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Abstract. In this paper, we propose a novel and fast method to local-
ize and track needles during image-guided interventions. Our proposed
method is comprised of framework of needle detection and tracking in
highly noisy ultrasound images via level set and PDE (partial differen-
tial equation) based methods. Major advantages of the method are: (1)
efficiency, the entire numerical procedure can be finished in real-time:
(2) robustness, insensitive to noise in the ultrasound images and: (3)
flexibility, the motion of the needle can be arbitrary. Our method will
enhance the ability of medical care-providers to track and localize needles
in relation to objects of interest during image-guided interventions.

1 Medical Background

Image guided interventions have become the standard of care for many surgi-
cal procedures. Optimal visualization of the object of interest and biopsy needle
in ultrasound images requires the use of specialized biopsy needles and high cost,
cart-based ultrasound units. The success of image guided interventions is depen-
dent on anatomic knowledge, visualization, and precise tracking and control of
the biopsy needle. A majority of medical care-providers utilize low resolution
ultrasound units. In addition, many office-based or emergency department pro-
cedures are performed using generic (non-specialized) needles. Unfortunately,
the quality of the imagery obtained by most ultrasound units does not allow for
clear and concise visualization of a regular needle during many needle-based pro-
cedures. The inability to clearly see the tip of a needle in relation to the object
of interest (e.g., a vein, artery, or mass) makes such image guided interventions
less accurate.

In view of the inadequacy of ultrasound technology identifying inserted nee-
dles with desired resolution, a new and improved system for tracking such needles
needs to be developed. A more accurate method for localizing the distal tip of
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inserted needles will greatly improve the efficacy and safety of ultrasound image-
guided interventions. In this paper, we shall employ modern level set and PDE
methods and fast numerical algorithms to solve the needle tracking problem for
ultrasound images.

The rest of the paper is organized as follows. In Section 2, we shall lay
down the fundamental mathematical model which is the core of solving our
problem. In Section 3 we shall describe the complete schematic procedure of
needle localization. Numerical experiments on ultrasound image frames will be
given in Section 4 and concluding remarks will be given in Section 5.

2 Mathematical Model

We denote the video frames of ultrasound images as I(x, t) with 0 ≤ I(x, t) ≤
1, and define the integrated difference of frames as

f(x, t) :=
∫ t

t−δ

∣∣Gσ(x) ∗ ∂τI(x, τ)
∣∣dτ, δ > 0, (1)

where Gσ is Gaussian with standard deviation σ. We note that the parameter σ
is not essential for our method, we will fix it throughout our experiments.

If the motions of the needle, e.g. jiggling or insertion, are different from the
motions of the tissues and organs, which is usually the case, then in f(x, t) we
can see regions with such motions highlighted. However these regions in f(x, t)
are usually not very clear and have noisy boundaries. Therefore, a robust and
efficient segmentation on f(x, t) for each t is needed. Since we will focus on the
segmentation of f(x, t) for each fixed t, we now omit the variable τ and denote
f(x, t) as f(x) for simplicity.

There are numerous image segmentation methods in the literature [1–7]. In
this paper, we shall consider the following energy introduced in [1]

E(u) =
∫

g(x)|∇u(x)|dx + λ

∫
|u(x) − f(x)|dx. (2)

Here g(x) is some edge indicator function defined as g(x) = 1
1+β|∇(Gσ̃∗f)| (see

e.g. [1, 3]). It is shown in [1] that for any minimizer u of (2) and for almost all
threshold μ ∈ [0, 1], the characteristic function

1Ω(μ)={x:u(x)>μ}(x)

is a global minimizer of the corresponding geometric active contour model (see
[1] for more details). Therefore, a segmentation of f(x) can be obtained by first
computing a minimizer of (2) and then letting Ω := {x : u(x) > 0.5}. Now the
key issue here is to minimize (2) efficiently.

To minimize the energy (2) efficiently, we adopt the idea of the split Bregman
method introduced in [8]. Define

|d|∗ := g(x)
√

d2
1 + d2

2 + λ|d3| and Fu := (∇uT , u − f)T ,
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then minimizing energy (2) is equivalent to

Minimize
∫

|d|∗
s.t. d = Fu.

(3)

After “Bregmanizing” the constrained optimization problem (3), we obtain the
following algorithm which minimizes the original energy (2) rather efficiently
(the derivation is similar to that in [8]),

(uk+1, dk+1) = argminu,d

∫
|d|∗ +

μ

2
‖d − Fu − bk‖2

2

bk+1 = bk +
(
Fuk+1 − dk+1

)
.

(4)

For convenience, we denote d̄ = (d1, d2)T and hence d = (d̄, d3)T . Similarly, we
can define b̄ and b. Then we introduce the following algorithm to solve (4):

Algorithm 1 We start with d0 = 0 and b0 = 0.

1. First update u by solving

(−Δ + I)uk+1 = ∇ · (b̄k − d̄k) + dk
3 + f − bk

3 ;

2. Then update d by

dk+1
1 = max(sk − g(x)

μ
, 0) · uk

x + bk
1

sk
,

dk+1
2 = max(sk − g(x)

μ
, 0) · uk

y + bk
2

sk
,

dk+1
3 = shrink(uk − f + bk

3 ,
λ

μ
),

where sk = |∇uk + b̄k|.
3. Finally update bk+1 by

bk+1 = bk +
(
F (uk+1) − dk+1

)
;

4. If ‖uk+1−uk‖
‖uk‖ > tol, go back to step 1 and repeat.

The Algorithm 1 is very efficient in terms of total number of iterations and the
cost for each iteration. According to our experiments, it usually only takes about
30 iterations until ‖uk+1−uk‖

‖uk‖ ≈ 10−3. For each iteration in Algorithm 1, the
major calculation is in step 1, where the PDE can be solved rather efficiently by
either FFT, for periodic boundary condition, or multigrid method, for Neumann
and Dirichlet boundary conditions. An example is given in the following Figure 1
where noise was added to the original image. We note that the image is provided
by Laboratory of Neural Imaging, Center for Computational Biology, UCLA.
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For the special image f(x) obtained from frames of ultrasound images by (1),
the object of interest in f(x) is either a needle or the tip of the needle, which
are both simple geometric objects. Therefore, we can stop our iteration at an
even earlier stage (e.g. in our experiments, we only perform two iterations) and
the segmentation results would not change much if more iterations were carried
out. The efficiency of Algorithm 1 ensures that the entire needle localization
procedure can be finished in real-time. To be precise, by “real-time” we mean
that the total time spent by the entire numerical procedure is no greater than
that spent by the ultrasound machine in acquiring each image frame. A detailed
description of the needle localization procedure will be given in next section.
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Fig. 1. The left figure shows segmentation result using Algorithm 1; the middle one is

the decay of ‖d−F uk‖
‖d‖ ; and the right one is the decay of ‖uk+1−uk‖

‖uk‖ .

3 Schematic Descriptions of Needle Detection and
Tracking Procedure

The entire needle localization procedure can be decomposed into two phases.
The first phase is to locate the needle in the images at the very beginning,
based on a few seconds’ image frames. During this phase, one can jiggle the
needle or gently poke the tissues to help our algorithm locate the needle fast
and accurately. The second phase is to track the motion of the tip of the needle
when it moves.

3.1 Phase I

To locate the needle when it is first inserted into the tissue, we perform the
following operations:

1. Obtain f(x) using (1) based on the previous 1-2 seconds’ frames, denoted as
I(x, t);

2. Segment the region that indicates needle movements using (4) via the Algo-
rithm 1 (with 2 iterations);

3. Regularize the region obtained by step 2 via the fast algorithm of area-
preserving mean curvature motion in [9];
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4. Obtain the skeleton of the regularized region to represent the needle, and
then the tip of the needle can be located from the skeleton.

To help localize the needle based on f(x), one could gently jiggle the needle,
in order to differentiate its motion from that of the tissues or organs. The fol-
lowing Figure 2 illustrates the four steps described above. We first note that it
is obviously crucial to consider f(x) instead of any single frame in order to rule
out other regions with comparable intensities as the needle (e.g. some tissues or
organs). The left two figures in Figure 3 show that if we perform segmentation
directly on a single frame, we will capture several regions besides the needle. We
also note that the third step above is important because otherwise, we may not
get a single line representing the needle, but several branches (see the right figure
in Figure 3). In step 4, there is always an ambiguity of the tip (it could be the
alternative end of the line). However the ambiguity can be easily removed when-
ever the needle starts moving. Therefore, here and in the experiments below, we
assume the tip is picked up correctly.

Fig. 2. The four figures from left to right describes the four steps, and the four images
are the same one f(x) obtained by (1).

Fig. 3. Left figure shows direct segmentation of one single frame; middle one shows
the skeletons extracted from the segmented regions; right one shows the importance of
step 3 in Phase I, where the blue curve is represented by the solution u obtained form
step 2, and the red one is the skeleton by step 4.
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3.2 Phase II

The second phase is to track the movements of the tip of the needle starting
from the location we obtained from Phase I. We perform the following operations:

1. Obtain f(x) using (1) based on the current and the previous 1-2 frames;
2. Segment the region indicating needle movements using (4) via the Algorithm

1 (with 2 iterations);
3. Regularize the region obtained by step 2 via the fast algorithm of area-

preserving mean curvature motion in [9];
4. Shrink the (possibly disconnected) region to points, and then choose one

point from them that is closest to the previously tracked location.

The following Figure 4 illustrates the four steps described above. We note
that when the noise level is high or some irregular motions exist in tissues or
organs, multiple locations may be captured in step 3, most of which are false
detections. Therefore, step 4 affects the smoothness of the overall tracking. Ev-
idently, there are more sophisticated ways to regularize the trajectory of the
tracking. For example, if we know a priori that the needle moves in a smooth
fashion, then we can estimate the current location of the tip based on the ap-
proximated locations in previous frames such that the overall motion curve is
smooth. For our experiments in Section 4, we only use the simple operation
described in step 4 because the needle moves in an irregular fashion. However,
the result of the overall tracking is still quite satisfactory. We also note that
in step 1, instead of considering the entire image f(x), we can just consider a
patch of f(x) that centered at the previously located point (location of the tip
in the previous frame). In this way, we can save some computations and also
increase the smoothness of the overall tracking. Again, this only works when the
motion of the needle is not too fast (which is usually the case in practice). In
our experiments in Section 4, we will still use the entire image f(x).

Fig. 4. The four figures from left to right describes the four steps.

4 Numerical Result

All of the frames of ultrasound images are obtained by a Sonosite (Titan)
ultrasound machine. The ultrasound machine captures 20 frames per second. In
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our following experiments, 120 frames are used, including 20 frames in Phase
I and 100 frames in Phase II. Each image is of size 251 × 251. In Figure 5 we
present 5 of the 20 frames in Phase I, and in Figure 7 we present 12 of the 100
frames in Phase II.

The numerical results for Phase I are given in Figure 6, and those for Phase
II are given in Figure 8. We note that the PDE in (1) of Algorithm 1 is solved by
FFT. Here we also provide a ground truth in Figure 9 as validation of our results,
where we manually selected the positions of the needle based on neighboring
frames. We note that for almost all of the frames during Phase II, the tracking
is rather accurate. However for some of the frames, the localization is not very
accurate, for example the fourth figure in the first row of Figure 8. The reason
is because of acoustic shadows in some image frames, which appear in f(x) with
high intensities and conceal the movement of the tip of the needle (see the middle
figure of Figure 10). However, an acoustic shadow only seems to appear in f(x)
occasionally when we extract the needle, instead of inserting the needle, and an
accurate tracking of the needle is only required during insertion. Therefore in
practice, this error is not an issue and will not affect the safety concerns during
image guided surgical operations.

Fig. 5. Images from left to right are 5 sample frames among total 20 frames of ultra-
sound images during Phase I.

Fig. 6. Left figure is f(x) obtained from the 20 frames; middle one shows the result of
localization of the body of the needle; right one shows the result of localization on the
first image frame in Figure 5, where the blue dot indicates the tip of the needle.
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Fig. 7. Images above are 12 sample frames among total 100 frames of ultrasound images
during Phase II.

5 Conclusion

Image guided interventions have become the standard of care for many sur-
gical procedures. One of the most important problems in image guided interven-
tions for ultrasound images is the precise tracking and control of biopsy needles.
In this paper, we introduced a novel and efficient method for needle localization
in highly noisy ultrasound images. Our numerical experiments showed that our
proposed method tracks the tip of needle efficiently with satisfactory accuracy.

There are also improvements of the current method that can be done. Firstly,
the regularity of the tracking results can be improved. For the current version
of the method, we are only segmenting f(x, t) for each t independently, while
ideally speaking the segmentation should depend on both x and t so that the
approximated needle locations will lie on a smooth path. However, taking t into
account during segmentation will increase computational complexity. Therefore,
a very efficient algorithm is required.

Another possible improvement is to detect and remove some of the known
artifacts, e.g. acoustic shadow, in the images before performing segmentation.
This will improve the accuracy of tracking and also helps to improve regularity.
Again, the challenge is that the process of artifact removal needs to be done
rather efficiently.
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Fig. 8. Tracking results of the 12 sample frames in Phase II shown in Figure 7.
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Fig. 9. Manual segmentation results of the 12 sample frames in Phase II shown in
Figure 7.

Fig. 10. First figure is the current frame as shown in the fourth figure in first row of
Figure 7; second figure is the previous frame of the first figure; third figure shows the
corresponding f(x) obtained from the first two figures and the red dot is the tracking
result; the last one shows the tracking result on the current frame which is the same
figure as in the upper fight figure of Figure 8.


