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1 Introduction

Pseudo-splines were first introduced in [10] and [36] to obtain tight framelets
via the unitary extension principle of [32] with better approximation orders.
They were then extended and extensively studied in [11]. Pseudo-splines are
compactly supported refinable functions in L2(R). Recall that a function
φ ∈ L2(R) is refinable if it satisfies the refinement equation

φ = 2
∑

k∈Z
a(k)φ(2 · −k), (1.1)

for some sequence a ∈ `2(Z). The sequence a is the refinement mask of φ.

By L2(R) we denote all the functions f(x) satisfy

‖f(x)‖L2(R) :=
( ∫

R
|f(x)|2dx

)1/2

< ∞;

and `2(Z) the set of all sequences u defined on Z such that

‖u‖`2(Z) :=
( ∑

k∈Z
|u(k)|2

) 1
2

< ∞.

The Fourier-Laplace transform of a compactly supported (measurable)
function f is defined by

f̂(ω) :=
∫

R
f(x)e−iωxdx, ω ∈ C.

When f is compactly supported and bounded, the Fourier-Laplace transform
of f is analytic. When ω is restricted to R, f̂ becomes the Fourier transform
of f .

The Fourier series û of a sequence u in `2(Z) is defined by

û(ξ) :=
∑

k∈Z
u(k)e−ikξ, ξ ∈ R.

With these, the refinement equation (1.1) can be written in terms of its Fourier
transform as

φ̂(ξ) = â(ξ/2)φ̂(ξ/2), ξ ∈ R.

We also call â a refinement mask, or just mask for convenience.

Pseudo-splines are defined in terms of their refinement masks. The refine-
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ment mask of a pseudo-spline of type I with order (m, l) is given by

|1â(ξ)|2 := |1â(m,l)(ξ)|2 := cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2)

(1.2)
and the refinement mask of a pseudo-spline of type II with order (m, l) is given
by

2â(ξ) := 2â(m,l)(ξ) := cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2), (1.3)

where m ≥ 1 and 0 ≤ l ≤ m − 1. We note that |1â(m,l)(ξ)|2 = 2â(m,l)(ξ).
Hence, 1â(m,l) is the square root of 2â(m,l), which is a 2π-periodic trigonomet-
ric polynomial with real coefficients by Fejér-Riesz Lemma (see e.g. [8]). The
corresponding pseudo-splines can be defined in terms of their Fourier trans-
forms as

kφ̂(m,l)(ξ) :=
∞∏

j=1

kâ(m,l)(2
−jξ), k = 1, 2,

with kφ̂(m,l)(0) = 1. Unless it is necessary, we use ka and kφ in stead of ka(m,l)

and kφ(m,l), k = 1, 2, i.e. we drop the subscript “(m, l)” or “k” in ka(m,l) and

kφ(m,l) for simplicity, whenever it is clear from the context.

The first type of pseudo-splines were introduced in [10] and [36] in their
constructions of tight framelets derived from the unitary extension principle
of [32] with desired approximation order for the truncated frame series. The
second type of pseudo-splines were introduced in [11] and [36], where in [11]
a detailed analysis of regularity and constructions of short Riesz wavelets and
(anti)symmetric tight framelets were given. Pseudo-splines constitute a large
class of refinable functions which includes B-splines, the orthogonal refinable
functions (i.e. the refinable function with orthonormal shifts constructed by
[9]) and the interpolatory refinable functions (which are the autocorrelations of
the orthogonal refinable functions and were first studied by [13]) as its special
cases. Recall that a B-spline (see e.g. [1]) with order m and its refinement
mask are defined by

B̂m(ξ) = e−ij ξ
2

(
sin(ξ/2)

ξ/2

)m

and â(ξ) = e−ij ξ
2 cosm(ξ/2),

where j = 0 when m is even, j = 1 when m is odd. A continuous function φ
is said to be interpolatory if

φ(j) = δ(j), j ∈ Z,

where δ(0) = 1 and δ(j) = 0, for j 6= 0. By definitions of refinement masks of
pseudo-splines given in (1.2) and (1.3), one can see that when l = 0, pseudo-
splines are B-splines; when l = m − 1, pseudo-splines are the orthogonal
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refinable functions for type I and the interpolatory refinable functions for type
II. Pseudo-splines of the other orders fill in the gaps between B-splines and the
orthogonal refinable functions for type I, and B-splines and the interpolatory
refinable functions for type II.

For a given compactly supported φ ∈ L2(R), a shift (integer translation)
invariant space generated by φ is defined by

V0(φ) := Span{φ(· − k), k ∈ Z}. (1.4)

We say that the generator φ is stable, if {φ(· − k)}k∈Z forms a Riesz basis for
V0(φ). The stability of a function can be characterized by its bracket product.
The bracket product of functions f, g ∈ L2(R) is defined by

[f̂ , ĝ](ξ) :=
∑

k∈Z
f̂(ξ + 2πk)ĝ(ξ + 2πk).

A compactly supported distribution φ is said to be pre-stable if there exists
C1 > 0 such that

[φ̂, φ̂](ξ) ≥ C1,

for almost all ξ ∈ R. It is known that (see e.g. [23]) the pre-stability of a
compactly supported distribution φ is equivalent to that the Fourier transform
of φ does not have 2π-periodic zeros, i.e.

(
φ̂(ξ + 2πk)

)
k∈Z 6= 0, for all ξ ∈ R, (1.5)

where 0 is zero sequence. A function φ ∈ L2(R) is stable if and only if there
exist C1, C2 > 0 s.t.

C1 ≤ [φ̂, φ̂](ξ) ≤ C2, (1.6)

for almost all ξ ∈ R. Since φ is compactly supported, the upper bound in (1.6)
holds immediately (see e.g. [23] and [24]). Therefore, a compactly supported
function φ ∈ L2(R) is stable if and only if it is pre-stable.

Another related, but stronger, concept used here is the linear independence
of φ and its shifts. The shifts of a compactly supported distribution φ is linearly
independent, if

∑

j∈Z
b(j)φ(· − j) = 0 implies b(j) = 0, for all j ∈ Z and b ∈ `(Z),

where `(Z) denotes the space of all complex valued sequences defined on Z.
For a finitely supported sequence a, we define the Laurent polynomial ã(z) as

ã(z) :=
∑

j∈Z
a(j)zj, for z ∈ C \ {0}.

If a is the refinement mask of a compactly supported refinable function φ ∈
L2(R), the Laurent polynomial ã is called the symbol of φ, and the refinement
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equation (1.1) can be written in terms of its Fourier-Laplace transform as

φ̂(ω) = ã(e−iω/2)φ̂(ω/2), for all ω ∈ C.

It was shown in [30] that the shifts of a compactly supported distribution are
linearly independent if and only if the Fourier-Laplace transform of φ satisfies

(
φ̂(ω + 2πk)

)
k∈Z 6= 0, for all ω ∈ C. (1.7)

Comparing (1.5) and (1.7), we can see immediately that for a compactly sup-
ported function φ ∈ L2(R), linear independence of the shifts of φ implies the
stability of φ. Actually (see e.g. [12] and [24]), the linear independence of the
shifts of a compactly supported refinable function φ ∈ L2(R) is equivalent to
that φ is stable and the symbol ã(z) does not have symmetric zeros on C\{0},
i.e. ã(z) and ã(−z) do not have common zeros on C \ {0}. Based on this, it
was proved in [12] that all pseudo-splines have linearly independent shifts, i.e.
all pseudo-splines are stable and their symbols do not have symmetric zeros
on C \ {0}. One should consult [12] for more details.

We shall also introduce the concept of multiresolution analysis (MRA),
since all constructions considered in this paper is based on MRA. Define

Vj(φ) := {f(2j·) : f ∈ V0(φ), j ∈ Z},

where V0(φ) is defined in (1.4) with φ ∈ L2(R) being a compactly supported
refinable function. Then, the sequence of spaces (Vj)j∈Z forms an MRA gen-
erated by φ, i.e. (i) Vj ⊂ Vj+1,∀j ∈ Z, (ii)

⋃
j∈Z Vj = L2(R),

⋂
j∈Z Vj = {0}

(see e.g. [2] and [22]).

For a given wavelet ψ ∈ L2(R), define the wavelet system by

X(ψ) := {ψj,k = 2j/2ψ(2j · −k), j, k ∈ Z}.

We call the system X(ψ) a Bessel system if for some C1 > 0, and for every
f ∈ L2(R), ∑

g∈X(ψ)

|〈f, g〉|2 ≤ C1‖f‖2
L2(R).

A Bessel system X(ψ) is a Riesz basis for L2(R) if there exists C2 > 0 such
that

C2‖{cj,k}‖`2(Z2) ≤
∥∥∥∥∥∥

∑

(j,k)∈Z2

cj,kψj,k

∥∥∥∥∥∥
L2(R)

, for all {cj,k} ∈ `2(Z2),

and the span of X(ψ) is dense in L2(R). We call the function ψ Riesz wavelet
and X(ψ) Riesz wavelet system, if X(ψ) forms a Riesz basis for L2(R). Two
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wavelet systems X(ψ) and X(ψd) are said to be biorthogonal Riesz wavelet
bases, if they are Riesz wavelet systems and for all f ∈ L2(R),

f =
∑

j,k∈Z
〈f, ψj,k〉ψd

j,k.

Moreover, we call ψ and ψd biorthogonal (Riesz) wavelets. The main goal of
this paper is to construct a pair of compactly supported biorthogonal Riesz
wavelets X(ψ) and X(ψd), such that ψ is a linear combination of a pseudo-
spline and the dual wavelet ψd satisfies any prescribed regularity.

Now we give a general framework of the MRA-based construction of biorthog-
onal wavelets starting from a given refinable function. Constructions of biorthog-
onal wavelets have been extensively studied in the literature. The interested
reader can find general discussions in [3], [4], [7], [8], [16] and [19], and the
references there.

Let φ ∈ L2(R) be a compactly supported stable refinable function with
finitely supported refinement mask a. The first step of the construction of a
pair of compactly supported biorthogonal wavelets is to find a compactly sup-
ported stable refinable function φd ∈ L2(R) with finitely supported refinement
mask ad satisfying

〈φ, φd(· − k)〉 = δ(k), k ∈ Z. (1.8)

If a stable refinable function φd ∈ L2(R) satisfies (1.8), we call it the (biorthog-
onal) dual refinable function of φ, or just dual of φ for simplicity. A necessary
condition for φ and φd to satisfy (1.8) is

ââd + â(·+ π)âd(·+ π) = 1. (1.9)

We call ad a dual refinement mask, or just dual mask for convenience. Most
constructions starts with finding ad to satisfy (1.9). Suppose we have a dual
mask ad in hand. We then need to check whether the corresponding refinable
function φd is in L2(R) and stable, which can be done through the transition
operator (see e.g. [4], [27] or [34]). With the stable dual pair φ and φd and
their refinement masks a and ad satisfying (1.9), the dual pair of wavelets can
be constructed (see e.g. [4] and [8]) as

ψ̂(2ξ) = b̂(ξ)φ̂(ξ), and ψ̂d(2ξ) = b̂d(ξ)φ̂d(ξ), (1.10)

where
b̂(ξ) = e−iξâd(ξ + π) and b̂d(ξ) = e−iξâ(ξ + π). (1.11)

Then the corresponding wavelet systems X(ψ) and X(ψd) form biorthogonal
Riesz wavelet bases for L2(R) (see e.g. [3], [4] and [19]). Since the mask a is
assumed through out this paper to be finitely supported, the wavelet mask bd

is also finitely supported. Therefore, ψd can be written as a linear combination
of φd, which means that ψd has the same regularity as φd.

6



As we see from this framework, the key step in the construction is to
design a pair of stable refinable functions satisfying (1.8). In the rest of this
paper, we shall focus on the constructions of dual refinable functions φd from
pseudo-splines with prescribed regularity.

This paper is organized as follows. Section 2 is devoted to constructions
of dual refinable functions from pseudo-splines of both types and provide a
regularity analysis. We shall give an implementable construction to obtain a
class of dual refinable functions satisfying any prescribed regularity from an
arbitrarily given pseudo-spline. In section 3, a rather explicit formula of dual
refinable functions from pseudo-splines of type II with order (m,m − 1) is
provided. Two examples of biorthogonal wavelets constructed in Section 3 are
given in the last section.

2 Duals of Pseudo-splines

In this section, we construct biorthogonal dual refinable functions from
pseudo-splines, which can satisfy arbitrarily high order of regularity.

The regularity is defined as the followings: Recall that for α = n + β, n ∈
N, 0 ≤ β < 1, the Hölder space Cα (see e.g. [8]) is defined to be the set of
functions which are n times continuously differentiable and such that the n-th
derivative f (n) satisfies the following condition,

|f (n)(x + h)− f (n)(x)| ≤ C|h|β, ∀x, h.

The number α is called the regularity (exponent) of f . It is well known (see
e.g. [8]) that if ∫

R
|f̂(ξ)|(1 + |ξ|)α < ∞,

then f ∈ Cα. In particular, if |f̂(ξ)| ≤ C(1 + |ξ|)−1−α−ε holds for an arbitrary
small ε > 0, f ∈ Cα, which means that the regularity of f can be estimated
via the decay of its Fourier transform.

We first give the existence of dual refinable functions with the prescribed
regularity which immediately follows from the result of [25].

Theorem 2.1 [25]. Let φ ∈ L2(R) be compactly supported refinable function
whose shifts are linearly independent. Then, for an arbitrary α > 0, there
exists a compactly supported refinable function φd ∈ L2(R) with regularity α,
such that φd is the biorthogonal dual refinable function of φ.

Applying this theorem together with the fact that the shifts of pseudo-
splines are linearly independent, we have:
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Corollary 2.2 Let φ be a pseudo-spline. Then, for an arbitrary α > 0, there
exists a compactly supported refinable function φd ∈ L2(R) with regularity α,
such that φd is the biorthogonal dual refinable function of φ.

Remark 2.3

(1) The original theorem of [25] is stated in a different way. The compactly
supported refinable function φ is assumed in [25] to be stable and have a
minimal support. (A stable refinable function φ having a minimal support
means, according to [25], that its symbol does not have symmetric zeros
on C \ {0}.) This is equivalent to that φ has linearly independent shifts
by Lemma 2.1 of [12] (see also [24]).

(2) In the approach taken by [25], for a given compactly supported refinable
function φ ∈ L2(R) with linearly independent shifts, the existence of a
compactly supported dual refinable function satisfying any desired regu-
larity is reduced to the existence of a compactly supported dual refinable
function in L2(R). The proof of existence of a compactly supported dual
refinable function in L2(R) for a given φ starts with a finitely supported
dual mask of some refinable distribution, which is derived by solving (2.2)
numerically and may not even be pre-stable. Then use this mask and an-
other sequence obtained by truncating the standard infinite dual mask of
a to derive a finitely supported dual mask of a whose corresponding refin-
able function is in L2(R) and stable. To obtain a dual refinable function
with higher regularity, it repeats the above processing by constructing an
L2 dual of function Bm ∗φ instead of φ. To see this (see also [25]), let us
consider Bm ∗φ, with any given m ≥ 1, where Bm is B-spline of order m
whose Fourier transform is

B̂m :=

(
1− e−iξ

iξ

)m

.

It can be easily verified that Bm∗φ has linearly independent shifts. If there
is a compactly supported dual refinable function g ∈ L2(R) of Bm∗φ, then
φd := Bm(−·)∗g is a compactly supported dual of φ with regularity at least
m−1− ε. Indeed, since for compactly supported functions φ, φd ∈ L2(R),

〈φ, φd(· − k)〉 = δ(k), k ∈ Z,

is equivalent to
[φ̂, φ̂d] = 1,

(see e.g. [4] and [8]), we have

[φ̂, B̂mĝ] = [B̂mφ̂, ĝ] = 1.

Next, we explore a constructive way to get duals of pseudo-splines with
prescribed regularities. For this, we first note that if the pseudo-spline of type
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II with order (m, l) has a compactly supported dual refinable function with
regularity α, then we can obtain a compactly supported refinable function
with regularity at least α that is dual to the pseudo-spline of type I with the
same order. Indeed, for the pseudo-spline 2φ(m,l) of type II with order (m, l), let

2φ
d ∈ L2(R) be its compactly supported dual refinable function with regularity

α. Since 2φ̂(m,l) = |1φ̂(m,l)|2 = 1φ̂(m,l) · 1φ̂(m,l), we have

1 = [2φ̂(m,l), 2φ̂
d] = [1φ̂(m,l) · 1φ̂(m,l) , 2φ̂

d] = [1φ̂(m,l) , 1φ̂(m,l) · 2φ̂
d].

Therefore,

1φ̂
d := 1φ̂(m,l) · 2φ̂

d (2.1)

is a compactly supported dual refinable function with the regularity at least
α by the fact that 1φ̂(m,l) ∈ L∞(R). Hence, we only need to construct dual
refinable functions of pseudo-splines of type II. In the rest of this section, we
focus on discussions of dual refinable functions of pseudo-splines of type II
with any prescribed regularity.

Construction of compactly supported dual refinable function φd always
starts from constructing a dual mask ad from a such that (1.9) is satisfied.
This can be done whenever the symbol ã(z) does not have symmetric zeros
on C \ {0}. In fact, it is well known that in this case (see e.g. [4], [8] and [21])
one can always find ãd(z) such that

ã(z)ãd(z−1) + ã(−z)ãd(−z−1) = 1, z ∈ C \ {0}. (2.2)

Indeed, let

ãe(z
2) :=

∑

j∈Z
a(2j)z2j and ão(z

2) :=
∑

j∈Z
a(2j + 1)z2j.

Then,

ã(z) = ãe(z
2) + zão(z

2) and ã(−z) = ãe(z
2)− zão(z

2). (2.3)

Since ã(z) does not have symmetric zeros on C \ {0}, ãe(z
2) and ão(z

2) do
not have common zeros on C\{0} by (2.3). Then the Hilbert’s Nullstellensatz
assures the existence of Laurent polynomials q̃e and q̃o such that

ãe(z
2)q̃e(z

2) + ão(z
2)q̃o(z

2) =
1

2
z2k, for all z ∈ C \ {0} and k ∈ N. (2.4)

Let
q̃(z) := q̃e(z

2) + z−1q̃o(z
2),

and define
ãd(z) := z2kq̃(z−1).

Then, ã and ãd satisfy (2.2) by applying (2.3) and (2.4). Let ad be the coeffi-
cients of ãd(z). We conclude that â and âd satisfy (1.9).
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The solutions to (2.2) can be obtained by solving a polynomial equation
utilizing Maple and Singular [15], which is an Ad-hoc construction, although
sometimes it can be very efficient in both univariate and multivariate construc-
tions (see e.g. [31]). The more efficient and systematic way of solving equation
(2.2) is the method called construction by cosets (CBC), which was suggested
in [7] and [16]. The method starts with a dual mask of a given refinement
mask, then lifts the dual mask to a new dual mask whose underlying refin-
able function satisfies a desired order of the Stang-Fix condition. It should
also be pointed out that the CBC algorithm gives the minimal support of
the dual refinable functions for a given order of the Strang-Fix condition. All
approaches of solving equation (2.2) normally derive dual refinable functions
that satisfy some given order of Strang-Fix condition. The regularity has to
be checked one by one numerically using methods given in [6], [8], [17], [20]
and [33], although the regularity of a refinable function seems to increase as
the order of Strang-Fix condition increases by numerical tests. Furthermore,
since (2.2) is only a necessary condition for the underlying refinable functions
φ and φd to be a dual pair for any given solution of equation (2.2), one needs
to further check the stability of φd, which can also be done numerically by
methods given in [8] and [27].

Our method for pseudo-splines is similar to the both methods above in
the aspect that we also start with a dual refinement mask satisfying very
mild conditions, then create new dual masks from it. The difference is that
we obtain new dual masks from this initial mask, whose underlying refinable
functions are stable and have prescribed regularities. Since the regularity of
a compactly supported refinable function implies its order of the Strang-Fix
condition (see e.g. [5], [28] and [29]), and since once the prescribed regularity is
given, the method gives a dual with the given regularity by choosing a proper
parameter, our approach gains more than what the above methods may offer
to pseudo-splines.

We start from an arbitrary pseudo-spline φ of type II with order (m, l),
m ≥ 2, 0 ≤ l ≤ m− 1, whose refinement mask is a. The first step is to find an
initial finitely supported dual mask b. As we will see that for the case m = 1,
the construction and the regularity analysis have already been considered in
[4] (also see [8]).

Condition 2.4 Let b be a finitely supported mask satisfying:

(1) b is a (real-valued) dual mask of a, i.e.

â(ξ)b̂(ξ) + â(ξ + π)b̂(ξ + π) = 1;

(2) b̂ is real-valued and nonnegative;
(3) The refinable distribution ϑ, corresponding to the refinement mask b, is

pre-stable.
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Remark 2.5 Note that we did not require ϑ to be a function, and just require
that it is pre-stable. Actually, by Corollary 2.2, there always exists a mask b
such that ϑ is a compactly supported stable refinable function in L2(R), which
is a much more strong condition than part (3) above. For a given refinement
mask a, it is not difficult to find such an initial dual mask b by CBC method
of [7] and [16]. Once we have this b, the prescribed regularity dual refinable
function can be built up.

The idea here is to use the mask ĉ := âb̂. Let ζ be the corresponding
refinable distribution of c. We will show that c and ζ satisfy the following
properties:

Proposition 2.6 Let φ be a pseudo-spline of type II with mask a and ϑ be
the refinable distribution corresponding to the mask b, which satisfies all the
conditions in Condition 2.4. Let ĉ = âb̂ and ζ be the corresponding refinable
distribution. Then:

(1) ĉ is real-valued and nonnegative;
(2) ζ belongs to L2(R);
(3) ζ is stable.

Proof. Part (1) is immediate by the fact that both â and b̂ are real-valued
and nonnegative.

Part (2) can be established by using Lemma 6.2.1 of [8]. Indeed, since the
trigonometric polynomial ĉ is nonnegative and ĉ(ξ)+ ĉ(ξ +π) = 1, there exists
(by Fejér-Riesz Lemma) a trigonometric polynomial ĥ such that |ĥ|2 = ĉ and
|ĥ(ξ)|2 + |ĥ(ξ + π)|2 = 1. Let f be the corresponding refinable distribution to
mask h. Lemma 6.2.1 of [8] gives that f̂ ∈ L2(R). Since |f̂ |2 = ζ̂, we conclude
that ζ̂ ∈ L1(R). Hence, ζ is compactly supported and continuous, which gives
that ζ ∈ L2(R).

For part (3), since ζ is compactly supported and belongs to L2(R), we only
need to show that ζ is pre-stable by checking whether ζ̂ has 2π-periodic zeros
or not (see e.g. [23]). We first prove that the set of all zeros of φ̂ is {2πp}p∈Z\{0}.
Note that φ̂ can be written as φ̂ = B̂2mĝ where g is a refinable distribution
with refinement mask d defined by

d̂(ξ) :=
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

Applying the following identity of Lemma 2.2 in [11] and letting y = sin2(ξ/2),

l∑

j=0

(
m + l

j

)
yj(1− y)l−j =

l∑

j=0

(
m− 1 + j

j

)
yj, y ∈ R, (2.5)
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the mask d̂ can be rewritten as

d̂(ξ) =
l∑

j=0

(
m− 1 + j

j

)
sin2j(ξ/2).

Then it is obvious that d̂ ≥ 1 on R, which implies that ĝ > 0 on R. Therefore,
the set of all zeros of φ̂ is the same as that of B̂2m which is exactly {2πp}p∈Z\{0}.

Now we shall prove the pre-stability of ζ by contradiction. Suppose that
ξ0 is a 2π-periodic zero of ζ̂, i.e.

ζ̂(ξ0 + 2πk) = φ̂(ξ0 + 2πk)ϑ̂(ξ0 + 2πk) = 0,

for all k ∈ Z. Since by assumption, ϑ̂ does not have 2π-periodic zeros, there
must be some k0 ∈ Z, such that φ̂(ξ0 + 2πk0) = 0. Since the zero set of φ̂
is {2πp}p∈Z\{0}, there exists p0 ∈ Z \ {0} such that ξ0 + 2πk0 = 2πp0, i.e.

ξ0 = 2π(p0 − k0) =: 2πm0. This gives that ζ̂(ξ0 + 2πk) = ζ̂(2πm0 + 2πk) = 0
for all k ∈ Z. In particular, when k = −m0, we have ζ̂(0) = 0. Since φ̂(0) = 1,
we must have ϑ̂(0) = 0. However, since b̂(0) = 1, we should have that ϑ̂(0) = 1.
This is a contradiction.

Having the mask c in hand, we first note by the construction of c and the
fact that b is a dual mask of a, we have

ĉ(ξ) + ĉ(ξ + π) = 1.

Thus (
ĉ + ĉ(·+ π)

)2n−1
= 1, for n ≥ 2. (2.6)

The first n terms of the binomial expansion in (2.6) is

n−1∑

j=0

(
2n− 1

j

)
ĉ2n−1−j ĉj(·+ π) = ĉn

n−1∑

j=0

(
2n− 1

j

)
ĉn−1−j ĉj(·+ π). (2.7)

Since ĉ = âb̂, we can factorize one â out from the right hand side of (2.7) and
the rest is denoted as âd. As we shall see in a moment that the mask ad is
indeed a dual mask of a and the corresponding refinable function φd is indeed
a dual of φ. The detailed construction is given as the followings.

Construction 2.7 Let φ be pseudo-spline of type II with order (m, l) and a
be its refinement mask. Let b be the initial dual mask of a satisfying all the
conditions in Condition 2.4, and ĉ = âb̂. Then define mask ad as

âd := b̂ · ĉn−1 ·
n−1∑

j=0

(
2n− 1

j

)
ĉn−1−j

(
1− ĉ

)j

. (2.8)
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The corresponding compactly supported refinable function is defined as

φ̂d(ξ) :=
∞∏

j=1

âd(2−jξ).

Remark 2.8 The idea here is not new. Similar idea as given in the above
construction can also be found in [18], [35], [37] and [38]. Furthermore, this
idea was used in [21] to construct multivariate biorthogonal wavelets via the
multivariate interpolatory refinable functions, which also leads to the dual re-
finable functions of box splines with arbitrarily high regularity. The interested
reader may consult these papers for details. Here, we not only give a construc-
tion, but also give a more precise regularity analysis for the construction. It
is also worth to point out that one can choose the power 2n instead of 2n− 1
in (2.6). The argument presented here still works after a proper adjustment of
the last term in the summation of the definition of âd(see e.g. [21]). Finally,
we note that all the dual refinable functions obtained by Construction 2.7 are
symmetric, which is desirable in many applications.

To ensure that the corresponding refinable functions φd is indeed a dual
of φ, we need to verify that (see e.g. [4] or [34]): (1), ad is a dual mask of a,
i.e. a and ad satisfy (1.9); (2), φd is stable. For the first condition, we note
that the first n terms of the expansion of (2.6) is exactly ââd and the last n
terms of the expansion of (2.6) is exactly â(· + π)âd(·+ π) by applying the
identity ĉ(·+ π) = 1− ĉ. Thus, the first condition follows from identity (2.6).
For the second condition, since φd is compactly supported, the stability of φd

will follow from that: (1), φd is pre-stable; (2), φd ∈ L2(R). We will prove the
pre-stability of φd in Proposition 2.10 and φd ∈ L2(R) in Theorem 2.11. In
fact, Theorem 2.11 says more than φd ∈ L2(R). It shows that the regularity
exponent of φd increases as we choose larger n in Construction 2.7.

The proof of the following proposition employs the following lemma of [21].

Lemma 2.9 [21]. Let φ1 and φ2 be two compactly supported refinable func-
tions in L2(R) with refinement masks a1 and a2. Suppose the set of all zeros
of â1 contains that of the mask â2. If φ1 is pre-stable, then φ2 is pre-stable.

Proposition 2.10 Let φd be the compactly supported refinable distribution
with refinement mask ad given in (2.8). Then φd is pre-stable.

Proof. To show the the pre-stability of φd, we prove that the set of all zeros
of âd coincides with that of ĉ. With this, the pre-stability of φd follows from
the pre-stability of ζ by applying Lemma 2.9. In fact, since for ξ ∈ R

ĉ(ξ) ≥ 0, and ĉ(ξ) + ĉ(ξ + π) = 1,

one obtains that 0 ≤ ĉ ≤ 1. Applying (2.5) with m = n, l = n− 1, y = 1− ĉ
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and by the fact that ĉ ≤ 1, one obtains

n−1∑

j=0

(
2n− 1

j

)
ĉn−1−j(1− ĉ)j =

n−1∑

j=0

(
n− 1 + j

j

)
(1− ĉ)j ≥ 1.

Since

âd = b̂ · ĉn−1 ·
n−1∑

j=0

(
2n− 1

j

)
ĉn−1−j(1− ĉ)j,

we have that the set of all zeros of âd coincides with that of b̂ĉn−1. Furthermore,
since ĉ = âb̂ and since

b̂ĉn−1 = b̂(âb̂)n−1 = ân−1b̂n,

the set of all zeros of ĉ coincides with that of b̂ĉn−1 and, hence, coincides with
that of âd.

Now we shall analyze the regularity of φd by estimating the decay of |φ̂d|,
and show that the regularity of φd increases as the parameter n in Construction
2.7 increases.

Let

L :=
n−1∑

j=0

(
2n− 1

j

)
ĉn−1−j(1− ĉ)j. (2.9)

Then,

âd = b̂ĉn−1L.

This gives that

φ̂d(ξ) = ϑ̂(ξ)ζ̂n−1(ξ)
∞∏

j=1

L(2−jξ). (2.10)

Since |ϑ̂| is uniformly bounded and since ζ̂ = ϑ̂φ̂, we have

|ϑ̂ζ̂n−1| = |ϑ̂nφ̂n−1| ≤ C|φ̂n−1|.

Recall that the optimal decay of |φ̂| was given in Theorem 3.4 of [11], i.e.

|φ̂(ξ)| ≤ C(1 + |ξ|)−s,

where

s := 2m− log Pm,l(
3
4
)

log 2
(2.11)

and

Pm,l(y) =
l∑

j=0

(
m + l

j

)
yj(1− y)l−j. (2.12)
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Consequently we have

|ϑ̂(ξ)ζ̂n−1(ξ)| ≤ C(1 + |ξ|)−s(n−1). (2.13)

Since, by (2.5),

L =
n−1∑

j=0

(
n− 1 + j

j

)
(1− ĉ)j,

and since 0 ≤ ĉ ≤ 1, one can see that L reaches its maximum value at ĉ = 0
(note that ĉ(π) = 0). Therefore

max
ξ∈[0,2π]

|L(ξ)| =
(

2n− 1

n

)
.

Then Lemma 7.1.1 of [8] gives that

∞∏

j=1

L(2−jξ) ≤ C(1 + |ξ|)
log (2n−1

n )
log 2 ,

and hence, by (2.10), (2.13) and the above inequality, one obtains,

|φ̂d(ξ)| ≤ C(1 + |ξ|)−γ, (2.14)

where

γ := s(n− 1)−
log

(
2n−1

n

)

log 2
. (2.15)

Hence φd ∈ Cγ−1−ε.

We note that the estimate given here is not optimal. It leads to a lower
bound of the regularity of φd. We remark that the optimal Sobolev regularity
of a given refinable function can be obtained via its mask by applying transfer
operator (see [8], [33] and references in there). Although the transfer operator
approach is very efficient to compute the exact Sobolev regularity for each
given refinable function, it cannot be used to analyze the regularity for a set
of refinable functions obtained through a systematic construction.

In the following theorem we will show that for pseudo-splines of type II
with order m ≥ 2, the decay rate γ of |φ̂d| increases as n increases. Moreover,
an asymptotic analysis of the regularity of φd is provided.

Theorem 2.11 Let φd be the compactly supported refinable functions with
refinement mask ad given in (2.8). The decays of φ̂d is given by (2.14). Then:

(1) The decay rate γ of φ̂d given in (2.15) increases as n increases. Conse-
quently, φd is continuous for all n ≥ 2 and its regularity exponent in-
creases as n increases, where φd ∈ Cγ−1−ε for all ε > 0. In particular,
φd ∈ L2(R) for all n ≥ 2.
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(2) Asymptotically for large n with fixed m, the decay rate γ is µn, where
µ = s− 2 with s defined in (2.11). Consequently we have,

|φ̂d(ξ)| ≤ C(1 + |ξ|)−µn, φd ∈ Cµn,

asymptotically for large n

Proof. For part (1), we first show that γ increases as n increases, which is
equivalent to show that

M := sn−
log

(
2n+1
n+1

)

log 2
− s(n− 1) +

log
(

2n−1
n

)

log 2
> 0.

Simplifying M , one obtains

M = s−
log

(2n+1
n+1 )

(2n−1
n )

log 2

= s− log 4n+2
n+1

log 2

= s− 2− log
n+ 1

2

n+1

log 2
>s− 2.

Since the decay rate s decreases as l increases and increases as m increases
(see Proposition 3.5 of [11]), and s > 2.678 for m = 2, l = 1, we have that
s > 2.678 for all m ≥ 2 and 0 ≤ l ≤ m − 1. Hence, we have M > s − 2 > 0.
Consequently, the regularity exponent γ− 1− ε of φd increases as n increases.
Since for n = 2 we have that

γ = s− log 3

log 2
> 2.678− log 3

log 2
> 1.09,

this proves that φd is continuous for all n ≥ 2 and, hence, φd ∈ L2(R) for all
n ≥ 2.

For part (2), we consider the asymptotic behavior of γ when n is large.
Note that

γ = (n− 1)s−
log

(
2n−1

n

)

log 2
= n

(
(1− 1

n
)s−

1
n

log
(

2n−1
n

)

log 2

)
.

We now use Stirling approximation, i.e. n! ∼ √
2πe(n+ 1

2
) log n−n (see e.g. [14])

to estimate 1
n

log
(

2n−1
n

)
for large n. We have
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1

n
log

(
2n− 1

n

)
∼ 1

n

(
log(2n− 1)!− log n!− log(n− 1)!

)

∼ 1

n

(
log

(√
2πe(2n− 1

2
) log(2n−1)−(2n−1)

)
− log

(√
2πe(n+ 1

2
) log n−n

)

− log
(√

2πe(n− 1
2
) log(n−1)−(n−1)

))

∼ 1

n

(
(2n− 1

2
) log(2n− 1)− (2n− 1)− (n +

1

2
) log n + n

−(n− 1

2
) log(n− 1) + (n− 1)

)

∼ 1

n

(
(2n− 1

2
) log(2n− 1)− (n +

1

2
) log n− (n− 1

2
) log(n− 1)

)

∼ 2 log(2n− 1)− log n− log(n− 1)

∼ log
(

4n2 − 4n + 1

n(n− 1)

)
∼ 2 log 2.

Applying the above approximation to the estimate of γ one obtains

γ = n

(
(1− 1

n
)s−

1
n

log
(

2n−1
n

)

log 2

)
∼ n

(
s− 2 log 2

log 2

)
= n(s− 2).

Thus we have shown that γ ∼ (s − 2)n, asymptotically for large n. Conse-
quently, one obtains that for large n,

|φ̂d(ξ)| ≤ C(1 + |ξ|)−µn, φd ∈ Cµn,

with µ = s− 2.

So far we have shown in Proposition 2.10 that φd is pre-stable and proved
in part (1) of Theorem 2.11 that φd ∈ L2(R). Furthermore, φd is compactly
supported as one can easily see from the Construction 2.7. Therefore, we
conclude that φd is stable. Having the stability of φd, together with a and ad

satisfying (1.9), Theorem 3.14 of [34] (also see [4]) leads to the conclusion that
φ and φd is a pair of dual refinable functions, i.e.

〈φ, φd(· − k)〉 = δ(k).

Therefore the corresponding pair of biorthogonal Riesz wavelets ψ and ψd can
be constructed by (1.10) and (1.11), and the systems X(ψ) and X(ψd) form
a pair of biorthogonal Riesz wavelet bases for L2(R).

Remark 2.12 The pair of masks â, âd in Construction 2.7 can be viewed as
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one of many possible factorizations of the trigonometric polynomial

n−1∑

j=0

(
2n− 1

j

)
ĉ2n−1−j ĉj(·+ π)

given by (2.7). In fact, we can choose factorization ĥ and ĥd arbitrarily such
that

ĥĥd =
n−1∑

j=0

(
2n− 1

j

)
ĉ2n−1−j ĉj(·+ π).

When the compactly supported refinable functions corresponding to the masks
h and hd are in L2(R) and pre-stable, a dual pair of compactly supported
biorthogonal wavelet systems can be derived from them. For example, let n′ > 0
and define

ĥ := ĉn′ and ĥd :=
n−1∑

j=0

(
2n− 1

j

)
ĉ2n−2−n′−j(1− ĉ)j, n′ ≥ 1.

As long as n and n′ are chosen properly, one can get a desired dual pair of
refinement masks for a dual pair of compactly supported refinable functions.
In particular, let ĉ = cos2(ξ/2) be the mask of piecewise linear B-spline which
is interpolatory. Then, the construction here coincides with the biorthogonal
wavelet construction given in [4].

For the dual mask ad given in Construction 2.7, we cannot have an explicit
form of it in general, because we need to find mask b numerically first. For
some special pseudo-splines, however, we do have an explicit form for all the
dual masks constructed from Construction 2.7. In the next section we will give
a detailed construction of dual refinable functions from pseudo-splines of type
II with order (m,m− 1).

3 Duals of a Special Case

Let φ be pseudo-spline of type II with order (m,m − 1) with m ≥ 1, i.e.
an interpolatory refinable function, and let a be its refinement mask. Since φ
is interpolatory, the mask â satisfies â + â(· + π) = 1. Hence, b̂ in Condition
2.4 can be simply chosen to be 1, and the corresponding refinable distribution
is ϑ̂ = 1. Then all the conditions in Condition 2.4 are satisfied. Following the
construction given by (2.8), one can obtain the dual mask âd as

âd := ân−1
n−1∑

j=0

(
2n− 1

j

)
ân−1−j

(
1− â

)j

. (3.1)
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The corresponding refinable function φ̂d can be defined as

φ̂d(ξ) :=
∞∏

j=1

âd(2−jξ).

Since b̂ = 1, we have ĉ = b̂â = â, where c given in Proposition 2.6. Therefore,
the trigonometric polynomial L defined in (2.9) can now be written as,

L =
n−1∑

j=0

(
2n− 1

j

)
ân−1−j

(
1− â

)j

.

This gives that

φ̂d(ξ) = φ̂n−1(ξ)
∞∏

j=1

L(2−jξ).

Since â satisfies 0 ≤ â ≤ 1 and since ϑ̂ = 1, following a similar argument in
Section 2 we have that

|φ̂d(ξ)| ≤ C(1 + |ξ|)−β, (3.2)

where the decay rate β satisfies

β = s(n− 1)−
log

(
2n−1

n

)

log 2
(3.3)

with s′ = 2m− log Pm,m−1( 3
4
)

log 2
, and Pm,l(y) defined in (2.12). Hence φd ∈ Cβ−1−ε.

The decay estimates for |φ̂d| here are not accurate. However, for the sim-
plest case when m = 1, i.e. â = cos2(ξ/2), we do have optimal decay estimate
for |φ̂d|. Indeed, in this case

âd = cos2n−2(ξ/2)
n−1∑

j=0

(
2n− 1

j

)
cos2(n−1−j)(ξ/2) sin2j(ξ/2)

= cos2n−2(ξ/2)
n−1∑

j=0

(
2n− 1

j

)
sin2j(ξ/2)(1− sin2(ξ/2))(n−1−j).

The optimal decay of φ̂d is

|φ̂d(ξ)| ≤ C(1 + |ξ|)−ρ, (3.4)

where

ρ := 2(n− 1)− log Pn,n−1(
3
4
)

log 2
. (3.5)

The complete construction and analysis for this special case have already been
given by [4] (see also [8]). In fact, by applying the approach in Remark 2.12
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this leads to their construction of a pair of biorthogonal compactly supported
symmetric wavelets with any prescribed regularity.

The following table gives the decay rates of |φ̂d| in (3.3) with some choices
of m and n.

β n=2 n=3 n=4 n=5 n=6

m = 2 1.0931 2.0342 2.9049 3.7350 4.5386

m = 3 1.6871 3.2222 4.6870 6.1110 7.5086

m = 4 2.2411 4.3282 6.3459 8.3230 10.2736
Table 1
In the above estimates of β, |φ̂d(ξ)| ≤ C(1 + |ξ|)−β.

Next, we will give an asymptotic analysis of the decay of φ̂d given in (3.2)
in terms of its refinement mask âd given in (3.1). For m = 1, the asymptotic
analysis of decay of φ̂d given in (3.4) can be done by following the analysis in
[4] or [8], which leads to the optimal decay rate 0.4150 · · · .

Proposition 3.1 Let φd be the refinable function with the refinement mask
adgiven in (3.1). The decay of φ̂d is given by (3.2). Then:

(1) For fixed m ≥ 2 and asymptotically for large n, we have

|φ̂d(ξ)| ≤ C(1 + |ξ|)−νn and φd ∈ Cνn,

where ν = 2(m− 1)− log Pm,m−1( 3
4
)

log 2
.

(2) For fixed n ≥ 2 and asymptotically for large m, we have

|φ̂d(ξ)| ≤ C(1 + |ξ|)−σm and φd ∈ Cσm,

where σ =
(
2− log 3

log 2

)
(n− 1).

Proof. Part (1) is immediate from part (2) of Theorem 2.11 by letting s =

2m− log Pm,m−1( 3
4
)

log 2
.

For part (2), let m be asymptotically large and n be fixed. Then,

β = (n− 1)

(
2m− log Pm,m−1(

3
4
)

log 2

)
−

log
(

2n−1
n

)

log 2

∼m(n− 1)

(
2−

1
m

log Pm,m−1(
3
4
)

log 2

)
.

Recall that we have already shown in Theorem 3.6 of [11] (see also [8], [39]
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and [26]) that
1

m
Pm,m−1

(3

4

)
∼ log 3. (3.6)

Applying (3.6) one obtains

β ∼ m(n− 1)

(
2− log 3

log 2

)
=: σm.

Thus we have shown that with fixed n,

|φ̂d(ξ)| ≤ C(1 + |ξ|)−σm and φd ∈ Cσm,

with σ = (n− 1)
(
2− log 3

log 2

)
.

The following tables provide some numerical results for the asymptotic
rates µ and σ given by Proposition 3.1.

m=1 m=2 m=3 m=4 m=5

ν 0.4150 0.6781 1.2721 1.8251 2.3532
Table 2
In the above estimates of ν, |φ̂d(ξ)| ≤ C(1 + |ξ|)−νn, asymptotically for large n.

n=2 n=3 n=4 n=5 n=6

σ 0.4150 0.8301 1.2451 1.6601 2.0752
Table 3
In the above estimates of σ, |φ̂d(ξ)| ≤ C(1 + |ξ|)−σm, asymptotically for large m.

4 Examples

In this section we give two examples of biorthogonal Riesz wavelets con-
structed in Section 3. In the first example, we start with pseudo-spline of type
II with order (2, 1) and n = 2; in the second one, we start with pseudo-spline
of type II with order (3, 2) and n = 2.

Example 4.1 We first choose â to be the refinement mask of a pseudo-spline
of type II with order (2, 1), i.e.

â = cos4(ξ/2)(1 + 2 sin2(ξ/2)).

By Construction 2.7 with n = 2 we have that

âd := â
(
3− 2 · â

)
.
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Define wavelet masks and wavelets as

b̂(ξ) = e−iξâd(ξ + π) and b̂d(ξ) = e−iξâ(ξ + π);

ψ̂(2ξ) = b̂(ξ)φ̂(ξ) and ψ̂d(2ξ) = b̂d(ξ)φ̂d(ξ),

where φ̂ and φ̂d are the refinable functions corresponding to the refinement
masks â and âd. The systems X(ψ) and X(ψd) form a pair of biorthogonal
wavelet bases for L2(R). The figures of φ, φd, ψ and ψd are given in Figure 1.
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Fig. 1. The figures of φ and φd in Example 4.1 are given in graphs (a) and (b).
Figures of the corresponding Riesz wavelets ψ and ψd are given in (c) and (d).

Example 4.2 We first choose â to be the refinement mask of a pseudo-spline
of type II with order (3, 2), i.e.

â = cos6(ξ/2)(1 + 3 sin2(ξ/2) + 6 sin4(ξ/2)).

By Construction 2.7 with n = 2 we have that

âd := â
(
3− 2 · â

)
.

Define wavelet masks and wavelets as

b̂(ξ) = e−iξâd(ξ + π) and b̂d(ξ) = e−iξâ(ξ + π);

ψ̂(2ξ) = b̂(ξ)φ̂(ξ) and ψ̂d(2ξ) = b̂d(ξ)φ̂d(ξ),

where φ̂ and φ̂d are the refinable functions corresponding to the refinement
masks â and âd. The systems X(ψ) and X(ψd) form a pair of biorthogonal
wavelet bases for L2(R). The figures of φ, φd, ψ and ψd are given in Figure 2.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

1.5

−6 −4 −2 0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) (b) (c) (d)

Fig. 2. The figures of φ and φd in Example 4.2 are given in graphs (a) and (b).
Figures of the corresponding Riesz wavelets ψ and ψd are given in (c) and (d).
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