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Abstract. We are living in the era of big data. The discovery, interpretation and usage of the information,
knowledge and resources hidden in all sorts of data to benefit human beings and to improve everyone’s day to
day life is a challenge to all of us. The huge amount of data we collect nowadays is so complicated, and yet
what we expect from it is so much. It is hard to imagine that one can characterize these complicated data sets
and solve real life problems by solving merely a few mathematical equations. However, generic mathematical
models can be used to obtain a coarse level approximation (or low accuracy solution) to the answers we are
seeking. The first question is how to use generic prior knowledge of the underlying solutions of the problem in
hand and to set up a proper model for a good low level approximation? The second question is whether we
are able to use the knowledge and information from the approximate solution derived from the given data to
further improve the model itself so that more accurate solutions can be obtained? That is: how to engage an
interactive data-driven approach to solve complex problems?

As images are one of the most useful and commonly used types of data, in this article, we review the
development of the wavelet frame (or more general redundant system) based approach for image restoration
from a data-driven perspective. We will observe that a good system for approximating any function, including
images, should be capable of effectively capturing both global patterns and local features of the function. A
wavelet frame is one of the examples of such system. We will show how algorithms of wavelet frame based image
restoration are developed via the generic knowledge of images. Then, we will show how specific information of
a given image can be used to further improve the models and algorithms. Through this process, we shall reveal
some insights and understandings of the wavelet frame based approach for image restoration. We hope that this
also leads to new ideas on how to analyze more complex data sets generated from other real life problems.
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1. Introduction

As we are living in a digital world now, the creation, distribution, integration, interpretation and
manipulation of data have become an important part of our society. Digital images are no doubt
one of the most important components of data. This is not only because image is a powerful and
widely used medium of communication, but also because it is an easy, compact, and widespread way
to represent the physical world. Advances in computer technology have made it possible to apply some
of the most sophisticated developments in mathematics and sciences to the design and implementation
of fast algorithms running on a large number of processors to process image data. As a result, image
processing and analysis techniques are now widely applied to natural sciences, technical disciplines and
social medias; and digital images have come into everyone’s life.

Image restoration, including image denoising, deblurring, inpainting, medical imaging, etc., is one of
the most important areas in imaging science. Its major purpose is to obtain high quality reconstructions
of images that are corrupted in various ways during the process of imaging, acquisition and communi-
cation, and enable us to see crucial but subtle objects that reside in the images. Mathematics has been
playing an important role in image restoration from the very beginning. In fact, it has been one of the
driving forces of the modern development of image restoration. Conversely, image restoration brings to
mathematics a host of challenging new problems and fascinating applications that gave birth to many
new mathematical tools whose application has even gone beyond the scope of image restoration.

Most of the existing models and algorithms for image restoration are transformation based. A good
transformation for image restoration should be capable of capturing both global patterns and local
features of images. The global patterns are smooth image components that provide a global view of
images, while the local features are “sharp” image components that characterize local singularities (or
fine details) of images such as edges and hidden edges (jump discontinuities after 1st order differenti-
ations). For example, when the transform deduced by convolution of a certain filter bank is used, the
global patterns are normally encoded by dense coefficients obtained from low-pass filtering; and the
local features are often encoded by coefficients obtained from high-pass filtering whose magnitudes are
concentrated at zero with only a small portion of large (in magnitude) coefficients which are mostly
located near image singularities. Such property is known as “sparsity”. A good example of such filter
bank based transform is the tight wavelet frame transform.
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One of the earliest transform used is the Fourier transform, which is effective on signals that are
smooth and sinusoidal like. However, Fourier transform can only well capture global patterns due to
its poor spatial localization. This makes Fourier transform much less effective on signals with multiple
localized frequency components. Windowed Fourier transforms [1] were introduced to overcome the
poor spatial localization of the Fourier transform. A window Fourier transform provides a “global
patterns plus local features” type of decomposition of signals. However, the high frequency coefficients
in the transform domain are not ideally sparse for images due to the fixed time-frequency resolution
of windowed Fourier transforms. This is why wavelets and wavelet frames are much more effective for
images than Fourier or windowed Fourier transforms, because of their varied time-frequency resolution
which enables them to provide better sparse approximation to local image features. This leads to a
very successful application of orthonormal or biorthogonal wavelets in image compression (see e.g. [2]).
In this paper, we shall present a story of image restoration by redundant systems, especially wavelet
frames that can provide a good sparse approximation to local image features, while at the same time,
capture global patterns of images as well.

Images can be regarded as a certain discrete realization of piecewise smooth functions (see (3.4) for
the definition of piecewise smooth function space). Image restoration problems can be formulated as
the following linear inverse problem

f = Au+ η (1.1)

where the matrix A is some linear operator (not invertible in general) and η denotes a perturbation
caused by the additive noise in the observed image, which is typically assumed to be white Gaussian
noise. Different image restoration problem corresponds to a different type of A, e.g., the identity
operator for image denoising, a restriction operator for inpainting, a convolution operator for image
deconvolution, a partial collection of line integrations for CT imaging, a partial Fourier transform for
MR Imaging, etc.

The problem (1.1) is usually ill-posed, which makes solving (1.1) non-trivial. A naive inversion
of A, such as pseudo-inversion or via Tikhonov regularization [3], may result in a recovered image
with amplified noise and smeared-out edges. A good image restoration method should be capable
of smoothing the image so that noise is suppressed to the greatest extend, while at the same time,
preserving important image features such as edges, ridges, corners, etc. This is a rather challenging
task since smoothing and preservation of features are often contradictory to each other. Therefore, the
key to the success of any transformation based image restoration method is to find a transform that
can identify local features from the given image, or in other words, to separate singularities and smooth
image components.

Wavelet frames represent images as an addition of global patterns, i.e. smooth image components,
and local features, i.e. image singularities. In wavelet frame domain, global patterns are represented by
densely distributed coefficients obtained from low-pass filtering, while local features are represented by
sparse coefficients obtained from high-pass filtering. This makes it easy for us to differentiate between
smooth and sharp image components. Therefore, wavelet frames can effectively separate smooth image
components and image features, which is the key to their success in image restoration. In addition to
provide sparse approximation to local image features, the large coefficients from high-pass filtering can
also be used to accurately detect the locations and estimate the types of image singularities [2,4,5]. In
other words, the coefficients from high-pass filtering also provide reliable analysis and classifications of
image features in the transform domain. For simplicity, we shall refer to the wavelet frame coefficients
obtained from low-pass filtering as dense coefficients and those obtained from high-pass filtering as
sparse coefficients.

Most of the transformation based image restoration methods conduct processing in the transform
domain. For wavelet frame transforms, the dense coefficients are normally untouched since the regularity
of the smooth image components they approximate is automatically granted by the low-pass filtering.
On the other hand, since the sparse coefficients of wavelet frame transforms are highly concentrated, it
is natural to set small coefficients to zero since they are most likely to be noise; and sharpen the large
coefficients so that image features are enhanced. Such processing is known as shrinkage, whose main
purpose is to enhance image features while maintaining smoothness in smooth image regions. Simplest
examples of shrinkage operators include the well-known soft- and hard-thresholding that are widely used
in transformation based image restoration. However, there are more sophisticated shrinkage operators
used in the literature, such as the adaptive wavelet frame shrinkage [6], which works better than soft-
thresholding. The soft-thresholding operator was later shown to be equivalent as the minimization of an
ℓ1-norm based optimization model [7]. The hard-thresholding operator is equivalent as the minimization
of an ℓ0-“norm” based optimization model [8, 9]. These discoveries laid the foundation for the recent
development of transformation based image restoration models and algorithms.

Redundant systems such as wavelet frames have been implemented with excellent results in both
classical and some more challenging image restoration problems. Their applications in classical image
restoration problems include image inpainting [10], super-resolution [11], deblurring [12–15], demosaic-
ing [16] and enhancement [17]. Wavelet frames are also applied to more challenging image restoration
problems such as blind deblurring [18, 19], blind inpainting [20], and denoising with unknown noise
type [21]. Wavelet frame related algorithms have been developed to solve medical and biological image
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processing problems as well, e.g. X-ray computer tomography (CT) image reconstruction [22, 23], and
protein molecule 3D reconstruction from electron microscopy images [24]. Frames provide large flexibil-
ity in designing adaptive and non-local filters with improved performance in applications. For example,
the filters used for image restoration in [25–27] are learned from the image, resulting in filters that
capture certain features of the image and lead to a transform that gives better sparse approximations
for local feature. In [28], Gabor frame filter banks are designed to achieve high orientation selectivity
that adapts to the geometry of image edges for sparse image approximation. The application of wavelet
frames has gone beyond image restoration. They have been successfully used in video processing [29],
4D CT image reconstruction [30, 31], image segmentation [32, 33] and classifications [34, 35]. More re-
cently, wavelet frames are constructed on non-flat domains such as surfaces [36,37] and graphes [38–41]
with applications to denoising [36, 37, 41] and graph clustering [41].

Another class of methods for image restoration that have been developed through a rather different
path is the PDE based approach [42–44], which includes variational and (nonlinear) PDE based methods.
The basic idea of variational methods is to characterize images as functions living in a certain function
space, such as BV space [45] (space of functions with bounded variations), and an energy functional
is designed according to the function space assumption. While wavelet frame based approach also
has a function space interpretation of the underlying solutions, i.e. piecewise smooth function space
(3.4), variational methods can be understood as a transformation based methods as well, where the
transformations are the differential operators involved in the variational models. PDE models, on the
other hand, do not seem to be transformation based at the first glance. Most of the design of (nonlinear)
PDEs for image restoration is based on geometric or physical properties of the images to be recovered.
It is not clear what transformation is essentially being used in these PDE models. However, based on
the recent findings by [6], PDE models can be understood as transformation based methods as well,
where the transformation is the discretization of the differential operators involved in the PDEs.

In recent work by [46, 47], fundamental connections between wavelet frame based approach and
variational methods were established. In particular, connections to the total variation model [45] was
established in [46], and to the Mumford-Shah model [48] was established in [47]. Furthermore, in [6], the
authors established a generic connection between iterative wavelet frame shrinkage and general nonlinear
evolution PDEs. The authors showed that wavelet frame shrinkage algorithms are discretizations of a
generic type of nonlinear evolution PDEs that includes the Perona-Malik equation [49] and the shock-
filters [50]. The series of three papers [6,46,47] showed that wavelet frame transforms are discretization
of differential operators in both variational and PDE frameworks, and such discretization is superior
to some of the traditional finite difference schemes for image restoration. This new understanding
essentially merged the two seemingly unrelated areas: wavelet frame base approach and PDE based
approach. It also gave birth to many innovative and more effective image restoration models and
algorithms.

In this paper, we focus on a review of some classical and recent wavelet frame based image restoration
methods from a data-driven point of view. In fact, one of the earliest papers on wavelet frame based
image restoration [11] followed a data-driven intuition, which inspired many later research on the
subject. Many algorithms developed afterwards can be understood as having the same algorithmic
structure and obeying the same image processing philosophy as [11].

The algorithm of [11], as well as some of the later wavelet frame based image restoration methods,
uses a generic prior knowledge of images, i.e. local image features can be sparsely approximated by
wavelet frames. However, such generic representation and the associated shrinkage based algorithm may
not be ideal for a specifically given image. How can we utilize the prior knowledge on a given image to
improve the classical wavelet frame methods that were designed based on generic prior knowledge on
images?

Many recent successful frame based methods are adaptive to a specifically given image. These meth-
ods respect the features of the observed image and exploit those features in the modeling or algorithmic
design to achieve better image restoration results. In this paper, we will discuss three approaches to
improve classical wavelet frame based methods by making them adaptive to any specifically given im-
age. One approach is to design tight frames for the specifically given image, instead of using generic
tight frames. We shall review two types of tight frames learned from a given image so that the image
can be more effectively decomposed to its global patterns plus local features. They are the adaptive
tight frames of [26] and the data-driven non-local tight frames of [25]. The second approach is the
piecewise smooth image restoration models by [47, 51], whose idea is to actively estimate the locations
of local image features so that the underlying wavelet frame system can have a better approximation to
global patterns and sparser approximation to local features specifically for a given image. Moreover, the
models by [47, 51] even went beyond the scope of low level image processing and opened a door to the
unified low and high level modeling for image restoration, object identification and image classification.
The third data-driven approach is to design shrinkage operators that are adaptive to the local features
of the given image. We will review the adaptive wavelet frame shrinkage algorithm proposed in [6]
which also has generic and natural link to nonlinear evolution PDEs.

The paper is organized as follows. In Section 2, we start with a brief review of some basics of wavelet
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frames followed by a discussion on how functions and images are approximated by wavelet frames. Then,
we discuss wavelet frame based image restoration algorithms and models based on generic data-driven
designs. Finally, we show how the same idea of algorithmic design can be applied to problems beyond
image restoration, such as matrix completion. In Section 3, we discuss how one can create algorithms
and models that are adaptive to a specific image. We will start with the constructoin of adaptive tight
frames and data-driven non-local tight frames, followed by the piecewise smooth image restoration
models and the adaptive wavelet frame shrinkage algorithm.

2. Generic Data-Driven Algorithms and Models

The key to image restoration is to preserve smooth image components and enhance image features
which are normally image singularities. The generic prior knowledge we assume on images is that
images have rich local features with some global patterns. The advantage of using wavelet frames for
image restoration is their capability of effectively decomposing images to their “global patterns” plus
their “local features”, or in other words, densely approximating smooth image components and sparsely
approximating image features. In this section, we start with a review of some basic concepts of wavelet
frames, followed by a detailed description of the “global patterns plus local features” decomposition
of images. Then, we describe the basic idea of iterative frame wavelet shrinkage for image denoising.
We discuss how a similar idea can be applied to wavelet frame shrinkage for generic image restoration
problems or even some data processing problems. These methods are of data-driven nature based on
some key observations of the class of images or data to be processed. Therefore, we shall refer to these
methods as generic data-driven methods.

2.1. Short Review of Wavelet Frames. In this section, we briefly introduce the concept
of wavelet frames. The interested readers should consult [52–55] for theories of frames and wavelet
frames, [56] for a short survey on the theory and applications of frames, and [57] for a more detailed
survey.

Frame theory and its applications, notably the Gabor frames (see e.g. [1,2,54]) and generic wavelet
frames (see e.g. [2,54]), were developed long before the discovery of the multiresolution analysis (MRA)
of [58,59] and the systematic construction of the MRA-based compactly supported orthonormal wavelets
of [60]. The concept of frame can be traced back to [61]. The rich literature of Gabor and wavelet
frames provides a wide range of applications including time frequency analysis for signal processing,
coherent state in quantum mechanics, filter bank design in electrical engineering, edge and singularity
detection in image processing, and etc.

Comprehensive characterization and construction of MRA-based wavelet frames, especially tight
wavelet frames, started with the analysis of shift-invariant systems and generalized shift-invariant sys-
tems of functions by [52, 53, 62–64]. The duality principle for Gabor frames [63] and the unitary and
mixed extension principles for wavelet frames [52,53] are two central results that follow from this anal-
ysis. Wavelet (or affine) systems are not shift-invariant systems and hence the theory of shift-invariant
systems by [64] cannot be directly applied. It was shown by [52] that a wavelet system is a tight frame
if and only if its corresponding quasi-affine system generated by the same set of functions is a tight
frame. This striking fact not only led to a characterization of tight frames without MRA, but also led
to the unitary extension principle of [52] which provided a generic characterization of MRA-based tight
wavelet frames and made construction of tight wavelet frames painless [55, 65–69]. Further theoretical
developments on MRA-based wavelet frames can be found in e.g. [55,70,71] and the references therein.
More recently in [72], connection between the unitary extension principle and the duality principle
was established, which led to a simple construction scheme for MRA-based multivariate tight wavelet
frames.

A set X = {gj : j ∈ Z} ⊂ L2(R
d), with d ∈ N, is called a frame of L2(R

d) if

A‖f‖2L2(Rd) ≤
∑

j∈Z

|〈f, gj〉|2 ≤ B‖f‖2L2(Rd), ∀f ∈ L2(R
d),

where 〈·, ·〉 is the inner product of L2(R
d). We call X a tight frame if it is a frame with A = B = 1.

For any given frame X of L2(R
d), there exists another frame X̃ = {g̃j : j ∈ Z} of L2(R

d) such that

f =
∑

j∈Z

〈f, gj〉g̃j ∀f ∈ L2(R
d).

We call X̃ a dual frame of X . We shall call the pair (X, X̃) bi-frames. When X is a tight frame, we
have

f =
∑

j∈Z

〈f, gj〉gj ∀f ∈ L2(R
d).
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For given Ψ = {ψ1, . . . , ψr} ⊂ L2(R
d), the corresponding quasi-affine system X(Ψ) generated by Ψ

is defined by the collection of the dilations and the shifts of Ψ as

X(Ψ) = {ψℓ,n,k : 1 ≤ ℓ ≤ r;n ∈ Z,k ∈ Zd}, (2.1)

where ψℓ,n,k is defined by

ψℓ,n,k =

{
2

nd
2 ψℓ(2

n · −k), n ≥ 0;
2ndψℓ(2

n · −2n−Jk), n < 0.
(2.2)

When X(Ψ) forms a (tight) frame of L2(R
d), each function ψℓ, ℓ = 1, . . . , r, is called a (tight) framelet

and the whole system X(Ψ) is called a (tight) wavelet frame system. Note that in the literature, the
affine system is commonly used, which corresponds to the decimated wavelet (frame) transforms. The
quasi-affine system, which corresponds to the so-called undecimated wavelet (frame) transforms, was
first introduced and analyzed by [52]. Here, we only discuss the quasi-affine system (2.2), since it works
better in image restoration and its connection to variational models and PDEs is more natural than
the affine system [6, 46, 47].

The constructions of framelets Ψ, which are desirably (anti)symmetric and compactly supported
functions, are usually based on a multiresolution analysis (MRA) that is generated by some refinable

function φ with refinement mask p and its dual MRA generated by φ̃ with refinement mask p̃ satisfying

φ = 2d
∑

k∈Zd

p[k]φ(2 · −k) and φ̃ = 2d
∑

k∈Zd

p̃[k]φ̃(2 · −k).

The idea of an MRA-based construction of bi-framelets Ψ = {ψ1, . . . , ψr} and Ψ̃ = {ψ̃1, . . . , ψ̃r} is to
find masks q(ℓ) and q̃(ℓ), which are finite sequences, such that, for ℓ = 1, 2, . . . , r,

ψℓ = 2d
∑

k∈Zd

q(ℓ)[k]φ̃(2 · −k) and ψ̃ℓ = 2d
∑

k∈Zd

q̃(ℓ)[k]φ(2 · −k). (2.3)

For a sequence {p[k]}k of real numbers, we use p̂(ω) to denote its Fourier series: p̂(ω) =
∑

k∈Zd p[k]e−ik·ω.
The mixed extension principle (MEP) of [53] provides a general theory for the construction of

MRA-based wavelet bi-frames. Given two sets of finitely supported masks {p, q(1), . . . , q(r)} and
{p̃, q̃1, . . . , q̃r}, the MEP says that as long as we have

p̂(ξ)̂̃p(ξ) +
r∑

ℓ=1

q̂(ℓ)(ξ)̂̃q
(ℓ)

(ξ) = 1 and p̂(ξ)̂̃p(ξ + ν) +

r∑

ℓ=1

q̂(ℓ)(ξ)̂̃q
(ℓ)

(ξ + ν) = 0, (2.4)

for all ν ∈ {0, π}d \ {0} and ξ ∈ [−π, π]d, the quasi-affine systems X(Ψ) and X(Ψ̃) with Ψ and Ψ̃ given
by (2.3) forms a pair of bi-frames in L2(R

d). In particular, when p = p̃ and q(ℓ) = q̃(ℓ) for ℓ = 1, . . . , r,
the MEP (2.4) become the following unitary extension principle (UEP) discovered in [52]:

|p̂(ξ)|2 +
r∑

ℓ=1

|q̂(ℓ)(ξ)|2 = 1 and p̂(ξ)p̂(ξ + ν) +

r∑

ℓ=1

q̂(ℓ)(ξ)q̂(ℓ)(ξ + ν) = 0, (2.5)

and the system X(Ψ) is a tight frame of L2(R
d). Here, p and p̃ are lowpass filters and q(ℓ), q̃(ℓ) are

highpass filters. These filters generate discrete bi-frame (or tight frame if UEP is satisfied) system for
the sequence space ℓ2(Z

d). Note that some of the filters involved in the discussions of later sections may
only satisfy the first identity of (2.4) or (2.5), and the system generated by these filters shall be called
discrete bi-frame (tight frame) system. In this case the system generated by the functions associated
to these filters does not form a frame or tight frame for L2(R

d). However, these filters do form frames
or tight frames (undecimated) for ℓ2(Z

d). Since images are elements in ℓ2(Z
d), (tight) frames in the

sequence space can also be used to efficiently represent images. Furthermore, it was shown in [73]
that whenever the first condition of (2.4) is satisfied by the filters, the translation-invariant system, i.e.
the system with dyadic dilations and continuous translations, generated by the corresponding wavelet
functions forma a frame for L2(R

d). Therefore, we shall consider both types of filter banks and refer to
them all as bi-frames or tight frames.

Now, we show two simple but useful examples of univariate tight framelets. The framelet given
in Example 2.1 is known as the Haar wavelet. Since the quasi-affine system that the Haar wavelet
generates is a tight frame of L2(R), we shall refer to ψ1 in Example 2.1 as the “Haar framelet”. The
tight framelets given by Example 2.2 are constructed from piecewise linear B-spline first given by [52].
We shall refer to ψ1 and ψ2 in Example 2.2 as “piecewise linear framelets”. The framelets constructed
by B-splines, especially the piecewise linear framelets, are widely used in wavelet frame based image
restoration. In this paper, we shall refer the tight wavelet frame system constructed by [52] as the
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B-spline tight wavelet frame system in general.

Example 2.1. Let p = 1
2 [1, 1] be the refinement mask of the piecewise constant B-spline B1(x) = 1

for x ∈ [0, 1] and 0 otherwise. Define q1 = 1
2 [1,−1]. Then p and q(1) satisfy both identities of (2.5).

Hence, the system X(ψ1) defined in (2.1) is a tight frame of L2(R).

Example 2.2. [52]. Let p = 1
4 [1, 2, 1] be the refinement mask of the piecewise linear B-spline B2(x) =

max (1 − |x|, 0). Define q(1) =
√
2
4 [1, 0,−1] and q2 = 1

4 [−1, 2,−1]. Then p, q(1) and q(2) satisfy both
identities of (2.5). Hence, the system X(Ψ) where Ψ = {ψ1, ψ2} defined in (2.1) is a tight frame of
L2(R).

Notice that all the high-pass filters in Example 2.1 and 2.2 are of the same length as the corresponding
low-pass filter. Thus, the wavelet frame functions in the tight frame system have the same support as the
corresponding B-splines. This is true for all B-spline tight wavelet frame systems constructed by [52].
Filters having short supports is highly desirable in applications since it means low computation costs
and sparse approximation to local features. In fact, for any given refinable box spline whose mask
satisfying the 0th-order sum rule, one can always construct a tight frame system with each generator
having support at most with the same size as the refinable box spline [72]. More general, for any given
refinable function whose mask satisfying the 0th-order sum rule, one can always find a bi-frame system
with elements having supports no larger than that of the refinable function [73].

In the discrete setting, let an image f be a d-dimensional array. We denote by Id = RN1×N2×···×Nd

the set of all d-dimensional images. We denote the d-dimensional fast (L + 1)-level wavelet frame
transform/decomposition with filters {q(0) = p, q(1), · · · , q(r)} (see, e.g., [57]) as

Wu = {Wℓ,lu : (ℓ, l) ∈ B}, u ∈ Id, (2.6)

where
B = {(ℓ, l) : 1 ≤ ℓ ≤ r, 0 ≤ l ≤ L} ∪ {(0, L)}.

The wavelet frame coefficients of u are computed by Wℓ,lu = qℓ,l[−·] ⊛ u, where ⊛ denotes the
convolution operator with a certain boundary condition, e.g., periodic boundary condition, and qℓ,l is
defined as

qℓ,l = q̌ℓ,l ⊛ q̌l−1,0 ⊛ . . .⊛ q̌0,0 with q̌ℓ,l[k] =

{
q(ℓ)[2−lk], k ∈ 2lZd;

0, k /∈ 2lZd.
(2.7)

Similarly, we can define W̃u and W̃ℓ,lu given a set of dual filters {p̃, q̃(1), . . . , q̃(r)}. We denote the

inverse wavelet frame transform (or wavelet frame reconstruction) as W̃⊤, which is the adjoint operator

of W̃ , and by the MEP, we have the perfect reconstruction formula

u = W̃⊤Wu, for all u ∈ Id.
In particular when W is the transform for a tight frame system, the UEP gives us

u = W⊤Wu, for all u ∈ Id. (2.8)

For simplicity, we will mostly focus our discussions on the case d = 2, i.e. for 2-dimensional images.

2.2. Approximation. Ideally speaking, the system we use to approximate images should be able
to effectively capture both global patterns and local features of images. We need to have a system, or
transform, W that has two subsystems, WP, and WF. The subsystem WP is specialized to approxi-
mate the global patterns. To well capture the global patterns, it is desirable for the atoms of subsystem
WP to have global supports. However, having globally supported atoms is not computationally effi-
cient. When WP is locally supported instead, the global features can only be well characterized by
dense representations of WP. In order to well approximate local features and to distinguish them
from global patterns, atoms in WF should be locally supported, and the local features can be sparsely
approximated by WF. Moreover, in order to reduce the artifacts of the approximation, the atoms in
the systems WP and WF should not be entirely independent from each other. The corresponding
spaces they approximate need to be partially overlapped. Therefore, most transformations used in
image restoration are redundant. The simplest type of redundant systems is tight frames. In general,
for given data u in some class, we would like to have

Wu =

(
WPu
WFu

)
=
(

Dense
Sparse

)
.

When we restore images in transform domain, it is often required to be able to recover u from Wu. To
make reconstruction of u simple, it is good to have the system W to be a tight frame, i.e. W TW = I.
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There are many such systems and tight wavelet frame system is one of the good ones.
Now, we discuss how wavelet frames approximate functions in the fashion of “global patterns plus

local features”. For simplicity, we restrict our discussions on quasi-affine tight wavelet frame systems
constructed from the UEP (2.5). Similar arguments apply to bi-frames constructed from MEP (2.4) as
well.

We start with the approximation of function f ∈ L2(R
d). Let Ψ = {ψℓ : 1 ≤ ℓ ≤ r} ⊂ L2(R

d) be
the set of compactly supported tight framelets constructed from the UEP (2.5) with φ ∈ L2(R

d) the
corresponding compactly supported refinable function. Then, for any given integer N ∈ Z, the system

X∗(φ,Ψ;N) = {φN,k, ψℓ,n,k : 1 ≤ ℓ ≤ r, n ≥ N,k ∈ Zd}
forms a tight frame of L2(R

d), i.e. for any f ∈ L2(R
d),

f =
∑

k∈Zd

〈f, φN,k〉φN,k +

r∑

ℓ=1

∑

n≥N

∑

k∈Zd

〈f, ψℓ,n,k〉ψℓ,n,k, (2.9)

where φn,k and ψℓ,n,k are defined by (2.2) (see e.g. [57] for details). For convenience, let

LNf =
∑

k∈Zd

〈f, φN,k〉φN,k and Hℓ,nf =
∑

k∈Zd

〈f, ψℓ,n,k〉ψℓ,n,k.

Then, (2.9) can be written as

f = LNf +

r∑

ℓ=1

∑

n≥N

Hℓ,nf. (2.10)

The term LNf on the right hand side of (2.10) is the quasi-interpolatory projection of f into the shift-
invariant space generated by φN,0. In other words, the term LNf a smooth approximation of f at
scale N , which represents the glocal patterns of function f . The term Hℓ,nf is a sparse approximation
of f in band ℓ and at scale n. For different band ℓ, Hℓ,nf represents different type of local features
(or singularities) of f , such as jump discontinuities and hidden jump discontinuities (see Section 3.2
and [6] for more details). For different scale n, Hℓ,nf represents features of f at different scales.
Therefore, a tight wavelet frame system constructed from UEP (or more generally wavelet bi-frame
systems constructed from MEP) provides the following decomposition for a given function f ∈ L2(R

d):

f = Global Patterns + Local Features .

In discrete setting, we consider u ∈ Id. Let W be the tight wavelet frame transform defined by
(2.6). Define WL = W0,L and

W⊤
H =

(
W⊤

1,0, · · · ,W⊤
r,0,W

⊤
1,1, · · · ,W r, L⊤

)⊤
.

For wavelet frame systems, the global patterns are captured by WL, i.e. WP = WL; and the local
features are captured by WH, i.e. WF = WH (see Figure 2).

The perfect reconstruction formula (2.8) can be written equivalently as

u = W⊤
L WLu+W⊤

HWHu = W⊤
0,LW0,Lu+

r∑

ℓ=1

L∑

l=0

W⊤
ℓ,lWℓ,lu. (2.11)

The decomposition (2.11) is the discrete analogue to (2.10), where W⊤
L WLu is the smooth approxima-

tion of u while W⊤
HWHu is the sparse component of u and W⊤

ℓ,lWℓ,lu represents the local features of

u in band ℓ and at scale l. Therefore, (2.11) shows the same “global patterns plus local features” type
of decomposition as (2.10). To illustrate the decomposition (2.11), we present a numerical simulation
in Figure 1, where the tight wavelet frame system used is the piecewise linear B-spline tight wavelet
frame system with filters given by Example 2.2.

Given an image u, its global patterns are represented by W⊤
L WLu. Global patterns are normally

slow varying image components that mainly occupy the lower frequency bands in Fourier domain. They
can be regarded as a smooth approximation of the original image that provide us with a global view
of the image. The local features, of u is represented by W⊤

HWHu. Local image features are normally
image singularities which typically include edges, which are jump discontinuities, and hidden edges,
which are jump discontinuities after 1st order differentiations. For images that are discrete realizations
of piecewise smooth functions and when compactly supported wavelet frame systems are used, the
coefficients WLu typically form a dense array, while the coefficients WHu typically form a sparse array.
The large (in magnitude) coefficients WHu only appear near image features when the supports of the
associated high-pass filters intersect with these image features. Therefore, the “global patterns plus
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Image Global patterns Local features

Figure 1. This figure shows the decomposition: u = W⊤
L WLu+W⊤

HWHu.

local features” type of decomposition can also be stated in transform domain as the “dense plus sparse
approximation” of images. The global image patterns can be densely approximated by the coefficients
WLu, while the local image features can be sparsely approximated by the coefficients WHu. To
illustrate such decomposition, we present a 1-level wavelet frame decomposition of a simple piecewise
smooth image in Figure 2. The tight wavelet frame system used is the piecewise linear B-spline tight
wavelet frame system with filters given by Example 2.2.

Image u Dense coefficients: W0,0u
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Sparse coefficients at level 1: {Wℓ,0u : 1 ≤ ℓ ≤ 8}

Figure 2. Demonstration of a 1-level tight wavelet frame transform.

It is natural to require a transformation to be capable of decomposing an image to its global patterns
plus its local features, or in other words, dense plus sparse coefficients in transform domain. Transforma-
tions that can only well capture either global patterns or local features may not be as effective in image
restoration as the transformations that can capture both. Most of the recent designs of transforms or
systems for image restoration have only been emphasizing on sparsity (or sparse approximation) due to
the success and significant impact of compressed sensing [74–77]. Although sparsity, or capturing local
features, is important, we should not completely ignore the ability of the underlying system to capture
global features. After all, there are two components to make a successful image restoration model:
smoothness of global patterns and sharpness of local features. The piecewise smooth image restoration
model [47, 51] is a good example, where it was shown that a better characterization of global patterns
does make a difference in practice.

Other than wavelets and wavelet frames, windowed Fourier transforms provide a “global patterns
plus local features” type of decomposition of images as well. However, the sparse coefficients in the
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transform domain are not ideally sparse for images due to their fixed time-frequency resolution. Or-
thonormal or biorthogonal wavelets provide better sparse approximation to local features than windowed
Fourier transforms, which is crucial to their success in image compression. However, for image restora-
tion, redundant systems such as wavelet frames can provide better sparse approximation to local image
features than (bi)orthogonal systems. Wavelet frame systems can better balance between smoothness
and sparsity so that artifacts generated by the Gibbs phenomenon can be further reduced, which in turn
leads to better image restoration results. Also, the sparse approximation to the local image features
provided by W⊤

HWHu will be more effective if the associated high-pass filters have varied orders of
vanishing moments specializing in capturing image features of different types, with different orientations
and at different scales. Therefore, a system with good sparse approximation to local image features has
to be redundant.

Note that “local” features are not limited to localness in spatial domain. Image features can be
local in similarity domain as well. For example, two pixels that are spatially farer apart may have
similar patches, i.e. they are close in similarity domain. One transform that uses such generalized
concept of localness is the data-driven non-local tight frames constructed by [25], which will be reviewed
later in Section 3.1. Also, since only the wavelet frame coefficients WHu are sparse, the shrinkage
operation normally only applies toWHu whileWLu is left untouched. However, we may receive benefits
from processing WLu for image segmentation as demonstrated in [33], where the authors showed that
properly defined shrinkage on the dense coefficients can significantly speed up the algorithm.

2.3. Image Denoising. Image denoising is one of the most classical image restoration problems
whose corresponding model takes the form of (1.1) with A = I. Its main objective is to regularize the
given image and preserve sharp image features (e.g. edges) at the same time. The challenge, however, is
that it is not straightforward on how to separate smooth and sharp regions of a given image, especially
at the presence of noise, so that suitable treatments can be applied to them separately. Therefore,
wavelet frame is the right tool for image denoising since in transform domain image features are well
separated from smooth image components.

One of the earliest successful image denoising methods is the shift-invariant wavelet soft-thresholding
algorithm by [78]. The shift-invariant wavelet systems were later shown in [52] to be tight wavelet frame
systems for the function space L2(R

d). In fact, they are special tight wavelet frame systems since they
are quasi-affine systems (see (2.1) and (2.2)) generated by orthonormal wavelets. More general tight
wavelet frames can be constructed by the UEP of [52] such as the B-spline tight wavelet frame systems.
The main idea of the algorithm by [78] is to first take wavelet frame transform of the given noisy image,
conduct thresholding to the sparse coefficients in the transform domain, and transform the data back
to image domain by taking the inverse wavelet transform.

Let f be the observed noisy image. The generic wavelet frame thresholding algorithm for image
denoising can be written as

u⋆ = W̃⊤Tλ(Wf), (2.12)

where W is the wavelet frame transform and W̃ is the dual wavelet frame transform such that
W̃⊤W = I. Examples of the thresholding operator can be the soft-thresholding operator [79] de-
fined componentwise on the coefficients α = {αℓ,l,k = (Wℓ,lu)[k] : (ℓ, l) ∈ B,k ∈ Ω} as

T s
λ (α) =

{
T s
λℓ,l,k

(αℓ,l,k) =
αℓ,l,k

|αℓ,l,k|
max{|αℓ,l,k| − λℓ,l,k, 0} : k ∈ Ω

}
. (2.13)

It can also be the hard-thresholding operator [8, 9, 14, 15, 79–81] defined as

T h
λ (α) =

{
T h
λℓ,l,k

(αℓ,l,k) : (ℓ, l) ∈ B,k ∈ Ω
}
,

where

T h
λℓ,l,k

(αℓ,l,k) =

{
αℓ,l,k if |αℓ,l,k| > λℓ,l,k,
{αℓ,l,k, 0} if |αℓ,l,k| = λℓ,l,k,
0 otherwise.

(2.14)

Since thresholding is to promote sparsity of the sparse coefficients, we choose λ0,L,k = 0 as convention,
i.e. the dense coefficients are not processed by the thresholding operator. Note that the thresholding
operator Tλ can be more sophisticated than soft- or hard-thresholding. For example, it can be an adap-
tive multiplicative shrinkage proposed by [6], or an adaptive soft-thresholding which will be presented
in Section 3.3.

The key that makes the thresholding algorithm 2.12 work well is the fact that wavelet frame trans-
forms effectively decompose images to their global patterns plus local features, or in other words, they
can densely approximate smooth image components and sparsely approximate image features. Then
after thresholding, large sparse coefficients that encode crucial image features are well preserved, while
the rest of the sparse coefficients are set to zero without introducing much error since most of the small
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nonzero sparse coefficients correspond to noise instead of signal. The dense coefficients are left un-
touched since the regularity of the smooth image components is automatically granted by the low-pass
filtering. More precisely speaking, the approximated global patterns of the recovered image is given by
W⊤

L WLf . Another way to understand this is that by skipping processing of the dense coefficients, we
implicitly let the global patterns of the recovered image directly follow the data f . Since W⊤

L WLf is
generally a good approximation to global patterns, removing noise from sparse coefficients is enough.

The performance of the above thresholding algorithm highly depends on the quality of the sparse
approximation to local image features provided by the underlying wavelet frame system. Although
orthogonal or biorthogonal wavelets provide sparse approximation to local image features, redundant
systems such as wavelet frames can provide better sparse approximation which in turn leads to better
image restoration results. One advantage of wavelet frames (e.g. the B-spline tight wavelet frame
systems of [52]) over (bi)orthogonal wavelets, in terms of sparse approximation, is the presence of
wavelet functions in the system with varied vanishing moments and generally shorter supports. The
varied orders of vanishing moment enables the wavelet frame system to posses subsystems specialized
in the sparse approximation of different types of singularity, such as jump discontinuities, jumps after
first order differentiation (ridges). The shorter supports of wavelet frames lead to more concentrated
coefficients in the transform domain. Another advantage of wavelet frames over (bi)orthogonal wavelets
are their robustness to errors, thanks to the redundancy of these systems. After thresholding in the
transform domain, errors are inevitably introduced no matter how careful the thresholding operator is
designed. However, if a redundant system is used, there is a good chance that these errors are canceled
out after transforming back to image domain. From the point of view of information recovery, if some
of the coefficients of a redundant system is damaged or missing, due to redundancy, that same piece of
information may exist in other coefficients as well. However, if the underlying system is orthogonal or
biorthogonal, each coefficient carries a unique piece of information. Thus, the lost information from a
coefficient cannot be recovered from other coefficients.

The original design of image denoising method of [78], as well as the generic image restoration
algorithm by [11] that will be discussed in the next subsection, is based on wavelet frame thresholding
(2.12). The intuition behind these algorithms is the effective dense and sparse approximation of global
patterns and local features in transform domain. Then, thresholding, such as soft- or hard-thresholding,
of sparse coefficients can enhance image features while removing noise at the same time. It was shown
later in the literature that the algorithm (2.12) can be written equivalently as certain optimization
models. It was shown by [26] that whenW corresponds to a tight wavelet frame system, i.e. W⊤W = I,
and soft-thresholding is used, we have

u⋆ = W⊤
(
argmin

α

1

2
‖W⊤α− f‖22 +

1

2
‖(I −WW⊤)α‖22 + ‖λ · α‖1

)
, (2.15)

where u⋆ is given by (2.12). When hard-thresholding is used instead, we have [35]

u⋆ = W⊤
(
argmin

α

1

2
‖W⊤α− f‖22 +

1

2
‖(I −WW⊤)α‖22 +

1

2
‖λ2 ·α‖0

)
, (2.16)

In particular, when W is the corresponding transformation of an orthonormal wavelet system, i.e.
WW⊤ = W⊤W = I, the identities (2.15) and (2.16) reduce to

u⋆ = argmin
u

1

2
‖u− f‖22 + ‖λ ·Wu‖1, (2.17)

and

u⋆ = argmin
u

1

2
‖u− f‖22 +

1

2
‖λ2 ·Wu‖0. (2.18)

The term ‖(I − WW⊤)α‖22 in (2.15) and (2.16) tries to minimize the distance between α and
the range of W , which essentially controls the regularity of the reconstructed image. In other words,
this term balances between regularity of u and sparsity of the wavelet frame coefficients α to achieve
a desirable reconstruction. Hence, the optimization model in (2.15) and (2.16) is called the balanced
model and is used for generic image restoration problems as well [10, 82–84].

If we introduce a tuning parameter κ to the middle term of (2.15) and (2.16), we have the following
slightly more general form of the balanced model

min
α

1

2
‖W⊤α− f‖22 +

κ

2
‖(I −WW⊤)α‖22 +

1

2
‖λ ·α‖p p = 0, 1. (2.19)

When κ = 0 in (2.19), we have the following synthesis model

min
α

1

2
‖W⊤α− f‖22 +

1

2
‖λ ·α‖p p = 0, 1. (2.20)
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When κ = ∞ in (2.19), we have the following analysis model

min
u

1

2
‖u− f‖22 +

1

2
‖λ ·Wu‖p p = 0, 1. (2.21)

Although (2.20) and (2.21) look simpler than (2.19), they do not have a closed-form solution (unless
W is orthonormal), or in other words, their solutions need to be approximated through an iterative
algorithm. Therefore, the balanced model (2.19) is more natural than synthesis or analysis model in
the sense that its closed-form solution takes the form of the thresholding scheme (2.12) which comes
from a data-driven approach. Note that when W is orthonormal, model (2.19), (2.20) and (2.21) are all
equivalent and take (2.12) as the closed-form solution. Therefore, when orthonormal wavelets are used,
all three models are natural. We will resume the discussions on the three models in the next section for
generic image restoration problem.

We note that if a general shrinkage operator Sλ is used in the shrinkage algorithm (2.12), the
algorithm may not correspond to any optimization model. However, finding an optimization model for
wavelet frame based image denoising or more general image restoration problems has never been the
starting point of wavelet (frame) based approach. What is crucial for wavelet (frame) based approach
is their capability to separate image features from smooth image components which leads to dense
approximation of global image patterns and sparse approximation of local images features. Then,
properly designed shrinkage, not necessarily the soft- or hard-thresholding, in the wavelet (frame)
domain is able to recover image features and remove noise simultaneously.

The thresholding scheme (2.12) provides a good low level approximation of the solution to image
denoising based on generic knowledge of the underlying solution, i.e. local image features can be sparsely
approximated by wavelet frames. When some special shrinkage operators are used, the algorithm led to
optimization models that were later generalized to solve generic image restoration problems. To move
from low level approximation to more accurate approximations or even high level understanding of
images, we need to make the shrinkage scheme adaptive to a specifically given image and automatically
readjust the scheme according to the approximate solution at each step to gradually increase accuracy
of the approximate solution. The algorithmic structure of (2.12), as well as the more general 3-steps
procedure in Section 2.4, is a perfect vessel to realize such data-driven idea.

2.4. General Image Restoration Problems. For a generic image restoration problem, i.e.
when A 6= I, the simple procedure of thresholding of sparse coefficients in the wavelet frame domain
and transforming back to image domain does not work since we now have a non-trivial linear system A
to solve. However, the same idea of thresholding in the transform domain using a good representation of
images still applies. Wavelet frame based method for more general image restoration problems started
from [11], where high-resolution image reconstruction was studied. By viewing the high-resolution
image reconstruction as an inpainting problem in the wavelet frame domain, an iterative algorithm by
applying thresholding to sparse wavelet frame coefficients at each iteration to preserve sharp edges and
to remove noises in the image was proposed. What’s even more important of the pioneer work of [11], as
well as [79], is the image restoration philosophy they convey. That is finding good “dense plus sparse”
approximation at each iterate for approximate solution by applying suitable shrinkage operators in the
transform domain that removes noise and enhances image features.

Finding approximated solutions to linear system (1.1) has a much longer history than wavelet frames
and has been fairly well-developed. Many of the existing iterative solvers mainly contain two components
in the algorithms, i.e. finding an approximate solution to the linear system, and update residual so that
more accurate solution can be found in the next iteration. It is generally easy to find an approximate
solution to (1.1). However, due to ill-pose nature of the problem (1.1), recovered image from a linear
system solver may either have image features, such as edges, smeared out or noise magnified. It is
generally difficult to preserve image features and remove noise at the same time by only relying on
linear system solvers. We have to use our prior knowledge on images, i.e. wavelet frames provide dense
approximation to global image patterns and sparse approximation to local images features. This is the
key to the success of the algorithm proposed by [11], where thresholding of sparse coefficients in the
wavelet frame domain is embedded to a linear system solver at each iteration. Therefore, the linear
system is inverted while the quality of the recovered image is also guaranteed since important images
features are sharpened while noise is removed by iterative thresholding in wavelet frame domain.

The main idea of the iterative wavelet frame shrinkage algorithm of [11] boils down to the following
three recursive steps:

3-Steps Procedure:

1. Find an approximate solution u1 to the linear system (1.1);

2. Shrinkage in wavelet frame domain: u2 = W̃⊤Sλ(Wu1);

3. Update the residual and iterate.
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For step 1, One may use any approximated solver for the linear system (1.1). Solution u1 from step
1 may not be a desirably reconstructed image due to ill-posed nature of the system A and the presence
of noise η. For example, one may observe blurred edges and oscillations in smooth regions in u1. Step
2 is the key to the 3-steps procedure which is designed to suppress noise and recover sharp edges and
other image singularities by performing shrinkage operations on sparse coefficients in wavelet frame
domain. The key point here is the data-driven shrinkage design in transform domain. For example, if
the image has a sparse approximation in transform domain, then, the simplest shrinkage is thresholding.
Step 3 is to update residual which usually takes the form of updating an auxiliary variable which will
be fed back to Step 1 in the next iteration. After edge sharpened and noise removed, the new solution
u2 may no longer be a good approximate solution of (1.1). Therefore, we return to step 1 and find
a new approximate solution based on the current solution u2. We keep iterating the three steps until
convergence.

Note that the order of the three steps may vary for different algorithms, and some time step 3 may

be merged with step 1. The transforms W and W̃ are not only limited to wavelet frame transforms.
They can be whatever transform that provides sparse approximation to the local features of the data
we want to recover, e.g. the singular value decomposition for low rank matrix completion [85] and the
data-driven transforms that will be reviewed in Section 3.1. Different types of shrinkage operator Sλ can
be used in the above procedure, such as the soft- and hard-thresholding which were both used in [11].
Different shrinkage operator may significantly affect the quality of image restoration (see e.g. [11,14,15]).
However, the shrinkage operator Sλ is not only limited to soft- or hard-thresholding operators. It may
be multiplicative or/and adaptive to the observed image f and the current approximate solution u1

(see Section 3.3). Furthermore, the 3-steps procedure may also work for nonlinear inverse problems as
long as one has a reliable nonlinear system solver and combines it with shrinkage in transform domain.
There may be other variants to the current form of the 3-steps procedure. However, what is crucial to
the algorithm is the step of shrinkage in transform domain where the local features be recovered can be
sparsely approximated.

Many wavelet frame based image restoration algorithms can be understood as having the same
algorithmic structure as the 3-steps procedure. We start with the algorithm for image inpainting. The
mathematical model for image inpainting can be stated as follows (see e.g. [86, 87]). Let the original
image u ∈ Rm×n be defined on the domain Ω = {1, 2, . . . ,m} × {1, 2, . . . , n} and the nonempty set
Λ ( Ω be the given observed region. Then the observed (incomplete) image f is

f [k] =

{
u[k] + η[k], k ∈ Λ,
arbitrary, k ∈ Ω \Λ, (2.22)

The goal is to find u from the its partially observed noisy pixels f . The corresponding linear system A
for image inpainting is simply a restriction operator restricting u ∈ Rm×n to its subindex set Λ ( Ω.
We denote the linear system for inpainting as AΛ.

The simple idea of the wavelet frame based image inpainting algorithm comes as follows [11]: one
may use any simple interpolation scheme to interpolate the given data that leads to an inpainted image.
Edges might be blurred and noise is still present in the inpainted image. One of the simplest ways to
sharpen the image and remove noise at the same time is to set small sparse coefficients to zero. When
we reconstruct the image using the modified wavelet frame coefficients, it will no longer interpolate the
data, and the simplest way to make it interpolate the given data is to correct the inpainted image using
observed data. Then, we iterate this procedure till convergence. The algorithm reads as follows, where
we assume tight wavelet frame systems are used, i.e. the transform W satisfies W⊤W = I.

Algorithm (Wavelet Frame Based Image Inpainting): Initialize u0 = 0. Iterate the following
steps for k = 1, 2, . . . until convergence:

{
uk = (I − µA⊤

Λ
AΛ)u

k−1 + µA⊤
Λ
f ,

uk+1 = W⊤T s
λ (Wuk).

(2.23)

Recall that T s
λ (α) is the soft-thresholding operator [79] defined by (2.13). Algorithm (2.23) takes the

form of the 3-steps procedure. The first step of (2.23) consists of both the step of update residual, i.e.
rk = AΛu

k−1 − f , and finding an approximate solution for (1.1), i.e. uk = uk−1 − µA⊤
Λ
rk. Note that

the inpainting algorithm (2.23) applies to generic image restoration problem (1.1) as well. One simply
needs to replace AΛ by the associated linear system to a given image restoration problem. Also, the
algorithm can be significantly speeded up by using a more sophisticated update of the approximate
solution uk in step 1 of (2.23) (see [88, 89]).

Here, we present one numerical simulation of the algorithm (2.23) on an inpainting problem. The
unknown original image is shown in Figure 3(a). The inpainting domain Λ where the pixel values are
missing is shown in Figure 3(b). The observed image f is shown in Figure 3(c), where minor noise η is
added in region Λc. The reconstruction result using algorithm (2.23) is presented in Figure 3(d).

The convergence of algorithm (2.23) was analyzed by [10]. It turns out that if we let αk = T s
λ (Wuk),
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(a) (b) (c) (d)

Figure 3. Images from left to right are: original image, inpainting domainΛ, observed image f and reconstructed
image using algorithm (2.23).

the sequence αk generated from the above algorithm coincides with the sequence generated form the
proximal forward-backward splitting algorithm [90–95] solving the balanced model [10, 82–84], which
takes the following form:

min
α

1

2
‖AW⊤α− f‖22 +

κ

2
‖(I −WW⊤)α‖22 + ‖λ ·α‖1. (2.24)

One of the key observations to such connection is the relation between soft-thresholding and ℓ1-norm
based optimization. The balanced model takes the synthesis based model [96–100] and analysis based
model [12, 101, 102] as special cases. Indeed, when κ = 0, we obtain the synthesis based model

min
α

1

2
‖AW⊤α− f‖22 + ‖λ ·α‖1. (2.25)

When κ = ∞, which forces α = WW⊤α, we obtain the analysis based model by letting u = W⊤α:

min
u

1

2
‖Au− f‖22 + ‖λ ·Wu‖1. (2.26)

Note that, to make solving the analysis based model (2.26) easier, it is normally treated as a constrained
optimization problem, which takes the following equivalent form

min
u,Wu=α

1

2
‖Au− f‖22 + ‖λ · α‖1. (2.27)

The split Bregman algorithm [12,103] that we will discuss next was designed to solve (2.27) and hence
the analysis based model (2.26).

The advantage of the 3-steps procedure lies in its generality and data-driven nature which makes it
easier to design algorithms that are adaptive to the observed image. For example, one may change the
wavelet frame system by any other systems that can provide a better “dense plus sparse” approximation
to a specifically given image. Such systems can be adaptive to the observed image and be updated along
with each iteration (see e.g. [26, 104]). The shrinkage operator can also be chosen adaptively to the
given image and change at each iteration (see [6]). These modifications based on the 3-steps procedure
can significantly improve the quality of the image restoration results. However, there may not be an
associated optimization model to any of these adaptive thresholding algorithms. Therefore, from a
practical point of view, the 3-step procedure is more flexible and easier to be made data-driven than
the approaches based on designing optimization/variational models.

2.5. Other Algorithms for Image Restoration. Algorithms for finding sparse solutions
of (1.1) can be developed from different approaches, e.g. ℓ1/ℓ0 minimization. However, most of them can
be understood by the 3-steps procedure. Different algorithms may have a different way to compute an
approximate solution u1 or update the residual; and different types of regularization result in different
types of shrinkage operator Sλ, such as the soft-thresholding for ℓ1-minimization models and hard-
thresholding for ℓ0-minimization models. This may lead to different optimization models, but the key is
to applying shrinkage in the sparse domain (step 2), which is also the key to the data-driven approaches
for seeking sparse solutions of the underlying problems. Here, we give two examples.

The first example is the linearized Bregman algorithm was originally introduced by [105, 106] for
compressed sensing. It was later used in wavelet frame based image deblurring [13] and blind image
deblurring [18, 19]. We recall the linearized Bregman algorithm as follows:

Algorithm (Linearized Bregman): Given any initial value for β0, iterate the following steps for
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k = 0, 1, . . . until convergence:

αk+1 =
1

κ
T s
λ (β

k)

βk+1 = βk +WA⊤(f −AW⊤αk+1).

(2.28)

Let α⋆ be the resulting sequence after convergence. The reconstructed image for the linear inverse
problem (1.1) is W⊤α⋆. The first step of (2.28) is shrinkage in wavelet frame domain to recover image
features and remove noise. The second step is a combination of finding approximate solution and update
residual for the linear system AW⊤α = f in wavelet frame domain. Therefore, the linearized Bregman
algorithm can also be understood as taking the form of the 3-steps procedure.

When the linearized Bregman algorithm (2.28) was first introduced [105, 106], the convergence
analysis was missing because it was not clear what is the corresponding optimization problem the
algorithm is solving. Later in [13], the authors discovered that the associated optimization problem to
the linearized Bregman algorithm takes the following form

min
α

{κ
2
‖α‖22 + ‖λ · α‖1 : AW⊤α = f}. (2.29)

Such observation led to the convergence analysis of the linearized Bregman algorithm [13].
The development of the linearized Bregman algorithm tells us the benefit of having an corresponding

optimization model for a given algorithm, i.e. it makes convergence analysis of the algorithm easier.
However, algorithms should be designed to achieve best image restoration quality by fully utilizing the
prior knowledge of images; instead of trying to make it an algorithm associated to an optimization
model by sacrificing quality of the recovered images. In general, the data-driven shrinkage operator and
the linear system solver embedded in the 3-steps procedure may not be chosen such that there is an
associated optimization model to the algorithm, although it may have better recovery of image features,

Now, we present the second example, the split Bregman algorithm [12,103], that solves the analysis
based model (2.26):

Algorithm (Split Bregman): Let b0 = d0 = 0, u0 = 0. Iterate the following steps for k = 0, 1, . . .
until convergence:




uk+1 =

(
µW⊤W +A⊤A

)−1 [
µW⊤(dk − bk) +A⊤f

]
,

dk+1 = T s
λ/µ(Wuk+1 + bk),

bk+1 = bk + δ(Wuk+1 − dk+1).

(2.30)

The first step of (2.30) is to find an approximate solution; the second step is thresholding in the
wavelet frame domain to recover image features; and the third step is to update residual. Therefore,
the split Bregman algorithm can be understood as having the same algorithmic structure as the 3-steps
procedure. Note that the complication of the Split Bregman algorithm comparing to the inpainting
algorithm (2.23) is due to the difference of the objective function these algorithms attempt to solve.
However, both of the algorithms share the same philosophy as the 3-steps procedure.

We present a numerical simulation of the split Bregman (SBreg) algorithm (2.30) for an image
deblurring problem. The original blur and noise free image is shown by the left image of Figure 4 and
the blurry and noisy observed image f is shown in the middle, where the kernel of the blur is generated
in MATLAB by “fspecial(’gaussian’,11,1.0)” and the standard deviation of noise η is 3. The recovered
image is shown by the right image in Figure 4.

Figure 4. Images from left to right are: the original image, the observed blurry and noisy image f and the
reconstructed image using the split Bregman algorithm (2.30).

Both the linearized and split Bregman algorithm are based on the Bregman iterative algorithm
[105,107,108]. The Bregman iterative algorithm was originally designed based on the Bregman distance
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functional [109]. Its development is motivated by the needs of discovering effective algorithms in image
restoration and compressed sensing. All these Bregman algorithms are discovered independently from
available algorithms in optimization, although it was later realized by the community that the split
Bregman algorithm is equivalent to the alternating direction method of multipliers (ADMM) [110–112]
applied to the augmented Lagrangian [113–115] of the problem (2.27) (see e.g. [116]) and the linearized
Bregman algorithm can be derived using the Uzawa’s algorithm [117] (see [85]).

2.6. Beyond Image Restoration. The idea of the algorithmic design of the 3-steps procedure
goes even beyond wavelet frame based image restoration. In fact, it promotes a general data processing
philosophy based on the sparsity of the data. That is to first find an approximate solution based on
given observations of the data; then conduct appropriate shrinkage operation in whatever domain where
the local features of the data can be sparsely approximated; and iterative until convergence. Taking low
rank matrix completion as an example [118], the observed data is the partial entries of the matrix to be
recovered, and this matrix is known to have a low rank relative to its dimensions. The corresponding
linear inverse problem to the matrix completion problem is not difficult to solve. However, finding a
solution with low rank at the same time is highly non-trivial.

The linear system, denoted as AΛ, associated to the matrix completion problem is an operator that
extracts entries from a subindex set Λ ( {1, 2, . . . ,m} × {1, 2, . . . , n} of a matrix u ∈ Rm×n. To be
more precise, AΛu = u on Λ and is set to 0 elsewhere. To recover the matrix u ∈ Rm×n from its noisy
submatrix f is generally impossible. However, as shown by [118] that if the matrix to be recovered has
low rank, a robust recovery of u from f is possible by minimizing the nuclear norm.

The earliest efficient matrix completion algorithm that works on large matrices was first proposed
by [85], which is called singular value thresholding (SVT). The key observation on the low rank matrices
is that they are sparse in the singular value domain, or in other words, it is sparse after applying the
singular value decomposition (SVD). Hence, applying thresholding in sparse domain leads to the singular
value thresholding (SVT) algorithm of [85]. The SVT algorithm can be understood as taking the form
of the 3-steps procedure. In fact, a matrix completion problem can be viewed as an inpainting problem
as well. The only difference is the sparsifying transformation used for matrix completion is the singular
value decomposition (SVD) and the tresholding is performed in the singular value domain. Here, we
recall the SVT algorithm of [85] as follows:

Algorithm (Singular Value Thresholding): Initialize u0 = f and v0 = Dλ(f). Iterate the
following steps for k = 1, 2, . . . until convergence:

{
vk = vk−1 + δAΛ(f − uk−1);
uk = Dλ(v

k).

Here, Dλ(u) is the singular value thresholding operator defined by

Dλ(u) = UT s
λ (Σ)V ⊤, (2.31)

where we have u = UΣV ⊤ and T s
λ (Σ) is the soft-thresholding operator applied to the diagonal entries

of Σ. The first step of the SVT algorithm is the step of updating residual, while the second step
is shrinkage in sparse domain of low rank matrices. Putting both steps together, we have uk as the
approximated solution of the associated linear system and of low rank at the same time. Therefore, the
SVT algorithm can also be understood as one example of the 3-step procedure.

It was shown in [85] that the SVT algorithm (2.31) is in fact the Uzawa’s algorithm solving the
following constrained optimization model

min
u∈Rm×n

{1
2
‖u‖2F + λ‖u‖∗ : AΛu = f}. (2.32)

Here, ‖u‖F is the Frobenius norm defined by ‖u‖2F = tr(u⊤u), and ‖u‖∗ is the nuclear norm of u
which is equal to the sum of the singular values of u. The SVT algorithm of [85] was the earliest
efficient algorithm for large scale matrix completion problems. After the introduction of the SVT
algorithm, many other algorithms were introduced in the literature which have improved efficiency and
reconstruction quality. In addition, when the matrix to be recovered satisfies additional properties
such as having sparse entries [119–121], model (2.32) can be properly modified and algorithms can be
designed to accommodate these additional prior knowledge on data. However, none of these newly
developed algorithms goes beyond the crucial idea used by the SVT algorithm (2.31) or more generally
the 3-steps procedure, i.e. to conduct proper shrinkage in the singular value domain, as the low rank is
the key property to preserve, while whether it is close to the minimizer of a certain optimization model
is of secondary priority in low rank matrix completion.

The ideas of low rank matrix completion and wavelet frame based image restoration were combined
and successfully applied to video restoration problems [29, 122–124] and 4D medical imaging [30, 31].
The key to video data processing is to separate background, which are in fact global patterns of the
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video, from fast moving objects in the video, which are essentially local features. The low rank matrices
extracted properly from the video together with the wavelet frame form a “global patterns plus local
features” type of decomposition of the video data. The low rank component effectively approximates the
background or other slow varying video contents, and the sparse component provided by wavelet frames
can sparsely approximate moving objects. This is the main reason why these models are successful in
processing videos or more generally, time-dependent image data such as 4D medical images.

3. Specific Data-Driven Approaches

The iterative wavelet frame shrinkage algorithm of [11], as well as most of existing wavelet frame
based methods, used a generic data-driven prior on images, i.e. local image features can be sparsely
approximated by wavelet frames. However, such generic prior knowledge may not be well satisfied by
a specifically given image. For example, the representation by wavelet frames for a specifically given
image may not be ideal, since traditional wavelet frames are generic systems that are not adaptive to any
specifically given data. The main objective of this section is to discuss how we can design specific data-
driven frame based algorithms and models that are more effective than the classical generic data-driven
approach.

3.1. Data-Driven Transformations. For most image restoration problem, the quality of the
reconstruction highly depends on the choice of the transformation. In this section, we discuss how we
can create data-driven transformations that provide better sparse approximation of local features and
global patterns of a specifically given image.

3.1.1. Data-Driven Adaptive Tight Frames. Finding a good representation of images is crucial
in image restoration. It is known that wavelet frames provide good dense plus sparse approximation for
piecewise smooth functions, such as images. However, for a given image, generic wavelet frame systems
may not be ideal. In other words, using data-driven sparse approximation that derive a transform
adaptive to the observed image may be more desirable.

The concept of data-driven representations has been explored in recent years by the so-called learn-
ing approaches [125–130]. These approaches learn a redundant dictionary from the input image itself
to achieve better sparsity of the input image over the learned dictionary. These redundant dictionaries
are very effective on sparsely approximating images with rich textures. Despite the success of these
adaptively learning methods, the resulting dictionaries lack several properties desired for image restora-
tion. For instance, finding an optimal redundant system often leads to a severely under-constrained
ill-posed problem. It also remains a challenging task to develop fast and stable numerical methods for
estimating an optimal redundant system. Furthermore, the dictionary learnt is redundant, but can be
under-complete, that makes the reconstruction step even harder.

In [26], the authors developed a new approach to construct discrete tight frames that are adaptive
to input images. The proposed adaptively learned tight frame is more likely to give a highly sparse
approximation of the local features of the input image than existing tight wavelet frames such as the B-
spline tight wavelet frames. In addition, the minimization problems arising in the construction of tight
frames are better conditioned than those of generic redundant dictionaries, thanks to the Parseval’s
identity satisfied by tight frames. Therefore, by considering a class of tight frames with certain special
properties, a fast and stable numerical method is available to construct data-driven tight frames.

An adaptive tight frame denoising algorithm based on a data-driven tight frame construction scheme
was also proposed in [26]. The experiments show that the adaptive tight frame denoising technique
significantly outperforms standard wavelet thresholding approaches on images of rich textures. Also,
it is much faster than the K-SVD method [131], because the size of the problem is much smaller than
that of the K-SVD method, while it has comparable performance as the K-SVD method. Another
shortcoming of the K-SVD method is that the learned dictionary is not guaranteed to be complete in
the underlying Euclidean space.

Let f be a given observed image. Let {qℓ : ℓ = 0, . . . , r} be the set of filters to be learned from the
given image f , and W{qℓ} be the associated tight frame transform defined by (2.7). The set of filters
{qℓ} can be learned from f by solving the following optimization problem [26]:

min
v,{qℓ}

1

2

∥∥∥W⊤
{qℓ}v − f

∥∥∥
2

2
+

1

2

∥∥∥
(
I −W{qℓ}W

⊤
{qℓ}

)
v

∥∥∥
2

2
+ ν‖v‖0

s.t. W⊤
{qℓ}W{qℓ} = I.

(3.1)

Here, ‖v‖0 is the ℓ0-“norm” of v that outputs the number of nonzero entries of v. The penalization of
the ℓ0-“norm” of v makes sure that the representation W{qℓ} provides a highly sparse approximation

for the given image f . The constraint W⊤
{qℓ}W{qℓ} = I makes sure that W{qℓ} is a tight frame. The
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ℓ0-minimization on v of (3.1) ensures the model to find a system with best sparse approximation to
local features of the given image f . The constraint W⊤

{qℓ}W{qℓ} = I enables the system learned from

(3.1) provide dense approximation to global patterns of the given image f , which enables the problem
(3.1) to be solved stably by a fast numerical algorithm. Since the resulting system W{qℓ} from (3.1) is
learned from the observed image f , it will be referred to as a data-driven adaptive tight frame, and the
associated transform will be denoted simply as W (f).

The optimization problem (3.1) can be solved rather efficiently. An alternative optimization ap-
proach was adopted by [26]: v is solved while {qℓ} is fixed and then {qℓ} is solved while v is fixed.
Each of the subproblem has a closed form solution: solution for v is obtained by hard-thresholding while
{qℓ} is solved through SVD. This makes the algorithm computationally efficient. The convergence anal-
ysis of the alternative optimization algorithm was later provided by [27], where the authors showed that
there exists at least one subsequence that converges to a stationary point of (3.1). Moreover, it was
shown that convergence of the entire sequence can be achieved by adding an proximal term to each of
the subproblem [27]. The modified algorithm was later used for face recognition [35].

Note that we can generalize the model (3.1), which was proposed for image denoising, to a model
for generic image restoration problem. The generalized model reads as follows:

min
v,{qℓ}

1

2

∥∥∥AW⊤
{qℓ}v − f

∥∥∥
2

2
+

1

2

∥∥∥
(
I −W{qℓ}W

⊤
{qℓ}

)
v
∥∥∥
2

2
+ ν‖v‖0

s.t. W⊤
{qℓ}W{qℓ} = I.

(3.2)

Model (3.2) is obviously more complicated to solve than (3.1). Alternative optimization approach can be
adopted, whereas each subproblem no longer has a closed form solution and has to be solved iteratively.

More recently, adaptive tight frame and bi-frame construction method was proposed by [132], where
an ℓ1-norm based analysis type of model was proposed. Connections between multi-level frame trans-
forms and deep convolution networks were studied.

3.1.2. Data-Driven Non-Local Tight Frames. Most of the classical wavelet frames used in image
restoration are locally supported in spatial domain. Therefore, the sparsity prior of images under an
existing wavelet frame system only refers to the sparse nature of local features of images in spatial
domain. Such local approach works well on regions of the image with slow variations, while it may be
less effective in textural regions (i.e. regions with high frequency fluctuation). An alternative approach
is the non-local methods based on the assumption that image structures of small image regions tend
to repeat themselves in spatial domain. Such approach is of non-local nature in the sense that image
pixels that are far apart may be related to each other. There are two types of non-local schemes
proposed to use such a non-local prior. One is the non-local mean [133] and non-local operators based
approach [104,134–136]. Another approach is the patch-based method which groups the similar patches
together followed by a collaboratively filtering [129, 137–139]. One way to state the main difference
between local and non-local approaches is that local approaches calculate local variations in spatial
domain, while non-local approaches calculate local variations in similarity domain.

The local approaches and the non-local approaches have their own advantages and disadvantages.
Most local approaches are not very effectively for images with relatively complex texture regions, as the
local variations of textures are normally not sparse. The non-local mean based approaches overcomes
such weakness by regrouping pixels according to the similarities of the associated patches, so that local
variations calculated in the similarity domain are still sparse. However, the performance of the non-
local mean based approaches is still not comparable to that of some patch-based non-local approaches
such as the BM3D method. By applying 3D filters on stacks image patches grouped based on their
similarities, the BM3D method considered both local image sparsity and global self-recursive image
structures. However, it lacks an automatic mechanism to deal with images without much self-recursive
structures, such as medical images. Thus, the BM3D method may produce poor restoration results for
this type of images by wrongly imposing a global similarity prior.

In a recent paper [25], the authors proposed a scheme of constructing data-driven non-local tight
frames adaptive to the input image. Such non-local frame systems combine the merits of both local and
non-local approaches. The associated representation of images provides a good sparse approximation
to local intensity variations, self-recursive prior of local image structures, and self-recursive prior of
local image structures across different scales. The non-local tight frames still decompose images to
their global patterns and local features. However, what makes them different from classical wavelet
frames is that the localness not only includes spatial localness, but also localness in similarity domain
where two nearby pixels could be far apart spatially or in scales. Image restoration algorithm based on
the non-local tight frames was also proposed in [25], where it was shown that the denoising results of
the non-local tight frames are much better than those of the classical wavelet frame based approach,
variational and PDE based approach. It is also much faster than the BM3D algorithm with comparable
denoising quality.



18 Bin Dong, Zuowei Shen

The data-driven non-local tight frames proposed by [25] reads as follows:

V (f) =
1√
2

(
W

J(f)W

)
, (3.3)

where W is the transformation associated with some existing multi-level wavelet frame system (e.g.
the B-spline wavelet frame systems), and J(f) is the system that encodes the self-recursive property of
wavelet frame coefficients Wf in spatial domain and cross multiple scales. By construction, we have(
V (f)

)⊤
V (f) = I, i.e. it is indeed a discrete tight frame. The non-local tight frame V (f) is composed

of two systems: one is some existing discrete tight wavelet frame W which extracts global patterns and
(spatially) local features, and the other is the non-local version of W generated by the multiplication
of a linear system Jf which extracts local features in similarity domain. The system Jf is learned
adaptively from the given image f , and is used for relating the wavelet frame coefficients corresponding
to the same image structure, which are often spread out over the whole image. Thus the system Jf can
be viewed as a non-local operator to relate wavelet frame coefficients that may be spatially far away
from each other. We shall skip details on the construction of Jf , as well as the application of V (f) in
image restoration, and refer the interested reader to [25].

3.2. Piecewise-Smooth Image Model. In PDE based approach, such as the well-known
Rudin-Osher-Fatemi (ROF) model [45], images are often described by functions of bounded variations
(BV). For wavelet or wavelet frame based methods (see e.g. [12, 96, 97]) with the regularization term
being the ℓ1-norm of the wavelet frame coefficients, images are essentially approximated by functions
in the homogenous Besov space B1

1,1. The BV space is a fairly large function space. It is known (see
e.g. [140]) that a BV function can always be decomposed to the sum of an absolute continuous part
with respect to the Lebesgue measure, a jump part (e.g. edges), and a Cantor measure. However, since
images always have a limited resolution, we normally cannot observe the Cantor measure in images. On
the other hand, the Besov space B1

1,1 sometimes is not large enough to include some types of images.

The most suitable way of describing images is “piecewise smooth”, or in other words, images are
smooth away from their singularity sets. Such concept has already been used for a long time in wavelet
and wavelet frame based approach for image restoration. However, there has not been a clear definition
of piecewise smooth function space. Moreover, existing methods do not actively detect and restore
image singularities in the underlying models or algorithms. Instead, the concept of “piecewise smooth”
has been used as a generic image prior knowledge. In the recent work by [47, 51], piecewise smooth
image restoration models are introduced in a data-driven fashion, where a precise definition of piecewise
smooth function space was given by [47]. These models estimate both the image to be restored and
its singularity set simultaneously, so that singularities can be well protected and enough regularization
in smooth regions is properly enforced at the same time. The models themselves are adaptive to the
specifically given image, and they combine the merits of the PDE based approach [42–45, 48, 49] and
the traditional wavelet frame based approach [11, 12, 57].

We define the space of piecewise smooth functions (with jumps and hidden jumps) as

H1,s({Ωj,j̃}) = {f ∈ L2(Ω) : ‖f‖H1,s({Ωj,j̃}) <∞}, (3.4)

where

‖f‖H1,s({Ωj,j̃}) =
m∑

j=1


‖f‖H1(Ωj) +

mj∑

j̃=1

‖f‖Hs
j,j̃ (Ωj,j̃)


 ,

where s = min{sj,j̃} and sj,j̃ ≥ 2. Here, Hs denotes the Sobolev space equipped with the norm

‖f‖Hs(Ω) =
∑

0≤|i|≤s ‖Dif‖L2(Ω), where Di(f(x, y)) = ∂|i|f
∂xi1∂yi2

. The first order weak derivatives of

f ∈ H1,s({Ωj,j̃}) are integrable in sub-domains {Ωj} ⊂ Ω with jump discontinuities at the boundaries

of these sub-domains, which is the jump set. Second order or higher weak derivatives of f ∈ H1,s({Ωj,j̃})
are integrable in the sub-domains {Ωj,j̃} ⊂ Ωj and the first order derivatives have jump discontinuities
at the boundaries of Ωj,j̃ , which is the hidden jump set. We shall refer to the union of jump and hidden
jump sets simply as the jump set of f . Note that the piecewise smooth functions with higher order
hidden jump sets, i.e. jump discontinuities of second or higher order derivatives, can be similarly defined.
Moreover, what makes the piecewise smooth function space (3.4) different from the SBV space [141] is
the characterization of hidden jump sets.
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The wavelet frame based piecewise smooth image restoration model by [47] reads as follows:

inf
u, Γ

‖λ ·WΓcu‖22 + ‖γ ·WΓu‖1 +
1

2
‖Au− f‖22. (3.5)

where

‖λ ·WΓcu‖22 =
∑

k∈Γc

L∑

l=0

r∑

ℓ=1

λℓ,l,k

∣∣∣∣(Wℓ,lu)[k]

∣∣∣∣
2

and

‖γ ·WΓu‖1 =
∑

k∈Γ




L∑

l=0

(
r∑

ℓ=1

γℓ,l,k

∣∣∣∣(Wℓ,lu)[k]

∣∣∣∣
2
) 1

2


 .

In [47], an alternative optimization algorithm was also proposed to solve (3.5):

Algorithm (Piecewise Smooth): Let u0 and Γ0 be some initial data. For k = 1, 2, . . .. Iterate

1. Given Γk−1, compute uk by

uk = arg min
u∈I2

∥∥λ ·W(Γk−1)cu
∥∥2
2
+ ‖γ ·WΓk−1u‖1 +

1

2
‖Au− f‖22.

Note that uk can be solve by the split Bregman algorithm.

2. Given uk, estimate the jump set Γk by

Γk =



p :

L∑

l=0

(
r∑

ℓ=1

γℓ,l[p]

∣∣∣∣(Wℓ,lu
k)[p]

∣∣∣∣
2
) 1

2

≤
L∑

l=0

r∑

ℓ=1

λℓ,l[p]

∣∣∣∣(Wℓ,lu
k)[p]

∣∣∣∣
2


 . (3.6)

The step (3.6) of the above algorithm is the crucial component of the piecewise smooth image restoration
algorithm. The jump set is determined by going through each of the pixel location in wavelet frame
domain comparing a grouped ℓ1-norm and ℓ2-norm of the coefficient across all levels l and bands ℓ. Not
only jump discontinuities can be detected by (3.6), singularities of different types (e.g. hidden jumps)
can also be detected. This is because different types of singularities are naturally extracted by wavelet
frames with different orders of vanishing moment. Also, the multiscale structure of wavelet frames
grants robustness to the estimation of Γ at presence of noise.

Here, we present a numerical simulation of the piecewise smooth (PS) algorithm for the same image
deblurring scenario we considered for SBreg and LBreg algorithms. The original blur and noise free
image is shown by the left image of Figure 5 and the blurry and noisy observed image f is shown in
the middle. The recovered image and the estimated jump set Γ from the PS algorithm is shown by the
right image in Figure 5.

Figure 5. Images from left to right are: the original image, the observed blurry and noisy image f , the
reconstructed image using the PS algorithm, and the estimated jump set which is enclosed in the red curves.

The piecewise smooth image restoration model by [51] reads as follows:

inf
u, Γ

{
‖λ ·WΓcu‖22 +

1

2
‖Au− f‖22 : |Γ| ≤ γ

}
. (3.7)

The major difference between (3.5) and (3.7) is the regularization of the jump set Γ is formulated as
a constrain in (3.7) instead of as a penalty term as in (3.5). The associated fast numerical algorithms
solving (3.7) can be found in [51].

The ℓ2-regularization in subsystem WΓc of wavelet frame domain is to keep the global patterns
and smooth components of images smooth. The ℓ1-regularization of (3.5) on WΓ is to protect image
singularities (i.e. local features) and to introduce proper regularity restriction on the geometry of the
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jump set Γ. The constraint |Γ| ≤ γ of the model (3.7) has a similar effect as the ℓ1-term of (3.5),
whereas the former has a more direct control of the regularity of the jump set which may lead to better
image reconstruction results (see [51]). The advantage of model (3.5) is that it is not sensitive to the
estimation of Γ. Indeed, when Γc = ∅, it reduces to the analysis based model (2.26), which has been
proven in the literature to be a good image restoration model. Intuitively, the reconstruction results of
(3.5) cannot be worse than those of the analysis based model (2.26).

Both model (3.5) and (3.7) are data-driven, as the singularity set Γ is derived iteratively from the
given image and the approximate solution at each step. Comparing with wavelet frame based analysis
model (2.26), instead of using the subsystem WH for local features and WL for global patterns, we use
the subsystem WΓ to achieve sparser approximation of local features, and use both the subsystem WL
and WΓc to capture global patterns. In other words, the subsystem WΓc further refines the partition of
the whole system W for the given image data f by including a portion of the original sparse components
WH in WL. Numerical examples in [47,51] show that such data-driven refinements of WL and WH by
the models (3.5) and (3.7) indeed leads to significantly improved image restoration results.

Furthermore, the model (3.5) was shown in [47] to be a discrete realization of a brand new variational
model. To be more precise, the authors showed that when image resolution goes to infinite, the energy
function of (3.5) Gamma-converges (see e.g. [142] for an introduction of Gamma-convergence) to a
brand new variational functional under the topology of the piecewise smooth function space (3.4). This
variational functional is related to, but more effective than, the well-known Mumford-Shah functional
[48]. The Mumford-Shah functional also promotes an estimate of both the smooth image component
and singularity set. However, the specific formulation of the Mumford-Shah functional makes it difficult
to solve in practice. In addition, due to the presence of wavelet frame functions with varied orders of
vanishing moment, the types of singularities characterized by the new variational functional is far richer
than the Mumford-Shah functional. This is a rather desirable property for image restoration considering
the fact that images do contain singularities of different types. We refer the interested readers to [47]
for further details on the analysis.

The significance of the piecewise smooth image restoration models (3.5) and (3.7) is even beyond
the scope of image restoration, which has been categorized as low level image processing. In the
literature of imaging science, image restoration has been treated as a data preprocessing step for higher
level image analysis tasks, and how the images being processed will be used at a higher level stage is
generally ignored. However, the risk of it is that key features for high level image analysis may not be
well recovered or even removed during image restoration process. The models (3.5) and (3.7) can be
regarded as a link between lower level image processing and high level image understanding. Indeed,
the singularity set Γ obtained from these models encode valuable information of the geometries of the
objects reside in the image, which can be used for object recognition, quantification, image classification,
etc. Therefore, the two piecewise smooth image restoration models opened a door towards the unified
modeling for both low level image processing and high level image analysis.

3.3. Data-Driven Shrinkage. The quality of an image restoration method is not only deter-
mined by the choice of “dense plus sparse” approximation of images. The shrinkage operator plays a
rather important role as well. This section is focused on the choice of data-driven shrinkage operators
that are adaptive to the given image to obtain better image restoration results.

As stated earlier, the key to the success of image restoration methods is to preserve or enhance
image features (i.e. singularities) and maintain smooth image components. Most transformation based
methods use certain transforms to separate image features and smooth image component, and do
processing in the transform domain. One of the most popular type of processing in the transform
domain is thresholding, such as soft- and hard-thresholding, with relatively uniform threshold values.
However, such processing does not have to be limited to thresholding. It can be a generic shrinkage
operator that takes soft- and hard-thresholding as special cases. Moreover, the amount of shrinkage for
each coefficient in transform domain does not have to be uniform. One fixed shrinkage value cannot
possibly be ideal for the entire image domain. For example, the sparse wavelet frame coefficients of
an image are generally small in smooth regions and large near jump discontinuities or other type of
singularities. Therefore, we should apply different shrinkage levels at different locations of the given
image, in other word, a data-driven design of shrinkage.

In [6], a generic iterative wavelet frame shrinkage algorithm was studied. The algorithm takes the
following form

uk+1 = W̃⊤Sλk(Wuk), k = 0, 1, . . . , (3.8)

Here, λk = {λℓ,l,k(αk) : (ℓ, l) ∈ B,k ∈ Z2} with αk = Wuk. The shrinkage operator Sλ(α) is given by

Sλ(α) = {Sλℓ,l,k(α)(αℓ,l[k]) = αℓ,l[k](1− λℓ,l,k(α)) : (ℓ, l) ∈ B,k ∈ Z2}. (3.9)

In (3.9), the shrinkage value λ varies at different level of wavelet frame decomposition l, wavelet frame
band ℓ and location k. The shrinkage value λℓ,l,k(α) also depends on the values of the wavelet frame
coefficients α. Therefore, the shrinkage operator given by (3.9) is a rather general operator, which in
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fact takes the soft- and hard-thresholding as special cases (see [6]). It is also adaptive in nature since the
shrinkage value depends on the wavelet frame coefficients of the current approximation of the solution
uk. The flexibility and the adaptive nature of the shrinkage operator Sλ enable us to design data-driven
shrinkage operators to achieve higher quality image reconstruction than classical thresholding operators.
Yet, it is still unclear on how one should choose the shrinkage level λ properly for a given image.

One of the major discoveries of [6] is the connections between the iterative wavelet frame shrinkage
algorithm (3.8) and the following generic nonlinear evolution PDE

ut =
r∑

ℓ=1

∂αℓ

∂xαℓ
Φℓ(Du, u), with D = (

∂β1

∂xβ1

, . . . ,
∂βr

∂xβr
), (3.10)

where |αℓ|, |βℓ| ≥ 0 for all 1 ≤ ℓ ≤ r. Note that the PDE (3.10) includes nonlinear diffusions (e.g. the
Perona-Malik equation [49]) and nonlinear hyperbolic equations (e.g. the shock-filters [50]) as special
cases. It was shown in [6] that for any given evolution PDE taking the form (3.10), one can always

select the bi-frame transformations W and W̃ , and the shrinkage values λ(α) = {λℓ,l,k(α)} properly
such that the iterative shrinkage algorithm (3.8) is a discretization of the PDE (3.10). For nonlinear
diffusions satisfying certain assumptions, the discrete solution indeed converges to that of the PDE as
meshsize goes to infinity (see [6] for details).

Such connections between wavelet frame shrinkage and nonlinear evolution PDEs provide new and
inspiring interpretations of both approaches. For example, some of the wavelet frame shrinkage algo-
rithms that are commonly used in image restoration, such as the iterative soft-thresholding algorithms,
lead to new types of nonlinear PDEs that have not been considered in the literature. Also, the accel-
erated iterative wavelet frame shrinkage algorithm of [24, 89] led to a new time dependent nonlinear
PDE of both parabolic and hyperbolic type. On the other hand, through such connections, the PDE
based approach grants geometric insights to the wavelet frame shrinkage algorithms, which enables us
to choose desirable shrinkage levels adaptively to given image. Furthermore, the discretization provided
by wavelet frame transforms is superior to some standard finite difference discretization of differential
operators for image restoration problems. The reason is that the discrete transformation of a wavelet
frame system, such as B-spline tight wavelet frame systems, typically contains filters with varied orders
of vanishing moments specializing in capturing image features of different types, with different orien-
tations and at different scales. Hence, wavelet frames provides better sparse approximation to local
image features than the system corresponding to a finite difference discretization. On the other hand,
wavelet frames also provides dense approximation to global image patterns which is missing from the
system associated to classical finite difference discretizations. Therefore, wavelet frame transforms are
more desirable than finite difference discretizations in approximating differential operators for image
restoration problems.

The significance of these findings is beyond what it may appear. The analysis and discussions in [6]
indicates that wavelet frame based approach is a new way of solving PDEs in general. Together with the
earlier work [46, 47], wavelet frame based approach can be regarded as a brand new tool for numerical
analysis to discretize and solve variational and PDE models that arise from different disciplines in
science and engineering.

Through the generic connections between (3.8) and (3.10), we can borrow the ideas from PDE based
approach to design an adaptive shrinkage strategy. The specific PDE we consider is the well-known
Perona-Malik (PM) equation used for image denoising and enhancement [49]. First, we recall the PM
equation:

ut = div
(
g(|∇u|2)∇u

)
,

where g is a function satisfying
{
g : [0,∞) 7→ (0,∞) decreasing;
g(0) = 1; g(x) → 0 as x→ ∞;
g(x) + 2xg′(x) > 0 for x ≤ K; g(x) + 2xg′(x) < 0 for x > K.

(3.11)

One example of g is g(x) = 1
1+xp/K for some constant K > 0 and p > 1/2. The diffusion coefficient

of the Perona-Malik equation is g(|∇u|2) which controls the amount of diffusion at each location. By
the specific assumption on g, we can see that at smooth regions (|∇u| is small), g(|∇u|2) is large which
means more diffusion is allowed; while near singularities (|∇u| is large), g(|∇u|2) is small meaning less
diffusion is allowed.

Thanks to the link of (3.8) to (3.10), we can select the shrinkage values λ(α) = {λℓ,l,k(α)} similarly
as the selection of function g of the PM equation so that the shrinkage is adaptive to local image
geometry. For example, one may select Sλ so that (3.8) is exactly a discretization of the PM equation.
However, we have much more flexibility in selecting the shrinkage operator than merely trying to match
it with an existing PDE.

For generic image restoration problem, we need to have the underlying image restoration problem
properly embedded in the iterative wavelet frame shrinkage algorithm (3.8), because otherwise all image
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features will eventually be smeared out as k → ∞. In fact, the 3-steps procedure tells us exactly how
one should embed image restoration problem in the algorithm. The following tight wavelet frame based
adaptive thresholding algorithm is one of many examples:

Algorithm (Adaptive Soft-Thresholding): Initialize u0 = 0. Iterate the following steps for k =
1, 2, . . . until convergence: {

uk+1/2 = W⊤T s
λ(αk)(W (uk)),

uk+1 = (I − µA⊤A)uk+1/2 + µA⊤f .
(3.12)

where T s is the soft-thresholding operator given by (2.13). The adaptive threshold level λ(α), which
depends on the magnitudes of the wavelet frame coefficients α = {αℓ,l[k] : (ℓ, l) ∈ B,k ∈ Z2}, is given
by λ(α) = {λℓ,l[k] : ℓ, l,k} with

λℓ,l[k] =

{
0 if ℓ = 0
νg
(∑

ℓ |αℓ,l[k]|2
)

for ℓ 6= 0.

Here, ν is some fixed constant. The scalar function g can be chosen similarly as the PM equation [49].
Here, we present a numerical simulation of the adaptive soft-thresholding (AST) algorithm for the

same image deblurring scenario we considered for SBreg, and PS algorithms. The original blur and
noise free image is shown by the left image of Figure 6 and the blurry and noisy observed image f is
shown in the middle image. The recovered image is shown by the right image in Figure 6.

Figure 6. Images from left to right are: the original image, the observed blurry and noisy image f and the
reconstructed image using the AST algorithm.

Note that the adaptive soft-thresholding algorithm (3.12) is only one of many possible adaptive
wavelet frame shrinkage algorithms. More algorithms can be found in [6] with more numerical simula-
tions and comparisons with non-adaptive algorithms. For each of the adaptive algorithms, one can find
its corresponding nonlinear evolution PDE based on the generic connections between (3.8) and (3.10).
Also, all of the these algorithms can be understood as taking the form of the 3-steps procedure, which
essentially indicates that the corresponding PDE based approach follows the 3-steps procedure as well
in the discrete setting. Interested readers should consult [6] for details.
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