R%), there exists another frame X = {g; : j € Z} of La(R%) such that

F=Y (973 Vfe€Ly(RY,
JEZ
We call X a dual frame of X. We shall call the pair (X, X ) bi-frames. When X is a tight frame, we
have
F=Y (f91)9; VfE€L(RY,

JEL
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For given ¥ = {41,...,1,.} C La(R?), the corresponding quasi-affine system X (¥) generated by W
is defined by the collection of the dilations and the shifts of ¥ as

X(0) = {tppr: 1<l<rnel ke, (2.1)
where 1, . is defined by
_ 2% (2" - —k),  n>0;
wé,n,k’ - { 2nd¢l(2n . _2717‘],{7)7 n < 0. (22)

When X () forms a (tight) frame of Ly(R?), each function ¢y, £ =1,...,r, is called a (tight) framelet
and the whole system X (¥) is called a (tight) wavelet frame system. Note that in the literature, the
affine system is commonly used, which corresponds to the decimated wavelet (frame) transforms. The
quasi-affine system, which corresponds to the so-called undecimated wavelet (frame) transforms, was
first introduced and analyzed by [52]. Here, we only discuss the quasi-affine system (2.2), since it works
better in image restoration and its connection to variational models and PDEs is more natural than
the affine system [6,46,47].

The constructions of framelets ¥, which are desirably (anti)symmetric and compactly supported
functions, are usually based on a multiresolution analysis (MRA) that is generated by some refinable

function ¢ with refinement mask p and its dual MRA generated by (b with refinement mask p satisfying

=2 )" plklp(2- —k) and ¢ =27 >" plklo(2- —k).

kezd kczd
The idea of an MRA-based construction of bi-framelets U = {¢1, ..., 1.} and ¥ = {¢1, ..., .} is to
find masks ¢ and G, which are finite sequences, such that, for £ =1,2,...,r,
b=20 Y qORGR-—k) and =20 Y GO klo(2- k) (2.3
keZd kczd

For a sequence {p[k]} of real numbers, we use p(w) to denote its Fourier series: p(w) = Y454 plkle ™.
The mixed extension principle (MEP) of [53] provides a general theory for the construction of

MRA-based wavelet bi-frames. Given two sets of finitely supported masks {p,q(l),...,q(’”)} and
{P,q1,...,q-}, the MEP says that as long as we have

BOPE + a7 (€ =1 and PEOPE L)+ d0EF (€ +v) = (2.4)
=1 =1

for all v € {0,7}9\ {0} and & € [—7,7]%, the quasi-affine systems X (¥) and X (V) with ¥ and ¥ given
by (2.3) forms a pair of bi-frames in Ly(R?). In particular, when p = p and ¢'¥) = q¥) for £ =1,...,7,
the MEP (2.4) become the following unitary extension principle (UEP) discovered in [52]:

|2+Z|“> =1 and PEPE+V)+Y g (EFO(E+v)=0, (2.5)

and the system X (¥) is a tight frame of Ly(R%). Here, p and p are lowpass filters and ¢(©), g¥) are
highpass filters. These filters generate discrete bi-frame (or tight frame if UEP is satisfied) system for
the sequence space £2(Z?). Note that some of the filters involved in the discussions of later sections may
only satisfy the first identity of (2.4) or (2.5), and the system generated by these filters shall be called
discrete bi-frame (tight frame) system. In this case the system generated by the functions associated
to these filters does not form a frame or tight frame for Lo(R?). However, these filters do form frames
or tight frames (undecimated) for f5(Z<). Since images are elements in f3(Z?), (tight) frames in the
sequence space can also be used to efficiently represent images. Furthermore, it was shown in [73]
that whenever the first condition of (2.4) is satisfied by the filters, the translation-invariant system, i.e.
the system with dyadic dilations and continuous translations, generated by the corresponding wavelet
functions forma a frame for Ly(R?). Therefore, we shall consider both types of filter banks and refer to
them all as bi-frames or tight frames.

Now, we show two simple but useful examples of univariate tight framelets. The framelet given
in Example 2.1 is known as the Haar wavelet. Since the quasi-affine system that the Haar wavelet
generates is a tight frame of Lo(R), we shall refer to ¢; in Example 2.1 as the “Haar framelet”. The
tight framelets given by Example 2.2 are constructed from piecewise linear B-spline first given by [52].
We shall refer to ¢; and v, in Example 2.2 as “piecewise linear framelets”. The framelets constructed
by B-splines, especially the piecewise linear framelets, are widely used in wavelet frame based image
restoration. In this paper, we shall refer the tight wavelet frame system constructed by [52] as the
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B-spline tight wavelet frame system in general.

Example 2.1. Let p = %[17 1] be the refinement mask of the piecewise constant B-spline By (z) = 1
for x € [0,1] and 0 otherwise. Define g; = 4[1,—1]. Then p and (V) satisfy both identities of (2.5).
Hence, the system X (¢1) defined in (2.1) is a tight frame of La(R).

Example 2.2. [52]. Let p = 1[1,2,1] be the refinement mask of the piecewise linear B-spline By () =

max (1 — |z|,0). Define ¢V = @[1,0,—1] and gz = 1[—1,2,—1]. Then p, ¢¥) and ¢ satisfy both
identities of (2.5). Hence, the system X (V¥) where U = {41,152} defined in (2.1) is a tight frame of
Ly(R).

Notice that all the high-pass filters in Example 2.1 and 2.2 are of the same length as the corresponding
low-pass filter. Thus, the wavelet frame functions in the tight frame system have the same support as the
corresponding B-splines. This is true for all B-spline tight wavelet frame systems constructed by [52].
Filters having short supports is highly desirable in applications since it means low computation costs
and sparse approximation to local features. In fact, for any given refinable box spline whose mask
satisfying the Oth-order sum rule, one can always construct a tight frame system with each generator
having support at most with the same size as the refinable box spline [72]. More general, for any given
refinable function whose mask satisfying the Oth-order sum rule, one can always find a bi-frame system
with elements having supports no larger than that of the refinable function [73].

In the discrete setting, let an image f be a d-dimensional array. We denote by Z,
the set of all d-dimensional images. We denote the d-dimensional fast (L + 1)-level wavelet frame

transform /decomposition with filters {g(®) = p,q™, -, ¢} (see, e.g., [57]) as
Wu = {Wuu : (f, l) S B}, u €1y, (2.6)

— RleNQX"'XNd

where
B={(1): 1<£<r,0<I<L}U{(0,L)}.
The wavelet frame coefficients of w are computed by Wy u = qoi[—] ® u, where ® denotes the

convolution operator with a certain boundary condition, e.g., periodic boundary condition, and gy is
defined as

(0) 191 17d.
o o [ g0k, ke 2z
Q=4 ®q-10®...®goo with qp[k] { 0. k¢27d (2.7)

Similarly, we can define Wu and ﬁvfuu given a set of dual filters {p,q",...,@")}. We denote the
inverse wavelet frame transform (or wavelet frame reconstruction) as W', which is the adjoint operator
of W, and by the MEP, we have the perfect reconstruction formula

u=W Wu, foralluecZy.
In particular when W is the transform for a tight frame system, the UEP gives us
u=W' Wu, forallucIZ,. (2.8)

For simplicity, we will mostly focus our discussions on the case d = 2, i.e. for 2-dimensional images.

2.2. Approximation. Ideally speaking, the system we use to approximate images should be able
to effectively capture both global patterns and local features of images. We need to have a system, or
transform, W that has two subsystems, Wp, and Wp. The subsystem Wp is specialized to approxi-

mate the global patterns. To well capture the global patterns, it is desirable for the atoms of subsystem
Wp to have global supports. However, having globally supported atoms is not computationally effi-

cient. When Wp is locally supported instead, the global features can only be well characterized by
dense representations of Wp. In order to well approximate local features and to distinguish them
from global patterns, atoms in W should be locally supported, and the local features can be sparsely
approximated by Wp. Moreover, in order to reduce the artifacts of the approximation, the atoms in
the systems Wp and Wy should not be entirely independent from each other. The corresponding

spaces they approximate need to be partially overlapped. Therefore, most transformations used in
image restoration are redundant. The simplest type of redundant systems is tight frames. In general,
for given data w in some class, we would like to have

%%
wa=(Wha )= (G ).

When we restore images in transform domain, it is often required to be able to recover w from Wu. To
make reconstruction of u simple, it is good to have the system W to be a tight frame, i.e. WTW = I.



Image Restoration: A Data-Driven Perspective 7

There are many such systems and tight wavelet frame system is one of the good ones.

Now, we discuss how wavelet frames approximate functions in the fashion of “global patterns plus
local features”. For simplicity, we restrict our discussions on quasi-affine tight wavelet frame systems
constructed from the UEP (2.5). Similar arguments apply to bi-frames constructed from MEP (2.4) as
well.

We start with the approximation of function f € La(R?). Let ¥ = {¢)y : 1 < £ < r} C La(R?) be
the set of compactly supported tight framelets constructed from the UEP (2.5) with ¢ € La(R?) the
corresponding compactly supported refinable function. Then, for any given integer N € Z, the system

X*(¢,U;N) = {¢n g, Yok : 1 <L <rn>NkeZ}
forms a tight frame of Ly(R9), i.e. for any f € Ly(R?),

F= (Fonmonnm+ Y. D > (Frthemk)bonk (2.9)

kezd £=1n>N keZ?

where ¢, 1 and 1y are defined by (2.2) (see e.g. [57] for details). For convenience, let

Lnf= Y (f.onmonge and Henf = > (f 000k enk.

kezd keczd
Then, (2.9) can be written as

kA
F=Lnf+) Y Heal. (2.10)
(=1n>N

The term Ly f on the right hand side of (2.10) is the quasi-interpolatory projection of f into the shift-
invariant space generated by ¢n 0. In other words, the term Ly f a smooth approximation of f at
scale IV, which represents the glocal patterns of function f. The term H, . f is a sparse approximation
of f in band ¢ and at scale n. For different band ¢, H, . f represents different type of local features
(or singularities) of f, such as jump discontinuities and hidden jump discontinuities (see Section 3.2
and [6] for more details). For different scale n, He,f represents features of f at different scales.
Therefore, a tight wavelet frame system constructed from UEP (or more generally wavelet bi-frame
systems constructed from MEP) provides the following decomposition for a given function f € Lo(R?):

f = Global Patterns + Local Features .

In discrete setting, we consider u € Z;. Let W be the tight wavelet frame transform defined by
(2.6). Define W, = Wy 1, and

;
Wi, = (Wil Wl W W L)

For wavelet frame systems, the global patterns are captured by W, i.e. Wp = W,; and the local
features are captured by Wy, i.e. W = Wy, (see Figure 2).
The perfect reconstruction formula (2.8) can be written equivalently as

r L
=W,/ Weu+ Wy Wyu =W Wy u+d Y W W, u. (2.11)
(=1 1=0

The decomposition (2.11) is the discrete analogue to (2.10), where W,/ W u is the smooth approxima-
tion of w while W;I Wy is the sparse component of u and W&Wgﬂlu represents the local features of

u in band ¢ and at scale [. Therefore, (2.11) shows the same “global patterns plus local features” type
of decomposition as (2.10). To illustrate the decomposition (2.11), we present a numerical simulation
in Figure 1, where the tight wavelet frame system used is the piecewise linear B-spline tight wavelet
frame system with filters given by Example 2.2.

Given an image u, its global patterns are represented by 