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Abstract. Brain aneurysm rupture has been reported to be closely related
to aneurysm size. The current method used to determine aneurysm size is to
measure the dimension of the aneurysm dome and the width of the aneurysm
neck. Since aneurysms usually have complicated shapes, using just the size of
the aneurysm dome and neck may not be accurate and may overlook important
geometrical information. In this paper we present a level set based surface
capturing algorithm to first capture the aneurysms from the vascular tree.
Since aneurysms are described by level set functions, volumes, curvatures and
other geometric quantities of the aneurysm surface can easily be computed for
medical studies. Experiments and comparisons with models used for capturing
illusory contours in 2D images are performed. Applications to medical images
are also presented to show the accuracy, consistency and robustness of our
method in capturing brain aneurysms and volume quantification.
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1. Introduction. Subarachnoid hemorrhage, primarily from brain aneurysm rup-
ture, accounts for 5 to 10% of all stroke cases with a high fatality rate [1]. Ad-
vancements in neuroimaging technology have helped these aneurysms to be more
frequently found prior to rupture. A method to determine if aneurysms are at
higher risk of rupturing would be extremely valuable. Brain aneurysm rupture has
been reported to be related to the size of aneurysms [2]. It is known that the risk of
rupture greatly increases as the aneurysm becomes larger [3, 4]. Currently, meth-
ods to determine the aneurysm size are to simply manually measure the size of the
neck and the dome of aneurysms. However, these methods may overlook important
geometric information and are very hard to perform consistently across subjects.

Figure 1. Left: phantom vessel in 2D; middle: Kanizsa square;
right: Kanizsa triangle. The red curves are illusory contours.

Our goal in this paper is to first segment the aneurysm from the entire blood ves-
sel with minimal human interaction, then compute its volume and other geometric
quantities. This problem can actually be realized as an illusory surface capturing
problem by observing Fig. 1, which is an extension from illusory contours in 2D.
The boundaries of the aneurysm that are not part of the blood vessel surface can
be completed naturally by illusory surfaces. Illusory contours have been intensively
studied in cognitive neuroscience, where people find that the human vision system is
capable of combining nonexistent edges and making meaningful visual organization
of both the real and imaginary contour segments [5, 6, 7] (e.g. the Kanizsa square
and triangle [5] in Fig. 1). Various researchers have introduced mathematical mod-
els and techniques to mimic the human vision system in detecting and capturing
perceptual contours in images [8, 9, 10, 11, 12, 13]. These mathematical models
can be used to describe the process in medical evaluation when the location of an
aneurysm needs to be identified. Given that our problem is to first capture and then
calculate volumes and geometries of aneurysms, representing surfaces using level set
functions and designing a proper surface evolution PDE is essential. Therefore, we
introduce a level set and PDE based illusory surface model, inspired by the illu-
sory contour models in [11], to capture aneurysms, and calculate their volumes and
geometries.

The focus of this paper is to introduce a novel method to capture a specific
part of a given pre-segmented surface obtained from 3D images. Therefore, we
will not place emphasis on the techniques of surface reconstruction from 3D images.
However, we note that different segmentations from a 3D image may result in rather
different surfaces in terms of geometry. In fact, surface segmentation from 3D
images is highly nontrivial, and is a very active research area. Interested readers
can consult [14, 15, 16] and their references for detailed techniques of blood vessel
segmentations. As an example, we applied a simple thresholding method (with
carefully chosen thresholds) followed by fast sweeping method [19] and Gaussian
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smoothing to reconstruct the surface represented by a level set function [20], which
takes positive values inside the vessel region and negative values outside. We note
that one can replace the Gaussian smoothing by some more sophisticated smoothing
techniques, e.g. nonlocal means [17, 18], if there are some sharp and delicate features
in the surfaces need to be well reserved. Fig. 2 illustrates the idea of reconstruction
of vessel surfaces from 3D images and an example of brain aneurysm.

Figure 2. Reconstruction from 3D images. Left figure shows a few
slices of images corresponding to the reconstructed surface; right
figure shows the reconstructed surface with the red curve circling
the aneurysm.

2. Review of Level Set Based Illusory Contour Capturing. Many PDE
based methods have been proposed to identify illusory contours as well as explain
the phenomena [8, 9, 10, 11, 12, 13]. One of the most typical ones was introduced
by Sarti et al [9, 10]. In their work, they first chose a fixation point inside the
domain bounded by the ideal illusory contour, and constructed a surface on the
whole domain on the basis of the point, then evolve the entire surface based on the
image gradient. In fact, our user interactive initialization strategy (in Section 3.3)
is very similar to their fixation point idea. More details can be found in [10].

In this section, we shall focus on reviewing the level set formulations of the
illusory contour problems introduced by Zhu and Chan [11], because our PDE
model is motivated by theirs. As a convention, all level set functions in this paper
take negative values inside the domain of interest and positive outside. For example
in Figure 1, denoting the regions inside the red curves as Ω, then the corresponding
level set function φ satisfies

φ(x)
{
< 0 x ∈ Ω
> 0 x ∈ Ωc,

and ∂Ω, which is the zero level set of φ, represents the illusory contours (red curves).
The first model considered in [11] is

E(φ) =
∫

Ω

(
dδ(φ)|∇φ| + αH(ψ)H(φ) + βδ(φ)|∇φ|

)
dx, (1)

where ψ is the signed distance function obtained from a given image (see e.g. Fig.
1) whose zero level set represents the boundaries of the objects in the image, and
d = |ψ| is the corresponding unsigned distance function. The symbol ∇ is the
gradient operator, δ(φ) is the Dirac delta functional, and H(φ) is the Heaviside
function. The energy term αH(ψ) ensures that the model will capture only the
inner contour, instead of the outer one (see e.g. the Kanizsa square and triangle
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in Fig. 1). We note that in [11], the authors also had an additional term
∫
Ω κ

2dx
in the energy (1) to ensure the continuity of the curvature of φ. However, this
term will result in a fourth order evolution PDE which significantly slows down the
computations. Since what is important for us is the consistency of segmentation of
aneurysms and their volumes, it seems unnecessary to have the curvature term in
the energy.

From equation (1), the corresponding gradient flow can be written as

∂φ

∂t
= δ(φ)∇d · ∇φ

|∇φ| + δ(φ)d∇ · ∇φ
|∇φ| − αδ(φ)H(ψ) + βδ(φ)∇ · ∇φ

|∇φ| . (2)

Since the function δ(φ) is concentrated only on the zero level set of φ, the PDE (2)
only describes a motion for the zero level set of φ. Similar to [21], to ensure all level
sets of φ have similar motions and to be able to solve the PDE on the entire 3D
rectangular domain, we replace δ(φ) in (2) by |∇φ| and obtain the following PDE

∂φ

∂t
= |∇φ|

(
∇d · ∇φ

|∇φ| + d∇ · ∇φ
|∇φ| − αH(ψ) + β∇ · ∇φ

|∇φ|
)
. (3)

Numerical results in [11] show that solving the PDE (3) gives fairly good results.
However, the sharp corners, e.g. the corners in Kanizsa squares and triangles in Fig.
1, are not well captured. Therefore in that paper, the authors also considered the
following improved model which enables the final curves to stick to sharp corners
more closely

E(φ) =
∫

Ω

(
(1 + μca,bκ

+(ψ))dδ(φ)|∇φ| + αH(ψ)H(φ) + βδ(φ)|∇φ|
)
dx, (4)

where μ is some constant, ca,b is some restriction function defined in (12) and κ+(ψ)
is the positive part of curvature. The corresponding evolution PDE to the energy
(4) is

∂φ

∂t
= |∇φ|

(
∇[(1 + μca,bκ

+(ψ))d] · ∇φ
|∇φ| + [(1 + μca,bκ

+(ψ))d]∇ · ∇φ
|∇φ|

− αH(ψ) + β∇ · ∇φ
|∇φ|

)
.

(5)

Numerical experiments in [11] show that the model (5) does an excellent job in
capturing illusory contours, especially at regions with sharp features.

3. Our Method and Model Comparisons. In this section, we will first discuss
the possibility of extending (1) and (4) directly from 2D to 3D, and what difficulties
and problems one may encounter. Then, motivated by these discussions, we shall
introduce our model in Section 3.2.

3.1. Direction Extension from 2D to 3D?. As discussed in [11], the energies
(1) and (4) are not convex, and hence proper initialization is required. They showed
that if the initial contour contains all key features of the object, e.g. corners, one
can obtain satisfactory results. However for our particular application here, it is not
reasonable to assume that one can always start with some surface that includes the
entire aneurysm within or as a subsurface. In addition, it is always desirable to have
a method with less restrictive initialization constraints. In this subsection, we will
observe that, generally speaking, the energies (1) and (4) require more restrictive
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initializations in 3D than in 2D. We also find that Gaussian curvature is a more
suitable quantity to use than mean curvature.

Let us first consider the model (1) and call it E1. Notice that it can be extended
to 3D trivially. Since it gives a fairly good result in 2D, one may expect it to do
so in 3D. However, the following special examples says otherwise. Take α = β = 0
in (1), and take ψ represents a unit circle/sphere, and φ represents a circle/sphere
with radius r ∈ [0, 1] (see Fig. 3). Then we can write E1 explicitly as a function of
r,

E1(r) =
∫

S

d(s)ds =
{

2π(1 − r)r, 2D
4π(1 − r)r2, 3D (6)

The plot of E1(r) in Fig. 3 shows that one should initialize φ by a circle with
radius r > 1

2 and r > 2
3 respectively in 2D and 3D in order to converge to the right

solution. Thus, the initialization constraint in 3D is more restrictive than that in
2D. This is because the shrinking force from minimizing the surface area in 3D is
stronger than that from minimizing the curve length in 2D. On the other hand,
model (1) does not perform well in terms of capturing sharp corners in both 2D and
3D and the problem is even more severe in 3D than in 2D for similar reasons.
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Figure 3. Left figure illustrates the special example consider
above, while the right one shows the plot of E1(r).

Let us now consider (4), and denote it by E2. Take the same example as in
Fig. 3, and let α = β = 0 and ca,b ≡ 1. If we choose κ to be mean and Gaussian
curvature, we shall have the following two formulas for E2(r) in 2 and 3 dimensions,

E2(r) =
∫

S

(1 + μκm)d(s)ds =
{

2π(1 + μ
r )(1 − r)r, 2D

4π(1 + μ
r )(1 − r)r2, 3D; (7)

E2(r) =
∫

S

(1 + μκg)d(s)ds =
{

2π(1 + μ
r )(1 − r)r, 2D

4π(1 + μ
r2 )(1 − r)r2, 3D. (8)

The plots of E2(r) in Fig. 4 show that if we choose mean curvature for κ, then
in 2D, we have global convergence, while in 3D, we still need to initialize prop-
erly in order to get the correct solution. However if we choose Gaussian curvature,
we have global convergence in both 2D and 3D. This is one of the motivations
for using Gaussian curvature in 3D. Another, yet more important, motivation for
choosing Gaussian curvature instead of mean curvature for our particular applica-
tion is illustrated in the following Fig. 5. As is shown below, Gaussian curvature
can discriminate between aneurysm and blood vessels naturally, while mean cur-
vature cannot. This is essentially because cylindrical objects have small Gaussian
curvatures in general, while the Gaussian curvatures for bulb like objects are rela-
tively large. In contrast, mean curvatures for both cylindric and bulb like objects
generally have comparable magnitudes.
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Figure 4. Left: plot of E2(r) in 2D/3D with κ = mean curvature;
right: plot of E2(r) in 2D/3D with κ = Gaussian curvature. For
both plots, the parameter μ = 10.

Figure 5. Left figure: mean curvature; right figure: Gaussian curvature.

However, directly applying (4) in 3D using Gaussian curvature for κ does not
give satisfactory results in general. We now consider another simple example in
2D to illustrate this. In Section 3.4 we shall give some comparisons in 3D. Let us
now consider an example as given in Fig. 6, where the target object is no longer
convex. We note that the aneurysms are usually not convex (see e.g. Fig. 6(d)).
Therefore, the 2D example in Fig. 6 is a rather typical example for our applications.
Fig. 6(a,b) shows that if we initialize using the blue curve, we will converge to the
red curve, which is not a satisfactory result because we lost the sharp feature (the
small bump). To further explain the reason we obtain such a result, we recall the
evolution PDE corresponding to the energy (4)

∂φ

∂t
= |∇φ|

(
∇(A(ψ)d) · ∇φ

|∇φ| +A(ψ)d∇ · ∇φ
|∇φ| − αH(ψ) + β∇ · ∇φ

|∇φ|
)
, (9)

where A(ψ) = 1+μca,bκ
+(ψ). As we can see from (9), the force field −∇(A(ψ)d) is

indeed enhanced by A(ψ), which means around regions with large curvature we have
a stronger force pushing the zero level set of φ towards the sharp tip (see Fig. 6(b)).
However, because of the concavity change, the force vectors are almost tangential to
the blue curve and hence most of the forces are wasted. Meanwhile, the shrinking
force given by the second term of (9) is also enhanced by the factor A(ψ). Therefore,
the blue curve will eventually shrink to the red one, instead of moving forward and
capturing the entire small bleb, which is a very important feature for aneurysms
(see Fig. 6(d)). To overcome this, one may choose the initial curve containing the
entire small bump. From a practical point of view, however, it is not reasonable
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to assume that one can always start with a good initial surface, and it is always
desirable to have a method with less restrictive initialization constraints.

(a) (b) (c) (d)

Figure 6. Figure (a): special example with blue curve being the
initial curve, red one being the result obtained by (4) and green
one being the result obtained by our proposed model (10); Figure
(b): one zoom-in with the blue arrows specifying the vector field
−∇(A(ψ)d); Figure (c): one zoom-in with the blue arrows specify-
ing the vector field −A(ψ)∇d; Figure (d): the blood vessel (same
object as in Fig. 2 with another view) with concavity change on
the aneurysm region (within the red circle).

3.2. Our Model. Here we introduce our modified illusory surface model based on
equation (3),

∂φ

∂t
= |∇φ|

(
A(ψ)∇d · ∇φ

|∇φ| + d∇ · ∇φ
|∇φ| − αH(ψ) + β∇ · ∇φ

|∇φ|
)
, (10)

A(ψ) = 1 + μκ+(ψ), (11)
where μ is a constant parameter and κ+(ψ) is the positive part of the Gaussian
curvature of ψ.

Remark 1. 1. The major difference of our model (10) from (5) is that, instead
of putting the factor A(ψ) in the energy as in (4), we modify (3) directly and
only enhance the force field −∇d. A 2D result using (10) is given in Fig. 6(a,c)
showing improvement of our model over (4). More numerical experiments will
be given in Section 3.4 which show significant improvement of the results using
our model (10) for the blood vessel shown in Fig. 2. More details are discussed
in Section 3.4.

2. The choice of the positive component (instead of some other choices such as
the absolute value) of the Gaussian curvature is to ensure that the resulting
surface does not contain any part of the vessels. Indeed, assuming that the
initial surface contains part of the blood vessels, and if the vessel locally looks
like a cylinder, then its Gaussian curvatures are small, and the part of the
surface on the vessel area will shrink and disappear eventually. More often
than not, vessels are curved instead of straight as cylinders, as shown in the
left figure of Figure 7. Since in (11) we do not enhance the force field at
the region with negative Gaussian curvatures, then the part of the surface
on those regions of the vessel will be peeled off quickly, and eventually all
the surface parts within vessel regions will shrink and disappear. On the
other hand, if the curved vessel is small in diameter, the mean curvature
term β∇ · ∇φ

|∇φ| dominates A(ψ)∇d · ∇φ
|∇φ| , and the zero level set of φ in these
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regions also shrink. To illustrate the above observations visually, we show in
Figure 7 the process of evolution when solving (10). The left figure of Figure 7
superimposes Gaussian curvature of the surface onto the surface itself, where
the red curves specify the regions where the blood vessels are curved, with
one side having positive curvature and the other side negative curvatures. The
figures from the second to the last show the evolutions of φ. As one can see,
all the vessels that were included in the initial guess of φ disappeared at the
final stage.

3. We also note that our model (10) can be used in other types of surface cap-
turing problems. We just need to fashion the factor A(ψ) according to the
type of surfaces and applications we have.

Figure 7. Figures from upper left to lower right are: Gaussian
curvature on the surface; initial surface (red) superimposed with
the reference surface; initial surface; iteration 200; iteration 500;
iteration 1000; and final result.

3.3. Numerical Implementation and Computations of Geometries. Al-
though our numerical experiments show that our model (4) is less restrictive in
terms of initialization than the models (3) and (5), properly chosen initial guesses
are still desirable. To obtain a reasonable initial surface, we adopt a user inter-
active strategy to initiate the computation. We let users select points around the
area of interest and use the selected points to determine a sphere/ellipsoid with
level set function φs. Then φ(x, 0) is defined as the intersection of φs with ψ, or
mathematically φ(x, 0) = min{φs(x), ψ(x)}. In our proposed method, the selection
of the points for the region of interest is the only part that needs user interaction.
Although automated computation is desirable, determining a pathologic region is a
medical diagnosis which needs an expert’s supervision. Therefore, it is reasonable
to have experts’ inputs and use them to initiate the computation. In the numerical
section, we will show numerous clinical examples of allowing the user to select only
a few (no more than six) points to capture the surfaces of brain aneurysms.
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With the initial condition described above, we employ the local level set method
and finite difference discretizations [22] to solve equation (3) and (10), as well as to
minimize (4), in order to alleviate the time step restrictions and lower the complexity
of our numerical computations. Generally speaking, we solve

φt + ca,b(φ)Vn(φ)|∇φ| = 0

instead of
φt + Vn(φ)|∇φ| = 0

with Vn(φ) the normal velocity depending on φ (e.g. Vn = −κ for mean curvature
motion), and the restriction function ca,b introduced to confine all effective calcu-
lations within a narrow band of zero level set of φ. The restriction function ca,b is
defined as

ca,b(x) =

⎧⎪⎨
⎪⎩

1, |x| ≤ a;
(|x|−b)2(2|x|+b−3a)

(b−a)3 , a < |x| ≤ b;
0, |x| > b.

(12)

There are three parameters in our model (10), i.e. μ, α and β. The parameter
μ controls the amount of force one wishes to apply near the regions with sharp
features. The term αH(ψ) prevents the zero level set of φ from passing through
that of ψ. Since we initialize our φ within ψ, this term only acts as a barricade
and we shall fix its value through out our experiments. The parameter β controls
the global smoothness of φ. The larger β is, the smoother our final results will
be. In Section 4, we shall fix all the parameters μ, α and β, and the stopping
tolerance. Our numerical results show that the set of parameters we have chosen
gives consistently good results for all of the ten different subjects we tested.

After we obtain the solution φ which represents the aneurysm, we calculate its
volume using by V (φ) =

∫
H(φ)dx, the mean curvature by κm(φ) = ∇ · ∇φ

|∇φ| , and

the Gaussian curvature [23] by κg(φ) = ∇φT H(φ)∇φ
|∇φ|4 , where

H(φ) =

⎛
⎝ φyyφzz − φyzφzy φyzφzx − φyxφzz φyxφzy − φyyφzx

φxzφzy − φxyφzz φxxφzz − φxzφzx φxyφzx − φxxφzy

φxyφyz − φxzφyy φyxφxz − φxxφyz φxxφyy − φxyφyx

⎞
⎠ ,

and subscripts denote the partial derivatives in Cartesian coordinates. Note that
the mean and Gaussian curvatures in Fig. 5 are computed using the above formulas.

3.4. Models Comparison. The algorithms (3), (5) and our method (10) are ap-
plied to a set of brain images acquired by 3D CT angiography. The images have
512×512 in-plane spatial resolutions with each voxel size approximately 0.125mm3.
We then extract subimages of size 54 × 37 for the aneurysm from the entire brain
images. The reconstruction of the surface is shown in Fig. 2. The initial surface,
i.e. the zero level set of φ(x, 0), is visualized in Fig. 8 (right).

The numerical results of solving (3) are shown in Fig. 9, top row. Although
this model has been reported with fairly good results for 2D images [11], direct
application to capturing 3D surface is not satisfactory, as discussed in Section 3.1.
Here we also tested the model (5) which was developed to improve the illusory
contours at corners [11]. The results are shown in the second row of Fig. 9. This
model provides improvement at the tip of the aneurysm in comparison with the
model (3); however, it still can not capture the entire tip which is a very important
medical feature. The reason is the concavity change near the sharp tip, which is
consistent with our earlier discussion in Section 3.1. The results of our surface



10 B. DONG, A. CHIEN, Y. MAO, J. YE, F. VINUELA AND S. OSHER

Figure 8. Left: selected points on the target vessel; right: initial
surface (red).

capturing model (10) are shown in the third row of Fig. 9. Using our method (10),
we are able to capture the entire aneurysm.

Figure 9. Row 1-3 shows results of (3), (4) and (10) respec-
tively. For the visually best results, parameters are β = 1 for
(3), (μ, β)=(500, 0.05) for (4) and (μ, β)=(2700, 0.05) for (10). In
each row, the five figures are results at iteration=0, 100, 500, 1000
and 2000 respectively.

4. Validations of Our Method on Various Brain Aneurysm Data. In this
section, we further validate our model (4) on ten different brain aneurysms. Brain
aneurysms are classified as the narrow-neck aneurysms or wide-neck aneurysms by
their dome/neck ratios. A narrow-neck aneurysm has a dome/neck ratio more than
1.5; otherwise, it is a wide-neck aneurysm [24]. We shall test the consistency and ro-
bustness of our method on both types(five subjects for each category). Throughout
the numerical experiment, parameters μ, α and β are taken as α = 0.5, β = 0.001,
and μ = 2/mean(κ+(ψ)). Only the stopping criteria are different depending on
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whether the aneurysm is classified as narrow-neck or wide-neck. Numerical results
presented in Fig. 10 to Fig. 13 show that this choice of parameters and stopping
criteria gives consistently good results.

All the numerical experiments were performed using MATLAB on a Windows
Laptop (Duo processor, 2.0GHz CPU and 2GB RAM). It took approximately one
minute to capture an aneurysm with volume 100mm3, and an additional one minute
for every 100mm3 increase in size.

4.1. Narrow-Necked Aneurysms. We test our model (10) on five narrow-neck
aneurysms data. The reconstructed surfaces from 3D images are given in the top
row of Fig. 10. We initialize our computation and perform the calculation by the
algorithm in Section 3.2 and 3.3, and employ the following stopping criteria for
narrow-necked aneurysms

‖φn+1 − φn‖2

‖φn‖2
< tolerance, (13)

where n is the iteration number which comes from the discretization of time variable
t. Fig. 10 (bottom row) shows the numerical results of aneurysm capturing for the
five subjects. The robustness of the numerical solutions is also tested by randomly
choosing 6 different sets of initial points (Fig 11 top row) on one of five aneurysms
in Fig. 10, which generates 6 different initial surfaces (Fig 11 middle row). The
final results from the 6 different initializations are nearly identical to each other
as shown in Fig. 11 bottom row. The volumes captured by different initial points
are 312.273 ± 6.245mm3 (mean ±standard deviation). As a result, we expect the
deviation of the volume computation which can be caused by different users is
approximately 2% of the total aneurysm volume, which can be considered well
acceptable in practice.

4.2. Wide-Necked Aneurysms. For wide-neck aneurysms, using (13) as stop-
ping criteria may cause the zero level set of φ shrink to zero. This is because in
general there does not exit a stable state for the zero level set of φ due to the
fact that the necks of the aneurysms are usually wide open. Thus, we adopt the
following stopping criteria based on the special geometry of wide-neck aneurysms,

‖φn+1 − φn‖2

‖φn − φn−1‖2
≈ 1. (14)

The above equation means that the computation stops whenever the change of φn

picks up some constant pace. We test our model (10) with the above stopping
criteria (14) on five wide-neck aneurysms data. The reconstructed surfaces from
3D images are given in Fig. 12 top row. Fig. 12 bottom row shows the numerical
results of aneurysm capturing. To test the robustness, we also randomly choose 6
different sets of initial points on one of five aneurysms in Fig. 12, which generates
6 different initial surfaces. The final results from the 6 different initializations are
also nearly identical as one can see in Fig. 13 bottom row. The volumes captured
by different initial points are 122.42 ± 5.37mm3 (mean ±standard deviation). As
a result, we expect the deviation of the volume computation which can be caused
by different users is approximately 4.4% of the total aneurysm volume. Note that,
although we do not have a theoretical guarantee that (14) works for all wide-neck
aneurysms, we believe it should work for typical wide-necks and it certainly works
well for the 5 subjects we tested on in Section 4.2.
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Figure 10. Top row shows the surfaces of narrow-necked
aneurysms. Second row shows the sets of points given by users.
Third row is the corresponding initial surfaces. Bottom row is the
corresponding final captured surfaces. The surfaces in row 2-4 are
shown with close-up views. The volumes of the aneurysms cap-
tured are 213.527mm3, 520.196mm3, 602.7mm3, 319.296mm3 and
516.399mm3 respectively from left to right.

5. Conclusion. A method to quantify the volume and other geometries of brain
aneurysms is needed to better study how they associate with aneurysmal growth
and rupture. In this paper, we introduced a level set based PDE model to capture
brain aneurysms. We also introduced a supervised strategy where users only need to
select no more than six initial points on the surface to initialize the algorithm. The
numerical results showed that the final surface captured the entire target region
and we were able to compute the volume and curvatures of the aneurysms for
clinical studies. There is huge variation among brain aneurysms and being able
to quantify the geometry of irregular shapes is especially important to the study
of the associations of shape with rupture. Our future work will involve applying
this algorithm to diverse aneurysm shapes and adjusting the algorithm for different
clinical purposes.
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Figure 11. Top row is the set of points given by users. Mid-
dle row is the corresponding initial surfaces. Bottom is the cor-
responding final captured surfaces. The resulting volumes for the
different points chosen by users from left to right are: 319.296mm3,
317.275mm3, 307.781mm3, 302.881mm3, 315.499mm3 and
310.905mm3.
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