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Abstract. In this paper, we will first introduce a novel multiscale representation (MSR) for
shapes via level set motions and partial differential equations (PDEs). Based on the MSR, we will
then design a surface inpainting algorithm to recover 3D geometry of blood vessels. Because of the
nature of irregular morphology in vessels and organs, both phantom and real inpainting scenarios
were tested using our new algorithm. Successful vessel recoveries are demonstrated with numerical
estimation of the degree of arteriosclerosis and vessel occlusion.
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1. Introduction.

1.1. Literature Reviews and Motivations of Multiscale Representa-
tions. Multiscale representation (MSR) of functions, e.g. wavelets, has been ex-
tensively studied in the past twenty years [26, 55]. However, when one deals with
shapes, e.g. biological shapes in R

3, most of the classical theories and algorithms can-
not be directly extended. In this paper, we will propose a new MSR for shapes based
on PDEs and level set method. Although we shall focus on studying 3D biological
shapes/surfaces, the MSR that we introduce here applies to general shapes/surfaces
in both 2D and 3D.

Many attempts have been made in the past on designing wavelet-typed MSR
for 3D shapes [59, 58, 41, 29]. Among them, the method proposed by Nain et. al.
[59, 58] is especially effective to study biological shapes. They first map the shape
(triangulated) onto the unit sphere so that one obtains a vector-valued function f :
S

2 �→R
3; then apply spherical wavelet decomposition [72] to each component of f .

However, the wavelet coefficients are not intrinsic to the shape, but dependent on the
mapping f . Furthermore, finding a good mapping from a shape to the unit sphere (or
to some other canonical domains) is nontrivial and in fact a popular ongoing research
area (see e.g. [43, 77, 42, 49, 47, 40, 44, 50, 74, 65]).

Another interesting approach was proposed by Pauly et. al. [64], where they
introduced an MSR for point-based surfaces. Their idea was to use Moving Least
Square method [52] to define a series of smoother and smoother point-based surfaces,
and then define wavelet coefficients as the displacements from two successive levels.
Their method only requires a local parametrization of the point-based surface which
is easy to calculate. However, the application of their method is rather limited in
medical image analysis, because most of the biological shapes are not point-based.
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2 A New MSR for Shapes and Blood Vessel Recovery

Motivated by Pauly et. al.’s work, we will propose a new MSR for shapes in
Section 2. The basic idea is using level set motions via solving some properly cho-
sen Hamilton-Jacobi (HJ) like equation to obtain a sequence of shapes that become
smoother and smoother as time evolves (analogous to coarse level approximation in
wavelet decomposition). Then we carefully define the so-called “details” (analogous
to wavelet coefficients) of the MSR which carry important geometric information and
facilitate a perfect reconstruction. While the wavelet based multiscale decomposition
and reconstruction use filters, which are linear processes, the proposed new MSR for
shapes uses (nonlinear) PDEs for both decomposition and reconstruction. However,
the spirit is the same, i.e. separate features from smooth components of the surface
and the underlying surface has a sparse approximation in feature domain together
with the smooth components. Due to the level set formulation, parametrization is no
longer needed.

1.2. Shape Modelling and Evolution PDEs. Throughout this paper, shapes
are defined to be smooth boundaries of domains Ω∈R

3 and are represented by level
set functions, typically signed distance functions. We note, however, that point-based
and triangulated surfaces can also be handled in a similar way by associating the
point-based/triangulated surface with a level set function (see item 4 of Remark 2.2
for details).

A level set function φ that represents the shape ∂Ω is defined as follows

φ(x)
{
<0 x∈Ω;
>0 x∈Ωc.

We always assume that the function φ is at least Lipschitz continuous.
Level set motions can be achieved by solving the following HJ like equation [63],

φt +vn (∇φ) |∇φ|=0, φ(x,0)=φ0(x), (1.1)

where we take (x,t)∈D× [0,T ] with D some bounded domain in R
3 and T >0. Here

vn (∇φ) is the normal velocity, which essentially depends on ∇φ while second order
derivatives of φ may be involved (e.g. mean curvature). If vn only depends on first
order derivatives of φ, then (1.1) is a standard HJ equation. We also assume that the
PDE (1.1) is geometric [20, 39], which guarantees contrasts invariance. Comprehensive
theoretical analysis of PDE (1.1) and surface evolution equations can be found in
[20, 39, 33, 34, 35, 36, 23, 24, 22].

The choice of velocity fields is very important and yet very non-unique. We need
to choose one that generates a “meaningful” MSR for a given piecewise smooth shape.
The bottom line is that we want the zero level set of u(x,t) to become smoother and
smoother as t increases. This is in fact a typical scale space behavior that has been
studied for decades (see e.g. [1, 46]). It is known [1, 46] that under some general
axiomatic hypothesis and some invariance (i.e. rotation and contrast invariance)
assumptions on {u(x,t)}t≥0, u(x,t) must be a viscosity solution to a PDE of the form
(1.1), with the velocity field vn only depending on the principle curvatures of level
sets of u at time t. In other words, a “meaningful” velocity field must be curvature
dependent.

The type of velocity fields that we shall focus in this paper is

vn = c+ακa−βκ, c,α∈R, β >0, (1.2)
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where κ is the mean curvature defined as κ :=∇· ∇φ
|∇φ| , and κa is the average mean

curvature [31]. Note that when c=0 and α=β=1, i.e. vn =κa−κ, the PDE (1.1)
generates a volume preserving mean curvature motion [31, 12, 71, 67].

2. Level Set Based MSR of Shapes: Continuous Transforms and Dis-
crete Algorithms. Let Ωt∈R

3 be some domain with scale t, and St :=∂Ωt be the
shape at scale t represented by some time-dependent level set function φ(x,t), i.e.
φ(x,t)<0 for x∈Ωt, φ(x,t)>0 for x∈Ωc

t , and

St ={x∈R
3 | φ(x,t)=0}t≥0. (2.1)

Here S0 denotes the original shape with the corresponding level set function φ0(x)=
φ(x,0). Throughout the rest of the paper, the function φ(x,t) is always taken to be
the solution of (1.1). For some properly chosen vn in (1.1), e.g. with vn =−κ or
κa−κ, we can obtain a continuous series of shapes {St}t∈[0,T ], which tends to become
smoother when t increases. Based on this, we define our continuous level set based
MSR of S0 as follows.

Definition 2.1. Let φ(x,t) be the solution of the PDE (1.1) and (x,t)∈D×
[0,T ]. We now understand xl(t) as a path on the propagating l-th level set of φ, i.e.
φ(xl(t),t)= l. For simplicity, we shall omit the subscript “l” unless a particular level
set is considered.

1. We now define the multiscale transformation (MST) of φ0(x) as

�W (x,t) :=W (φ0) :=−vn
∇φ
|∇φ| =−x

′(t). (2.2)

Vector −x′(t) is the displacement vector and w(x,t) :=−vn(x,t) is the de-
tail of the MST.

2. We shall call �W (x,t) the displacement vector field at scale t, and denote
�W|(x,t) (w|(x,t)) as the restriction of �W (x,t) (w(x,t)) on St.

3. The MSR for the original shape S0 in terms of φ0(x) is denoted as

MSR(φ0,T )=
{{

�W (x,t)
}

t∈(0,T )
,φ(x,T )

}
.

4. We define the inverse multiscale transformation (IMST) via solving
the following PDE

ψτ + �W (x,T −τ) ·∇ψ=0, ψ(x,0)=φ(x,T ). (2.3)

for given T >0 and 0≤ τ≤T .
Remark 2.2.
1. The technique of generating a sequence of the spaces {St} via solving PDEs

is known as scale space decomposition (see e.g. [1, 46]). However, a classical
scale space analysis does not study the details as defined in item 2 above, and
does not have a reconstruction as in (2.3).

2. The last identity in (2.2) can be easily shown by using PDE (1.1) and the
assumption that x′(t) is aligned with normal directions of level sets of φ.

3. The detail w|(x,t) is a function on St that characterizes intrinsic geometric
information of the shape at scale t. Here by intrinsic we mean that w|(x,t),
as well as {St}t>0, does not depend on the initial embedding φ0 for a large



4 A New MSR for Shapes and Blood Vessel Recovery

class of functions [39], but only depends on S0. Therefore, we now have an
intrinsic MSR for S0:

MSR(S0)=
{
{ �W|(x,t)}t∈(0,T ),ST

}
. (2.4)

Furthermore, the above MSR is invariant under translation and rotation of
S0.

4. The MSR defined above can be easily adapted to a point-based or triangulated
surface. One simply need to first associate the surface with a level set func-
tion and then perform the MST. For point-based surfaces, the IMST from its
MSR (2.4) can be point-wise defined as S0 =ST +

∫ T

0
�W|(x,t)dt or equivalently

x0(0)=x0(T )+
∫ T

0
−x′0(t)dt, which is obviously true.

Now the question is that if we have perfect reconstructions via (2.3). The answer
is given in the following proposition, which directly follows from theories of ODEs.

Proposition 2.3. Assume that �W (x,t) stays Lipschitz continuous for (x,t)∈
D× [0,T ]. Then the equation (2.3) inverts the MST defined by (2.2) in the sense
that ψ(x,τ) :=φ(x,T −τ) is the unique solution of (2.3).

Remark 2.4.
1. The assumption in Proposition 2.3, i.e. �W (x,t) being Lipschitz in D× [0,T ]

for some T >0, is not always valid (e.g. vn = c<0 and φ0(x) representing
a cube). However, if we choose vn as in (1.2) and choose some appropriate
ending time T >0 (e.g. before any topological changes occur), the above as-
sumption will be valid and we will have a perfect reconstruction using (2.3)
[39, 31].

2. Generally speaking, the vector field �W (x,t) does not stay Lipschitz globally
in time, and this happens when the corresponding surface evolution starts to
develop singularities. It is very difficult to find a mean curvature dependent
surface evolution that guarantees to have global smooth solutions for a general
initial surface S0, and the evolution is also invariant under translations and
rotations of S0. For some special class of initial surfaces, however, it is
relatively easy to find such motion. Taking vn =κa−κ for example, it is
shown in [31] that if the initial surface S0 is close enough (but not necessarily
convex) to a certain sphere, then St stays smooth and converges exponentially
fast to the sphere.

Notice from Definition 2.1 and Proposition 2.3 that to perfectly reconstruct φ0(x)
from φ(x,T ), we need to store the entire vector field �W (x,t) for every x∈D and all
scale t. However, in practice, we only want a perfect reconstruction of S0, and thus we
do not need that much information. Therefore, only the displacement vectors within
a narrow band of the zero level set of φ(x,t) need to be stored.

We can be even more “greedy” here by only storing �W|(x,t). When performing
inverse transform, we will need to extend �W|(x,t) to at least a narrow band of the
zero level set of φ(x,t). Note that no extension can guarantee an exact recovery of the
vector field �W (x,t), and hence the reconstruction of S0 will not be exact. However,
if the extension is conducted accurately and the mesh grid is dense enough, i.e. the
resolution of the shape is high enough, the reconstruction should be more and more
accurate. The extension we shall adopt here is such that the extended vectors are
constant in the normal directions of each level set of φ(x,t) [7]. For simplicity, we will
use a local search method to extend �W|(x,t) to a narrow band of the zero level set of
φ(x,t). We further note that if we perform the extension of �W|(x,t) more carefully,
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we may achieve smaller reconstruction errors than those shown in Figure 3.5. When
more accurate reconstruction is desired and space of storage is not an issue, one can
be less “greedy” on saving the storage and store �W (x,t) within a narrow band of
φ(x,t) for each step. Then we will not have errors due to the vector field extensions.
However, we will still have errors introduced by solving (2.3) numerically.

Our proposed discrete version of MSR is given in Algorithm 1.

Algorithm 1 Level Set Based MST and IMST
Start from the given level set function φ0(x) representing shape S0. Choose time
steps 0= t0<t1<...< tN =T . Denote Δti = ti+1− ti and assume that maxi(Δti) is
small.
Initialize: Sample a point set X0 from S0 (either uniformly or non-uniformly).

MST:
while i≤N do

1. Starting from φ(x,ti−1), solve PDE (1.1) for t∈ [ti−1,ti] and obtain φ(x,ti).
2. Orthogonally project Xi−1 onto the zero level set of φ(x,ti) and obtain Xi.
3. Compute the discrete displacement vector by �W|i =

Xi−Xi−1
Δti−1

, and i← i+1.
end while
We then obtain the discrete MSR of S0: MSR(S0,T ) :={ �W|1, �W|2, . . . , �W|N ,φ(x,T )}.

IMST:
1. Extend the vector fields { �W|i}Ni=1 such that the values are constant along normal
directions of the level sets of φ(x,ti) (see Figure 2.1).
2. Solve (2.3) using �W|i within interval [ti,ti−1] iteratively for each i.

3. Numerical Experiments on the MSR. One of the key steps of imple-
menting Algorithm 1 is to solve the evolution PDE (1.1) efficiently. There are many
ways of solving equation (1.1). The most straightforward way is to use monotone
finite difference schemes [63, 62]. However, it is not very efficient computationally.
To overcome this, Merriman, Bence and Osher introduced a diffusion-based level set
motion in [57, 56], and it was further studied in [48, 68, 69, 70], where in [48] the
correctness of the method is rigorously proven. In [71], Ruuth and Wetton introduced
a fast algorithm to calculate volume preserving motion by mean curvatures. All these
methods speed up curvature driven motions drastically.

In this section, we will recall the fast algorithms of level set motion for the cases
vn = c and vn =κa−κ given by [71, 57, 56, 69]. These algorithms will be used later
to generate fast multiscle decompositions of shapes.

We first recall the fast method of solving (1.1) with vn = c (see [57, 56, 69]) in
Algorithm 2.

We now recall the fast implementation of (1.1) with vn =κa−κ proposed by
Ruuth and Wetton [71] in Algorithm 3, which is based on the diffusion-based mean
curvature motion proposed by [57, 56]. Note that if we remove step 3 in Algorithm 3
and choose λ=0.5 in step 4, it is exact the fast mean curvature motion proposed in
[57, 56].

Some numerical results of the MST and IMST in Algorithm 1 are presented in
Figure 3.1 and 3.3 using two biological shapes (right hemisphere of a cortex and part
of a blood vessel). The velocity field in (1.1) is chosen to be vn =κa−κ and 5 levels
of decomposition are conducted (first and second row of Figure 3.1 and 3.3). The
mesh size is taken to be 1 throughout the computations. Details �W|i are drawn on



6 A New MSR for Shapes and Blood Vessel Recovery

Fig. 2.1. Top figure illustrates the vector field extension, where red line is the zero level set;
red vectors are �W|; and blue vectors are the extended vectors from �W|. The bottom figure shows the

actual extension of �W|(x,t).

the surface Si (second row of Figure 3.1 and 3.3), where the value is positive, when
�W|i is pointing outwards and negative when it is pointing inwards. The IMSTs are
also presented where S̃i denotes the reconstruction of level i from level i+1. As
we can see, although the reconstructions are not exact for each level, they are quite
accurate in the sense that most of the features are well reconstructed. We quantified
the reconstruction errors in terms of Hausdorff distance in Figure 3.1 and 3.3. Note
that the reconstruction errors are dominant by some of the regions with relatively
high curvatures as shown in Figure 3.5.

The data of cortical surface in Figure 3.1 is of size 45×95×77. The computation
time for each level of decomposition and reconstruction are 35 seconds and 180 seconds
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Algorithm 2 Level Set Motion with Constant Normal Velocity
Start from a given shape represented by φ.
while t<T do

1. Define the corresponding characteristic function by χ=1{φ<0}. Set V0 equal
to the volume of {φ<0}.
2. Starting from χ, evolve χ̄ for a time Δt by χ̄t =∇2χ̄.
3. Sharpen:

χ=
{

1 if χ̄>0
0 otherwise

4. Let t← t+Δt. Compute φ(x,t) from χ via fast sweeping method [75].
end while

Algorithm 3 Volume Preserving Mean Curvature Motion: vn =κa−κ.
Start from a given shape represented by φ.
while t<T do

1. Define the corresponding characteristic function by χ=1{φ<0}. Set V0 equal
to the volume of {φ<0}.
2. Starting from χ, evolve χ̄ for a time Δt by χ̄t =∇2χ̄.
3. Determine the threshold value that preserves the volume of the set: i.e. find
a 0<λ<1 s.t. ∣∣∣|{x : χ̄<λ}|−V0

∣∣∣<ε.
4. Sharpen:

χ=
{

1 if χ̄>λ
0 otherwise

5. Let t← t+Δt. Compute φ(x,t) from χ via fast sweeping method [75].
end while

respectively. The data of blood vessel in Figure 3.3 is of size 58×50×50. The
computation time for each level of decomposition and reconstruction are 15 seconds
and 40 seconds respectively. The major computation cost for reconstruction is in
vector field extension which can be improved by, e.g. solving an extension PDE [7].
All calculations are performed on a Windows laptop with Intel Core 2 Duo T9400
and 3G memory.

We also illustrate sparseness of the coefficients { �W|i}5i=1 in Figure 3.2 for the
cortical surface and in Figure 3.4 for the blood vessel. As one can see that the
energy of �W|i are relatively concentrated around 0, especially for the later levels.
This sparseness reduces the computational costs.

4. Application in Blood Vessel Recovery. Evaluating missing parts in med-
ical images provides important information as signs of diseases. One of the most
common situation is the phenomenon of vessel narrowing or occlusion in angiographic
images. Estimating and quantifying these abnormalities can help document disease
progression.

The recovery of blood vessels can be regarded as a surface inpainting problem
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Fig. 3.1. First row (left to right): MST S0,S1, . . .,S5. Second row shows the details of MSR
on S1, . . .,S5. Third row shows IMST S̃i, i=0,1, . . .,4, where the Hausdorff distance between Si and
S̃i are: 1.12, 0.74, 0.74, 0.69, and 0.63 respectively.
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Fig. 3.2. Histograms of �W|i for i=1, . . .,5 (left to right). The supports of them are (from left
to right): [-1.57, 1.35], [-1.00, 0.81], [-0.63, 0.68], [-0.63, 0.61] and [-0.44, 0.65].

Fig. 3.3. First row (left to right): MST S0,S1, . . .,S5. Second row shows the details of MSR
on S1, . . .,S5. Third row shows IMST S̃i, i=0,1, . . .,4, where the Hausdorff distance between Si and
S̃i are: 0.81, 0.71, 0.77, 0.71, and 0.62 respectively.
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Fig. 3.4. Histograms of �W|i for i=1, . . .,5 (left to right). The supports of them are (from left
to right): [-0.61, 1.02], [-0.43, 0.84], [-0.44, 0.65], [-0.40, 0.65] and [-0.44, 0.65].

Fig. 3.5. Reconstruction errors visualized on the original cortical surface and blood vessel.

[27, 76, 3]. Inpainting problems, for both images and surfaces, have been extensively
studied in the literature [60, 17, 8, 6, 18, 11, 10, 32, 28, 9, 14, 15, 30, 19, 27, 76, 3, 2,
5, 79, 78, 81]. They occur when part of the data in an image or regions of a surface is
missing or corrupted. The major task of inpainting is to fill in the missing information
based on the geometry of the image/surface. In this section, we will propose a new
surface inpainting algorithm for blood vessel reconstruction that arises in medical
image analysis.

Our surface inpainting algorithm (Algorithm 4 below) inherits the structure of
the following framelet-based image inpainting algorithm proposed by Cai et. al. [15]:

1. Take framelet transform of the given image;
2. Truncate the framelet coefficients via soft-thresholding and reconstruct;
3. Apply the exact data outside the inpainting domains, and repeat.

Since we already have an MSR for surfaces, the first step above can be replace by our
MST. For the second step, we shall solve the following PDE for IMST instead of the
PDE (2.3) that was originally proposed in Definition 2.1:

ψτ + �W (x,T −τ) ·∇ψ= ε∇2ψ, ψ(x,0)=φ(x,T ). (4.1)

The above PDE mimics thresholding in the sense that it penalizes the reconstruction
from �W by introducing a vanishing viscosity ε∇2ψ, which forces some information
outside the inpainting region flows into the inpainting regions. Also, when ε→0, the
solution of (4.1) converges to the viscosity solution of (2.3) [24, 22].

Since we generally expect volumes of surfaces to increase during inpainting, we
choose the following PDE for the MST,

φt +(c+κa−κ)|∇φ|=0, φ(x,0)=φ0(x), c>0. (4.2)

Note that the PDE (4.2) generates a mean curvature motion with increasing volumes
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of the domains enclosed by level sets of φ(x,t). The constant c can be regarded
as a parameter that needs to be adjusted according to different surface inpainting
scenarios. In our experiments, we solve PDE (4.2) efficiently via a combination of
Algorithm 2 and Algorithm 3 recalled in Section 3

Algorithm 4 Surface Inpainting via MSR
Start from φ0, with inpainting region D. Choose some ε>0.
while “Not converge” do

1. Perform discrete MST by solving (4.2) and acquire �W|i by Algorithm 1.
2. Perform IMST by solving (4.1) and obtain ψε.
3. Copy the known information to ψε: ψε|Dc←ψ0|Dc .
4. Decrease amount of smoothing: ε↘.

end while

We test Algorithm 4 on both phantom (first two vessels in Figure 4.1) and real
(last two vessels in Figure 4.1) surface inpainting scenarios. First row of Figure 4.1
shows four blood vessels with inpainting regions specified by red circles. For the two
phantom inpainting scenarios, the inpainting regions are created manually, and the
surface within those regions were chopped off. For the two real inpainting scenarios,
we do not know the exact inpainting regions. Therefore in practice, we adopt a user
interactive strategy to determine the inpainting regions. After several points have
been selected on the surface, the inpainting regions are then generated automatically.
Inpainting results are given in second and third row of Figure 4.1. Throughout the
computations, the mesh size is again chosen to be 1. Decomposition levels are chosen
to be 2 for the first phantom vessel and 1 for all the rest.

We want to point out that during the inpainting process, topological change
may occur for some cases (e.g. second vessel in Figure 4.1). Although it violates
the assumption in Proposition 2.3, topological change is still allowed for inpainting
problems. The reason is that perfect reconstruction is only required at the very last
stage of inpainting (i.e. when ε≈0) in order to ensure convergence, while topological
changes most likely occur during the middle of the process if the parameters (e.g. c
in (4.2)) are properly chosen.

Generally speaking, the constant c in (4.2) is related to the volume of the regions
that needed to be inpainted. The larger is c, the larger is the volume that will be
filled into the inpainting region (see Figure 4.2 as an example).

5. Other Applications of MSR for Shapes. In this section, we will briefly
discuss some other applications of the MSR in shape processing and analysis, namely
shape registration, mapping and classification.

5.1. Shape Registration. A frequent occurring problem in practice is to com-
pare shapes that are acquired at different time, by different imaging systems or from
different viewpoints. Shapes need to be aligned with one another so that intrin-
sic differences can be detected. There is a vast amount of research in shape, as
well as image registration problems. We refer readers to the following survey pa-
pers [13, 54, 51, 16, 82, 4, 37]. In particular, a survey on hierarchical medical image
registrations is given in [51], which is related to what we are about to discuss here.

One major difficulty in aligning shapes is the alignment of their detailed features
(e.g. gyri and sulci of cortical surfaces). The general idea of MSR based registration
is to register the smooth approximations of the shapes first, which is normally easier
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Fig. 4.1. Blood vessel inpainting. Row 1: vessels before inpainting; row 2: vessels after in-
painting; row 3: inpainted regions shown in red. The errors in terms of Hausdorff distance for the
phantom cases are 2.71 and 2.86 respectively. The percentages of the volume of inpainted region
over that of the entire shape are: 5.3%, 19.2%, 6.7% and 5.7%.

Fig. 4.2. First figure shows the shape before inpainting. From the second to the last figure:
results after inpainting using c=0.1,0.2,0.3 and 0.4.

to register than the original shape, and then progressively move back to the original
shape.

Now let us be more specific. Denote S0 and S̃0 be the target and template shape.
We need to register S0 according to S̃0. For simplicity, the MSR we consider here is
taken to be discrete in time and continuous in space. We first obtain the MSRs for
the two shapes denoted as

{
{ �W|i}i=1,2,···,N ,SN

}
and

{
{ �̃W|i}i=1,2,···,N ,S̃N

}
. We then

register SN to S̃N and obtain a registered version of SN denoted as Sr
N . Through the
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registration, the details �W|N is naturally inherited by Sr
N and then we can reconstruct

Sr
N−1 from Sr

N . At level N−1, Sr
N−1 may or may not be well registered to S̃N−1.

If not, then we can perform another registration process using Sr
N−1 as a potentially

good initial guess. This process can be repeated until we are back to level 0, and a
registration of S0 to S̃0 (i.e. Sr

0) is then obtained. Note that the registration process
at each level except level N can be done efficiently, because good initial guesses are
used and hence only slight adjustments are needed. The registration at level N can
also be done efficiently because SN and S̃N contain only large scale features and thus
easy to register.

5.2. Shape Mapping. Shape mapping is an important problem in both medical
shape analysis and computer aided designs (CAD). It can also be interpreted as a
shape parametrization problem. Indeed, for a given shape, if we can find a good one-
to-one mapping (e.g. a diffeomorphism) of it to some other shape with a certain good
parametrization, then this parametrization can be inherited to the original shape.

Shape mapping has many applications in various fields of science and engineering,
including reparameterization of surfaces, repair of CAD models, and texture mapping
which is used in computer graphics to enhance the visual quality of polygonal models.
We refer readers to the following survey papers and book for recent developments on
this topic [38, 73, 45].

The idea of using MSR for shape mapping is very similar to that of registration.
To map two shapes S0 and S̃0, we start with finding a mappingMN between SN and
S̃N , which is usually easy to find. Here SN and S̃N are smooth approximations to S0

and S̃0 as defined in the previous section. Then based on the details �W|N and �̃W|N ,
one can obtain the mapping MN−1 between SN−1 and S̃N−1, which can be further
updated if necessary. Repeat this process and finally we can get the desired mapping
M0 between S0 and S̃0. Note that if the initial mapping MN is homeomorphic and
the underlying surface evolution equation of the MST does not develop singularities,
then the final mappingM0 is automatically homeomorphic even if we do not update
Mi for each level i.

5.3. Shape Classification. The major task for shape classification is to group
shapes according to their geometric similarities [53, 80, 25]. For this purpose, im-
portant geometric features of the shapes need to be extracted and used properly.
Therefore, MSR comes in naturally for this task, because we have features of the
shape stored in { �W|i} in a multiscale fashion.

For example, if we define ‖Si‖pp :=
∫

x∈Si
| �W|i(x) ·�nSi (x)|pds, where nSi is the outer

normal vector of Si, then for each shape S0 we obtain a multiscale feature vector
(‖Si‖p)i. Then for a group of shapes, we can use their multiscale feature vectors to
classify them by multidimensional scaling [21] for example. We also note that the
quantity ‖S0‖p :=

∑N
i=1‖Si‖p can be regarded as a measure of geometric complexity

of the shape S0.
The idea of using feature vector (‖Si‖p)i is motivated by the recently proposed

concept “shape DNA” [66, 61]. In [66, 61], the authors regarded eigenvalues (in
ascending order) of Laplace-Beltrami operator for a given shape as its “DNA”. The
shape DNA is also a multiscale feature vector in the sense that small eigenvalues
correspond to low frequency eigenfunctions and large eigenvalues correspond to high
frequency eigenfunctions.
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6. Conclusion and Discussion. In this paper, we introduced a novel multi-
scale representation (MSR) for shapes which is intrinsic to the shape itself, does not
need any parametrization, and the details of the MSR reveals important geometric
information. Based on the MSR, we then proposed a surface inpainting algorithm
and applied it to recover corrupted blood vessels. This technique is especially useful
to study arteriosclerosis and vessel occlusions. Numerical results showed that the
inpainting regions were nicely filled in according to the neighboring geometry of the
vessels and allowed us to accurately estimate the volume loss of vessels. We also
briefly described the possible application of the MSR to shape registration, mapping
and classification.

There are still many interesting aspects of both the MSR itself and its applications
worth discovering. For example, a rigorous analysis of how Algorithm 1 approximates
the continuous version in Definition 2.1 needs to be done. Another future work is to
carry out the ideas explained in Section 5 in practice.

We further note that the MSR using the vn in (1.2) is not ideally sparse (as
shown in Figure 3.1 and 3.3, especially for earlier levels). This raises the question that
what kind of evolution PDE will produce a sparse MSR for piecewise smooth shapes?
Generally speaking, mean curvature motion (vn =−κ) generates a sparse MSR for
piecewise flat surfaces, while volume preserving mean curvature motion (vn =κa−κ)
produces a sparse MSR for surfaces that are close to spheres. It will be interesting to
find a surface evolution such that the corresponding MSR is sparse for all piecewise
smooth shapes or a subclass of them.
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