
Binary Level-Set Shape Optimization Model
and Algorithm for Volumetric Modulated Arc

Therapy in Cancer Radiotherapy

Li-Tien Cheng ∗ Bin Dong † Chunhua Men‡ Xun Jia‡

Steve Jiang‡

August 13, 2012

Abstract

Radiation therapy is one of the most commonly used treatment
modalities for cancer. Its purpose is to deliver prescribed radiation
doses to cancerous targets using high energy radiation beams while
sparing nearby healthy organs. The treatment planning process of ra-
diotherapy is an optimization problem, where beam parameters, such
as directions, shapes, and intensities, can be adjusted in simulations
to yield desired dose distributions. This can be applied under the
recently developed volumetric modulated arc therapy (VMAT) setup
which involves the use of a full-rotation trajectory of the beam about
the patient along with a multi-leaf collimator for beam shape sculpt-
ing, with notable advantages in shortened treatment time. Treatment
plan optimization in this setting, however, can be quite complicated
due to constraints arising from the equipment involved. We intro-
duce a variational model in the VMAT setup for the optimization of
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beam shapes and intensities under these constraints. We apply a bi-
nary level-set strategy to represent beam shapes and a fast sweeping
technique to satisfy beam intensity variation limits. The result is a
flow-based shape optimization algorithm that guarantees constraint
satisfaction and energy decrease for the generation of improved treat-
ment plans in VMAT. Simulations of clinical cases are included to
validate our algorithm.

1 Introduction

1.1 Cancer and Radiotherapy

Cancer is a class of diseases in which a group of cells display uncontrolled
growth, invasion, and sometimes metastasis. According to the World Health
Organization, cancer is a leading cause of death worldwide, accounting for
around 7.5 million deaths (around 13% of all deaths) per year (http://www.
who.int/mediacentre/factsheets/fs297/en/). According to the US National
Cancer Institute, there are an estimated 1.6 million new cancer cases causing
0.58 million deaths in the United States in 2012 (http://www.cancer.gov/
cancertopics/what-is-cancer). Cancer is thus one of the dominant health
issues of our society today.

This naturally drives a demand for advances in cancer treatment. Along
with chemotherapy and surgery, radiation therapy is one of the three main
modalities of cancer treatment. It is estimated that, in the United States,
over 60% of cancer patients are treated with radiation therapy at some point
of their cancer management. The purpose of radiation therapy is to deliver
sufficient dose to the cancerous tissue (target) while staying within acceptable
dose levels for critical healthy tissues and organs.

The most common type of radiation therapy utilizes a medical linear
accelerator, mounted on a gantry that can rotate around the patient, to gen-
erate high energy (4–20 MeV range) radiation. The radiation beams are
collimated into desired shapes through a device called the multi-leaf collima-
tor (MLC) before hitting the patient. A typical MLC, as shown in Figure
1.1, consists of 60 pairs of tungsten leaves, with each leaf being able to move
back and forth, driven by a motor and controlled by a computer algorithm.

Since radiation can cause harm to normal tissues, a balance must be
achieved between sufficient dose to a cancerous target and minimal dose to
healthy tissues. In modern radiation therapy, this is finalized in the treatment
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Figure 1.1: Diagram of a multi-leaf collimator (MLC) opening and closing
its leaves to produce shapes that sculpt radiation beams passing through.

planning stage, where treatment parameters, such as beam direction, inten-
sity, duration, and shape, for optimal dose distributions are computed prior
to treatment. One approach is then to designing an energy function, assisted
by knowledge of patient anatomy from the image processing of computed-
tomography (CT) scans, that weighs desired doses at the target with those
at healthy organs. This energy can then be minimized through the use of
advanced algorithms, yielding treatment parameters for an optimal dose dis-
tribution.

1.2 Volumetric Modulated Arc Therapy

Volumetric modulated arc therapy (VMAT) [1–5] has recently become a
very popular treatment modality in radiation therapy. In VMAT, the gantry
is rotated around the patient, while beam intensities and shapes are var-
ied continuously (see Figure 1.2 for an illustration). At each beam angle
during the rotation, the MLC forms a predesigned shape, which we call an
aperture shape, that sculpts radiation beams passing through of predesigned
intensity. Compared to conventional intensity-modulated radiation therapy
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(IMRT), where beams are delivered at only a few (e.g. 7) beam angles and a
complicated set of beam apertures are designed at each beam angle, VMAT
can deliver dose distributions of similar or better quality [6–15]. In addition,
VMAT significantly shortens treatment times, completing treatment in a sin-
gle rotation of the gantry. This not only reduces patient treatment time, thus
increasing the availability of the treatment machines for all, but also serves
to diminish errors caused by patient motion during the radiation treatment.
Thus, it is not surprising that VMAT is generally considered one of the most
promising radiotherapy technologies currently available, with great potential
in improving treatment outcome in the face of limited resources.

Figure 1.2: Illustration of VMAT treatment delivery: the machine gantry
rotates around the patient while beams, shaped by MLC prior to arrival at
the patient location, deliver radiation doses.

1.3 Complexities

Significant improvement in VMAT treatment, however, is challenged by
the complexities of treatment plan optimization, where treatment param-
eters are subject to strong constraints due to mechanics of the equipment
involved. It becomes a challenge just to describe the constraints underlying
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Figure 1.3: An example of an aperture configuration plotted with vertical
axis the gantry angle and horizontal planes the MLC plane. Following the
gantry rotation, the MLC has to deal with an aperture that starts as one
connected component, then breaks into two and three components, before
merging back together into two and finally one component.

this optimization problem in a clean and precise mathematical language, let
alone solve the problem. Over the years, many heuristic approaches have
been developed and applied in clinical practice [1–5,16–19].

One example of the complexity involved can be seen in the parameter of
aperture shape, which forces the optimization problem to include a shape
optimization component. The aperture shape openings are in fact three-
dimensional domains, since they form a two-dimensional domain at each
gantry angle, and can take on complex topologies. In fact, the shape may
start out at a certain gantry angle as one connected component that later can
break apart into several components before finally merging back together into
one again (see Figure 1.3). These topologies are partially controlled, though
not in a simplifying manner, by constraints imposed by the equipment. Most
notably, MLC’s use of leaves oriented in a certain direction forces deliverable
aperture shapes to satisfy a sort of directional-convexity. Furthermore, limits
on the speed that leaves can open and close force bounds on first derivatives
in the gantry angle direction at aperture boundaries. These constraints rep-
resent further complexities that still allow complex behaviors such as the
merging and breaking described above to occur. In addition, apart from
aperture shapes, there can be added constraints on beam intensities during
the gantry rotation such as a limit on how fast they can be changed.

Thus a major challenge in generating treatment plans using VMAT to its
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full potential is the complexity of the three-dimensional shape optimization
with constraints problem. Our approach in facing this challenge will be to
ground the problem in a solid mathematical framework, one that is com-
fortable with geometric shapes, and attack it with advanced mathematical
techniques.

1.4 Statement of Problem

With these given background and observations, we can now definitively
state the problem of interest in this paper. Given CT scans of patient ge-
ometry, with target and critical structures identified by image processing
algorithms, we seek to style an improved treatment plan for an individual pa-
tient by constructing the parameters that optimize dose distributions under
VMAT. We simplify the problem by considering just the parameters of aper-
ture shapes and beam intensities and just the constraints on MLC-created
shapes, leaf speeds, and beam intensity speeds. We feel this setup includes
a major portion of the key ingredients and complexities of VMAT and the
solution of the optimization problem in this setting would represent a solid
first step towards our goal of improved radiotherapy treatments. Additional
considerations are left to future work.

Our approach begins with the introduction of an energy that weighs the
benefits of different dose distributions. These dose distributions are calcu-
lated for given aperture shapes and beam intensities within the VMAT setup
according to the physics of interactions between radiation and human tissues.
We adopt within this framework a binary level-set representation of aperture
shapes to deal with their complex topologies, constraints, and deformations,
the latter for a flow-based iterative strategy. In fact, we choose to actively
enforce energy decrease through the rejection of changes that increase the en-
ergy and the modification of stepsizes. Finally, we compute a velocity for a
minimizing flow for beam intensities, and modify it using fast sweeping tech-
niques to satisfy constraints. All these add together to form our algorithm
for constructing optimal treatment plans.

To study the quality of dose distributions, we turn to the dose-volume
histogram (DVH) that plots the percentages of different structures dosed at
different levels. The DVH approach has been widely used in radiotherapy
clinical practice for quantitative information on whether most or all of a tar-
get structure is dosed at acceptable levels and whether most or all of a critical
structure is dosed at safe levels. We use the DVH to check our dose distribu-
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tions, make slight improvements to them by adjusting weights introduced by
our energy, and compare them meaningfully to results from other treatment
setups and algorithms. In addition, we inspect our final aperture shapes and
beam intensities to confirm that the necessary constraints are satisfied. Such
studies serve to verify the efficacy of our algorithms and the quality of their
constructed treatment plans.

2 Variational Model

2.1 Energy

Let Sr, r = 1, . . . , nS denote certain identified structures of interest in the
patient’s body. Each Sr is a union of coordinates in x ∈ R3. For each Sr,
let an associated value mr be given. Structure such as normal tissues and
organs, called critical structures, will have mr equal to the maximum safe
dosage level while structures that are cancerous, called target structures,
have mr equal to the dose level necessary to kill the cells. Then given a dose
distribution z(x), x ∈ R3 defined over the patient’s body, we construct for
each structure, Sr, the energy functional

Fr(z) =

∫
Sr

pr(z(x)) dx, (2.1)

where
pr(z) = αr(max{0,mr − z})2 + βr(max{0, z −mr})2

and αr, βr are constant parameters. This functional weighs how far the dose
z is from mr.

Note the expression for pr at dose z simplifies to pr(z) = αr(z − mr)
2

when z ≤ mr and pr(z) = βr(z −mr)
2 when z ≥ mr. Thus the parameter

αr controls the penalty on doses less than mr and βr controls the penalty
on doses greater than mr. For critical structures, we choose αr = 0, βr > 0
so there is no penalty on administering less radiation than the maximum
allowed but there is a penalty on exceeding it. For target structures, we
choose αr > 0, βr > 0 so there is a penalty as long as the dose administered
is not equal to mr. Note βr = 0, allowing arbitrarily high doses on target
structures, may seem acceptable but can in reality cause undue harm to
healthy cells misidentified during either the image segmentation or manual
physician inspection stages of target structure identification. We also note, in
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practice, that the penalties αr, βr and even the threshold mr can be adjusted
for desired results.

A total energy functional in terms of the dose distribution can then be
constructed by summing together the energies of each individual structure:

E(z) =
1

2

nS∑
r=1

Fr(z).

Note E ≥ 0, while E = 0 describes the perfect case where target structures
are dosed exactly at desired levels, z = mr, and the doses of critical structures
are kept at safe levels, z ≤ mr.

For simplicity, let us consider a VMAT treatment case where beams are
continuously delivered in a circular arc labeled by gantry angle θ ∈ [0, 2π]
and note that our approach can be generalized to other gantry paths. Under
the VMAT setup, let s(θ) denote the beam intensity at each gantry angle
θ ∈ [0, 2π] and Ω(θ) be the aperture formed by the MLC at that angle. Then
the dose distribution under these beam intensities and apertures takes the
form

z(x) =

∫ 2π

0

∫
Ω(θ)

D(x, y, θ)s(θ) dy dθ, (2.2)

where D(x, y, θ) is a dose deposition coefficient detailing the dose received
by location x in the body due to a beamlet of radiation with unit intensity
passing through location y in the MLC plane, where the aperture exists.
This coefficient D(x, y, θ) is available for the treatment plan optimization
problem, and is computed for the specific patient according to physics and
biology principles.

The total energy then, as a function of the collection of aperture shapes
Ω = {(y, θ)|y ∈ Ω(θ)} and beam intensities s in the VMAT setup, takes the
form

E(Ω, s) =
1

2

nS∑
r=1

∫
Sr

pr

(∫ 2π

0

∫
Ω(θ)

D(x, y, θ)s(θ) dy dθ

)
dx. (2.3)

We note that henceforth, we reserve the use of the notation x for locations in
the patient body, y for locations in the MLC plane, and θ for gantry angle.

2.2 Level-Set Form

In addition, in place of Ω, we consider a binary level-set representation of
the shape [20–22]. The level-set representation [23] has been applied to a host
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of interface deformation problems in mathematical applications (see [24]). In
this framework, a shape such as that created by the MLC, is replaced by
a generally continuous function defined over the ambient space, and usually
labeled by φ, satisfying φ < 0 inside the shape and φ > 0 outside the shape.
In our case, this means

φ : R2 × [0, 2π]→ R,

where {(y, θ)|φ(y, θ) < 0} represents the aperture opening and {(y, θ)|φ(y, θ) =
0} the boundary of this opening (see Figure 2.1). Level-set methods may then
tack on a variable of time t in φ to capture the flow of the boundary or in-
terface of interest through evolution of φ. This implicit description has been
shown to provide an automatic handling of complex topological deformations
and numerical resolution. It also conveys smaller advantages such as the easy
identification of the inside and outside of shapes through the sign of φ.

Figure 2.1: Left Figure: An illustration on formulating the VMAT opti-
mization problem as a level-set problem: stacking the MLC apertures at
all gantry angles together to form a cylinder-like shape in three dimensions.
Right Figure: One MLC plane at a given gantry angle θ.

The binary version of the level-set representation restricts its level-set
functions φ to take on only two values, usually −1 and 1:

φ : R2 × [0, 2π]→ {−1, 1},
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with the boundary of {(y, θ)|φ(y, θ) < 0} serving as the interface of interest.
Such a restriction forces a very discrete interpretation of the problem since
φ is no longer continuous; for example, numerically, subcell resolution is
lost. Furthermore, much of the geometry of the surface of interest is lost
as φ is no longer differentiable there. In spite of these concerns, the binary
level-set method turns out to be suitable for our problem and further confers
advantages of speed and simplicity.

Under this framework, with the binary level-set function φ representing
aperture shapes, we arrive at the following form for our total energy:

E(φ, s) =
1

2

nS∑
r=1

∫
Sr

pr

(∫ 2π

0

∫
R2

D(x, y, θ)s(θ)H(−φ) dy dθ

)
dx,

where H denotes the one-dimensional heaviside function.

2.3 Constraints

For our problem of interest, we must further restrict the attention of
this energy to deliverable apertures and beam intensities due to constraints
imposed by the equipment involved. We narrow our interest to three major
constraints: a limit on how fast the beam can change its intensity during
gantry rotation, how fast leaves of MLC can move during the rotation, and
the aperture shapes allowed under MLC.

Let M be the given maximum allowable rate at which a beam can change
intensity. Then our first constraint can be described by the equation∣∣∣∣ ddθs(θ)

∣∣∣∣ ≤M,

for all θ ∈ [0, 2π], which is a requirement on the beam intensity function s.
The remaining two constraints on aperture shapes arise from the physical

setup of MLC, with its two banks of leaves that move back and forth to
form an aperture. Let w denote a unit vector pointing in the direction the
leaves of MLC are oriented. In this paper, we assume w is given and defer its
optimization to future work. From this orientation, we know that deliverable
aperture shapes must satisfy a directional-convexity requirement: φ(y, θ) < 0
and φ(y + τw, θ) < 0 for some y, θ and τ ∈ R implies φ(y + ζw, θ) < 0 for
any ζ between 0 and τ (see Figure 2.2).
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Figure 2.2: Illustration of deliverable apertures ((A) and (B)) and undeliver-
able ones ((C) and (D)) when leaves are oriented in the horizontal direction.

In addition, not allowing the leaves to move faster than some given value
can be described mathematically as a bound on

|(∇φ× w⊥) · w|
|(∇φ× w⊥) · e3|

,

at the aperture boundary, where φ here is the level-set function, rather than
the binary level-set function, and w⊥ is a unit vector orthogonal to w. In
practice, we will use a much simpler, discrete form of this constraint after
discretization of the problem.

3 Algorithm

3.1 Discretization

Our first step in creating an algorithm to minimize the energy E(φ, s) is
to discretize the problem. Let xi, i = 1, . . . , nx be discrete locations in the
patient’s body, yj, j = 1, . . . , ny those in the MLC plane, and θk, k = 1, . . . , nθ
those for the gantry angle. We further require yj and θk to be arranged as
the gridpoints of a uniform grid over the MLC plane and [0, 2π], respectively.
Henceforth, we reserve the subscript i to relate to xi, j to relate to yj, and
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k to relate to θk. Thus, φjk is the value of the binary level-set function φ
at yj and θk, sk is the value of the beam intensity s at θk, zi is the value
of the dose distribution z at xi, and Dijk is the value of the dose deposition
coefficient at xi, yj, θk. With these notations, we can write the discrete form
of the total energy as

E(φjk, sk) =
1

2

nS∑
r=1

nx∑
i=1,xi∈Sr

pr(zi),

where

zi =

nθ∑
k=1

ny∑
j=1

DijkskH(−φjk).

For a flow-based approach, we add iteration stage n, denoting by φ
(n)
jk

and s
(n)
k the values of the discrete level-set function and beam intensity,

respectively, at this stage.

3.2 Aperture Part

3.2.1 Basic Outline

We first consider the case of a given and fixed beam intensity, thus allow-
ing aperture shapes to play the main role in the energy. The main tool we
use for this energy minimization is the switch, at a given point, of the sign
of the binary level-set function, from −1 to 1 or from 1 to −1.

For a fixed j∗, k∗, let Gj∗k∗ be the operator on discrete binary level-set
functions that switches the sign at index j∗, k∗:

Gj∗k∗ : Rny × Rnθ → Rny × Rnθ

such that φ∗ = Gj∗k∗(φ) satisfies

φ∗jk =

{
−φj∗k∗ , if j = j∗, k = k∗

φjk, else.

Physically, this switch represents the toggling of the state of the aperture,
from open to closed or vice versa, at a chosen location in the MLC plane and
a chosen gantry angle.

Use of this operator allows us to set up our basic outline for minimization:
form a list of locations and for each one, switch the sign of the discrete
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binary level-set function at that location if it yields a deliverable aperture
shape with smaller energy. If, eventually, a switch at any location either
increases the energy or produces an undeliverable aperture shape, then we
accept the aperture shape of this final discrete binary level-set function to
be at a local minimum of the energy. We flesh out this outline by filling in
details concerning the procedure for checking for deliverable apertures and
energy decrease, and the order and locations to include in the list.

3.2.2 Aperture Constraint Satisfaction

We begin by introducing a procedure for checking whether a given dis-
crete binary level-set function represents a deliverable aperture shape in the
simpler case of leaf orientation w = (1, 0, 0)t. Given j, k, with j represented
by (j1, j2) ∈ R2, we can extract the one-dimensional array of values of φ
for j1 varying and j2, k fixed and compute, if they exist, the left-most in-
dex, call it lj2k, and the right-most index, call it rj2k, of those indices where
φ < 0. Directional-convexity simply needs to check whether φ < 0 for indices
lj2k < j1 < rj2k, when the left- and right-most indices exist.

In fact, when directional-convexity is satisfied, lj2k and rj2k are simply
the locations of the left and right leaf tips, respectively. Leaf speeds can be
calculated by looking at these indices; for example, for the left leaf tip, we
can compare the index of lj2k to those of lj2k̃, for k̃ nearby to k. If we agree to
a discrete leaf speed limit, such as only allowing the leaf to move at most a
index positions in the j1-direction every b index positions in the k-direction,
we can formulate the condition:

∑b
p=1 Tp ≤ a, where

Tp =


|lj2,k+p−1 − lj2,k+p|, if k + p ≤ nθ and lj2,k+p−1, lj2,k+p exist
|rj2,k+p−1 − lj2,k+p−1|/2, else if k + p ≤ nθ and lj2,k+p−1 exists
|rj2,k+p − lj2,k+p|/2, else if k + p ≤ nθ and lj2,k+p exists
0, else,

with the middle two cases handling, though not perfectly, the cases where
leaves are closed up and the left-most index does not exist. A similar con-
dition can be formulated for the right leaf tips. Note

∑b
p=1 Tp has a similar

flavor as total variation.
We note that the computations involved in these checks of constraint

satisfaction can be confined local to a change, such as our switch of sign
performed at a single location, in a discrete binary level-set function with
deliverable aperture shape.
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3.2.3 Energy Decrease

We now consider an efficient procedure for checking energy decrease after
a switch in sign of the discrete binary level-set function at a location. Let
φ be a discrete binary level-set function and consider φ∗ = Gj∗k∗φ, for some
j∗, k∗. In addition, let z∗ denote the dose distribution using φ∗, s. Then

z∗i =

{
zi −H(−φj∗k∗)Dij∗k∗sj∗ +H(φj∗k∗)Dij∗k∗sj∗ , if Dij∗k∗ 6= 0
zi, else.

So if we let

E− =
1

2

nS∑
r=1

∑
xi∈Sr,Dij∗k∗ 6=0

pr(zi)

E+ =
1

2

nS∑
r=1

∑
xi∈Sr,Dij∗k∗ 6=0

pr(z
∗
i ),

then
E(φ∗, s) = E(φ, s)− E− + E+.

Now define δEj∗k∗(φ, s) as the energy change due to a switch in sign of φ at
j∗, k∗. Then

δEj∗k∗(φ, s) = E(φ∗, s)− E(φ, s) = −E− + E+.

Note, the number of operations needed for determining δEj∗k∗ is on the order
of the number of i such that Dij∗k∗ 6= 0.

3.2.4 List Ordering

The basic outline for our algorithm involves updating the aperture shape
by changing the discrete binary level-set function location by location. Ob-
viously, however, a switched sign at many locations would lead to a loss of
directional-convexity. We thus restrict our attention to locations neighboring
the aperture boundaries. This agrees with a flow-based strategy of boundary
deformation and, in addition, significantly reduces the number of locations
we need to consider in updating.

The greediest choice for ordering the locations would be to consider first
the ones that, under a switch in sign, decrease the energy the most. Unfor-
tunately, this turns out not to be efficient since it would require not only the
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recomputation of energy changes at many locations every time a switch in
sign is accepted, but also a re-sorting of these values to find the next location
with largest decrease.

We instead compromise, decoupling the use of the energy change in deter-
mining the order of updating from its use in determining whether a switch
in sign should be accepted. In detail, we calculate energy changes for all
the locations neighboring the aperture boundary and then sort them so that
those with the greatest decreases are at the head of the list. We then proceed
through the entire list in this fixed order and, at each location, recompute the
energy change of a switch of sign at that location. This is required because
the sign switches accepted after the initial computation of energy changes
may invalidate those values. The recomputed value can then be used to
determine whether the current sign switch should be accepted. After going
through the whole list, the process can be repeated and iterated, calculat-
ing energy changes at all locations to create the list and then individually
recalculating at each location when going through the list.

3.2.5 Aperture Algorithm

We are finally ready to outline our flow-based, location-by-location, greedy
algorithm for energy decrease in the case of a given and fixed beam intensity.
Let φ(0) be a given discrete binary level-set function representing an initial
guess of a deliverable aperture shape and let s(0) be a given beam intensity.
Our algorithm then proceed as follows:

1. Set n := 0 and compute the energy E(0) := E(φ(0), s(0)).

2. Set φ(n+1) := φ(n) and E(n+1) := E(n).

3. For each location j, k neighboring the aperture boundary of φ(n+1),
compute and set δE

(n+1)
jk := δEjk(φ

(n+1), s(n)). Order these values in a
heap.

4. Identify the location j∗, k∗ with minimum value δE
(n+1)
j∗k∗ in the heap

and calculate δEj∗k∗(φ(n+1), s(n)).

5. If this value is negative and if, in addition, Gj∗k∗(φ(n+1)) represents a
deliverable aperture shape, then set the new energy E(n+1) := E(n+1) +
δEj∗k∗(φ(n+1), s(n)) and the new discrete binary level-set function, φ(n+1) :=
Gj∗k∗(φ(n+1)).
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6. Remove the minimum value from the heap and fix its ordering. Then
return to step 4 unless the heap is empty.

7. Set s(n+1) := s(n) and n := n+ 1 and return to step 2.

Each iteration stage thus updates, if acceptable, all locations next to the
aperture boundary of the previous stage. After our upcoming study of beam
intensities that minimize the energy for fixed aperture shapes, we can modify
the last step of this algorithm to set up such an iteration for s.

With the description of the aperture part of our algorithm completed,
we can comment on the suitability of the binary level-set representation to
our problem. With the binary representation, we do lose subcell accuracy
in our aperture shapes and the leaf speed limit becomes harder to handle.
However, first order accuracy and a discrete version of the constraint may be
acceptable trade-offs given the benefits of a simplified setting and increased
algorithmic speed.

3.3 Beam Intensity Part

3.3.1 Euler-Lagrange Equation

We now consider the case of a given and fixed discrete binary level-set
function representing an aperture shape and allow the beam intensity to play
the main role in minimizing the energy. We begin by solving for the Euler-
Lagrange equation, which must be satisfied by a minimizer. Introducing the
time parameter t into s, we get, formally:

d

dt
E(φ, s) =

1

2

nS∑
r=1

d

dt
Fr(z)

=
1

2

nS∑
r=1

∫
Sr

d

dt
pr(z(x)) dx

=

nS∑
r=1

∫
Sr

p′r(z(x))

2
zt(x) dx,

where
1

2
p′r(z) =

{
αr(z −mr) if z ≤ mr

βr(z −mr) else.
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Note,

zt(x) =

∫
R2

∫ 2π

0

D(x, y, θ)H(−φ(y, θ))
d

dt
s(θ, t) dθ dy,

and, thus,

d

dt
E(φ, s) =

nS∑
r=1

∫
Sr

p′r(z(x))

2

∫
R2

∫ 2π

0

D(x, y, θ)H(−φ(y, θ))
d

dt
s(θ, t) dθ dy dx

= −
∫ 2π

0

g(θ, s(θ, t))
d

dt
s(θ, t) dθ,

where

g(θ, s) = −
nS∑
r=1

∫
Sr

p′r(z(x))

2

∫
R2

D(x, y, θ)H(−φ(y, θ)) dy dx.

The minimum is achieved when d
dt
E(φ, s) = 0 for arbitrary d

dt
s and so the

minimizer satisfies −g(θ, s) = 0 or, written out,

nS∑
r=1

∫
Sr

p′r(z(x))

2

∫
R2

D(x, y, θ)H(−φ(y, θ)) dy dx = 0.

This final equation is the Euler-Lagrange equation.
In addition, gradient descent can be achieved through the flow

d

dt
s(θ, t) = g(θ, s(θ, t))

= −
nS∑
r=1

∫
Sr

p′r(z(x))

2

∫
R2

D(x, y, θ)H(−φ(y, θ)) dy dx.

Note this decreases the energy since s is not a minimizer implies−g(θ, s(θ, t)) 6=
0, and so

d

dt
E(φ, s) = −

∫ 2π

0

(g(θ, s(θ, t)))2 dθ < 0

for continuous g. Note though s explicitly appears neither in the Euler-
Lagrange nor the gradient descent equations, it is a hidden part of the dose
distribution z(x).
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Discrete versions can also be written down, with the Euler-Lagrange equa-
tion taking the form

nS∑
r=1

nx∑
i=1

p′r(zi)

2

ny∑
j=1

DijkH(−φjk) = 0

and the gradient descent equation, under Euler’s method on the differential
equation, taking the form

s
(n+1)
k = s

(n)
k −∆t

nS∑
r=1

nx∑
i=1

p′r(zi)

2

ny∑
j=1

DijkH(−φjk),

where ∆t is a chosen stepsize in time and s
(n)
k denotes the discrete beam

intensity at time step n. We can iterate this gradient descent equation to
convergence to minimize our energy; however, this solution will generally
violate the constraint on how fast beam intensities can change as the gantry
rotates.

3.3.2 Beam Intensity Constraint Conditions

In the presence of our beam intensity constraint, we seek to replace the
gradient descent approach’s rate of change, g, to preserve both energy de-
crease and constraint satisfaction. Under this new rate, the energy will de-
crease and, furthermore, if we start with an initial guess of the beam intensity
that satisfies the constraint, the beam intensity will continue to satisfy the
constraint for all time.

We start by considering a general differential equation on s of the form

d

dt
s(θ, t) = v(θ, s(θ, t)).

With this choice,

d

dt
E(φ, s) = −

∫ 2π

0

g(θ, s(θ, t))v(θ, s(θ, t)) dθ,

which implies that if v satisfies g(θ, s(θ, t))v(θ, s(θ, t)) > 0 when g(θ, s(θ, t)) 6=
0, then energy decrease is guaranteed. Furthermore, if v(θ, s(θ, t)) = 0 only

18



when g(θ, s(θ, t)) = 0, then if the differential equation converges, it will con-
verge to the minimizer of the energy. Essentially, these conditions can be
stated as: v has the same sign as g.

On the other hand, we also need to determine conditions on v to satisfy
the constraint

∣∣ ∂
∂θ
s(θ, t)

∣∣ ≤ M , for all θ and t, where M denotes the given
maximum allowed rate for intensity change. Taking a derivative in θ on both
sides of our flow equation yields

∂2

∂t∂θ
s(θ, t) =

d

dθ
[v(θ, s(θ, t))].

Suppose the constraint is satisfied initially,
∣∣ ∂
∂θ
s(θ, 0)

∣∣ ≤ M for all θ. Then

by imposing ∂2

∂t∂θ
s(θ, t) ≤ 0 when ∂

∂θ
s(θ, t) ≥ M and ∂2

∂t∂θ
s(θ, t) ≥ 0 when

∂
∂θ
s(θ, t) ≤ −M , the constraint | ∂

∂θ
s(θ, t)| ≤ M will continue to be satisfied

for all θ, t. This translates to conditions on v:{
d
dθ

[v(θ, s(θ, t))] ≤ 0, if ∂
∂θ
s(θ, t) ≥M

d
dθ

[v(θ, s(θ, t))] ≥ 0, if ∂
∂θ
s(θ, t) ≤M.

Construction of such a v that, in addition, has the same sign as g produces
a flow that both decreases energy and preserves constraint satisfaction.

3.3.3 Enforcing Beam Intensity Constraints

We present here a construction of such a v using eikonal equation theory.
Fixing t and given s(θ, t), we can solve for v as a function of θ, with the same
sign as g, from the eikonal equation∣∣∣∣ ddθv

∣∣∣∣ = H

(
M −

∣∣∣∣ ddθs(θ, t)
∣∣∣∣) ,

where H is once again the one-dimensional heaviside function. Thus the right
hand side is either 1 or 0 depending on whether

∣∣ d
dθ
s(θ, t)

∣∣ ≤ M is satisfied
or not.

In the discrete setting, we choose to recompute the discrete version of the
eikonal equation from a discrete flow and constraints. The discrete version
of our flow, d

dt
s(θ, t) = v(θ, s(θ, t)) can be written, under Euler’s method, as

s
(n+1)
k = s

(n)
k + ∆tv

(n)
k ,

19



where v
(n)
k refers to v(θk, s

(n)
k ). Furthermore, the discrete version of our con-

straint on beam intensities can be written as

|s(n)
k+1 − s

(n)
k |/∆θ ≤M

for all n, where ∆θ is the stepsize of our discretization in the θ-direction.
Then following a discrete version of our previous argument, |s(n+1)

k+1 −s
(n+1)
k |/∆θ ≤

M is satisfied when

M1 ≤
v

(n)
k+1 − v

(n)
k

∆θ
≤M2,

where

M1 =
1

∆t

(
−M −

s
(n)
k+1 − s

(n)
k

∆θ

)

M2 =
1

∆t

(
M −

s
(n)
k+1 − s

(n)
k

∆θ

)
.

Note M1 ≤ 0 ≤ M2 if |s(n)
k+1 − s

(n)
k |/∆θ ≤ M . Thus we choose to construct

v(n), with the same sign as g(n), from the equations
v
(n)
k+1−v

(n)
k

∆θ
= min{1,M2}, if v

(n)
k+1 ≥ v

(n)
k

v
(n)
k+1−v

(n)
k

∆θ
= max{−1,M1}, else.

We modify an eikonal equation solver called the fast sweeping method [25,
26], a variant of the fast marching method [27–29], to handle these equations.
This modified algorithm, in our one-dimensional setting, is as follows:

1. For k = 1, . . . , nθ, set

v
(n)
k :=

{
∞, if g

(n)
k > 0

−∞, else.

2. For k = 1, . . . , nθ, compute v
(n)
k as follows: first, for j = k − 1, k + 1,

set

akj :=

{
min{1,M1}, if (k − j)g(n)

k > 0
max{−1,M2}, else.
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Now, for j = k − 1, k + 1, set

bkj :=

{
v

(n)
k−1 + akj∆θ, if g

(n)
k g

(n)
j > 0

−akjg(n)
k (k − j)/(g(n)

k − g
(n)
j )∆θ, else.

Finally, for j = k − 1, k + 1, set

v
(n)
k :=


min{bk,k−1, bk,k+1}, if k − 1 ≥ 0, k + 1 ≤ nθ
bk,k−1, if k + 1 > nθ
bk,k+1, if k − 1 < 0.

3. Repeat step 2 for k = nθ, . . . , 1.

4. For a given C > 0, set v
(n)
k := min{max{v(n)

k , C},−C}.

We add the last step to allow a threshhold of v
(n)
k so that s

(n)
k will not grow

at very different rates at different locations of k. This final computed v(n)

allows s(n+1) in the discrete flow to preserve constraint satisfaction for the
beam intensity while decreasing the energy.

Figure 3.1 shows visually how the fast sweeping algorithm works to solve
the standard eikonal equation |∇s| = 1, which represents the case with no
bounds on speed limits: M1 = −∞,M2 =∞. The given function in the first
panel is first replaced by the values ±∞ or 0 while preserving the sign, as
shown in the second panel. The third panel shows the first of two sweeps
in the method. Enacting changes from left to right, lines of slope ±1 are
created from the zeros and replace previous values with larger magnitudes.
The fourth panel then shows the second sweep in the process. Enacting
changes this time from right to left, lines of slope ±1 are created from the
zeros and replace previous values of larger magnitudes while being replaced
by previous values of smaller magnitudes. The fifth panel shows the resulting
function s satisfying |∇s| = 1 and with the same sign as the given function
of the first panel. The case of finite M1 and M2 behaves similarly but with
lines of different slopes.

3.3.4 Beam Intensity Algorithm

For the final and complete algorithm, the one minimizing our total energy
with respect to both aperture shapes and beam intensity, and satisfying our
chosen constraints, we modify certain steps of and add certain steps to our
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Figure 3.1: Fast sweeping process for the standard eikonal equation. The
dashed lines indicate values that were calculated but replaced or rejected
because a value with smaller magnitude was available.
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aperture algorithm. To begin, we additionally require the starting beam
intensities to be deliverable. Then we remove the last step of the aperture
algorithm and add our beam intensity contributions:

7. Solve for v
(n)
k using our modified fast sweeping algorithm.

8. Solve for s
(n+1)
k using Euler’s method with v

(n)
k and a chosen ∆t.

9. Return to step 8 with a smaller ∆t if the energy E(φ(n+1), s(n+1)) is not
decreased.

10. Set n = n+ 1 and return to step 2.

Note, since the aperture part of our algorithm ensures energy decrease, we
include step 9 to preserve this property, knowing it is satisfied as ∆t→ 0.

Thus, in whole, we see that the final algorithm takes turns, first fixing
beam intensity and optimizing with respect to aperture shapes, then fixing
the aperture shape and optimizing with respect to beam intensity. This
process is then repeated until convergence, at which point we accept the
final aperture shape and beam intensity as approximate minimizers.

We now need to study the actual abilities of this completed algorithm,
including its speed, memory usage, the aperture shapes and beam intensities
it returns and the dose distributions they form.

4 Results

4.1 Dose-Volume Histogram

One option we have in viewing the quality of a given dose distribution is to
overlay the dosage levels over imaging scans of the body area of interest and
eyeball the results. This approach can give valuable qualitative information
but is lacking in delivering quantitative information. Furthermore, it actually
is not so easy to visualize the three-dimensional results. We do provide some
of this visualization by showing the results on some chosen two-dimensional
slices; however, for a more quantitative approach, we turn to the dose-volume
histogram.

Given a structure S, such as an organ, a dose distribution z, and a dose
level m, consider the probability density function given by

p(ζ) =
1

vol(S)

∫
S

δ(z(x)− ζ) dx,
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where δ is the one-dimensional delta function. The DVH function can then
be defined as

DVH(m) =

∫ ∞
m

p(ζ) dζ =
1

vol(S)

∫
S

H(z(x)−m) dx

=
vol({x|z(x) ≥ m})

vol(S)

for that structure. Thus DVH(m) reveals the percentage of the structure
that is irradiated at or above the dose level m. For a target structure, the
optimal DVH profile is a step function that is at 100% before the prescription
dose and 0% afterwards. For a critical structure, the optimal DVH profile
is a function that is at 0% after the safe dose limit for the particular tissue
involved.

4.2 Tests

4.2.1 Model Cases

We first test constraint satisfaction of our algorithm in a partly manufac-
tured example that uses as a basis real data in a case of prostate cancer. In
this test, we divide the 360◦ gantry rotation into 180 equally spaced 6 MV
beams and take beamlet sizes of 10× 10 mm2 for discretization of the MLC
plane and voxel sizes of 2.5×2.5×2.5 mm3 for discretization of the patient’s
target and critical structures. The manufactured part of our test involves
our choice of non-realistic constraint parameters that instead emphasize and
display constraint satisfaction and, as a bonus, energy decrease.

Figure 4.1 shows an example where leaf and beam intensity speed are
purposely overly restricted, for clarity in the results. The upper-left plot
in the figure shows the zero level-set surface plotted in R2 × [0, 2π]. Note
the restriction on the speed the surface can change in the vertical direction,
the direction of the gantry angle θ, due to the speed limit for leaves. The
upper-right plot shows the aperture shapes for a few chosen angles. Note that
directional-convexity, in this case in the horizontal direction, is satisfied for
each shape. The lower-left plot then shows a graph of beam intensity where
we can plainly see the restriction on the first derivative. Finally, the lower-
right plot shows the energy profile over 120 iterations. Note the monotonic
decrease forced by our approach.
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Figure 4.1: A collection of results of zero level-set surface (upper-left), indi-
vidual aperture shapes (upper-right), beam intensity (lower-left), and energy
profile (lower-right).
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Each iteration took around 3 to 3.5 seconds and the total runtime for
the program was around 6 minutes. We expect, however, that we can reduce
this runtime with optimized programming and a better convergence criterion,
since convergence seems to have been achieved before the 120th iteration.

We also present in Figure 4.2 the DVH plot of our tests in a different
example that considers just two structures, one a target structure and one a
critical structure. In this case, we chose to irradiate the target structure to
77.4 Gy and wanted to keep the critical structure below 23.52 Gy in dosage.
From the figure, we see our algorithm can largely obey these requirements,
with around 90% of the target structure dosed at 77.4 Gy and only around
10% of the critical structure dosed above 23.52 Gy. We note our own tests
and those of other algorithms, presented later in the paper, seem to show
that it is near impossible to get perfect results, with 100% of the target
structures dosed at their desired limits and 0% of the critical structures
dosed above their safe limits. Our DVH curves, however, will generally take
on the desired form with curves related to target structures far to the right
and curves related to critical structures far to the left, as demonstrated in
our figure for this model example.

4.2.2 Clinical Cases

We now test our algorithm with data collected from actual clinical cases
of cancer. In all, we have tested five cases of prostate cancer and five cases
of head-and-neck cancer and, since results were mostly similar, we present in
detail one representative case from each setting. Images and graphs showing
the results of our algorithm are presented in Figures 4.3, 4.4, and 4.5. Ad-
ditional images and graphs are included to verify the quality of our results
through a comparison with those of another current approach in radiother-
apy. We note that our approach does involve trial-and-error tweaking of
penalty constants in our energy to present the best results.

The first test we consider is a case of prostate cancer, where the target,
PTV or planning target volume, consists of a slight enlargement of the gross
tumor volume (GTV) to account for both sub-clinical disease as well as daily
setup errors and internal organ motion. For this region, we prescribe a dose
of 73.8 Gy for elimination of the cancerous growth. Safe dose limits of 23.52
Gy and 32.92 Gy are further prescribed, respectively, for the nearby critical
structures of the bladder and rectum.

Figure 4.3 shows the results of our algorithm. We note the DVH curves
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Figure 4.2: DVH plot of a model case with one target structure and one
critical structure, with dashed lines showing the desired and safe limits for
each structure’s dosage.

have the desired form of high doses applied to target structures and low doses
to critical structures. In fact, the target is pretty much completely dosed at
or above the required level. In the critical structures, on the other hand,
roughly 70% of the bladder and 75% of the rectum are dosed below their
safe limits. Since these results by themselves may seem poor, we include in
the plots results, for comparison, from another algorithm currently used in
radiotherapy that is built on the IMRT setup. This comparison shows that
our results are actually very good, with both algorithms applying similarly
high doses to the target but with ours applying much lower doses to the
critical structures.

A particular slice of the patient’s scan is also given in the figure, with
dose distributions and their level-sets overlaying the outlined prostate and
other organs. We get from this image visual confirmation of high doses being
applied to the target and low doses to the rest of the region. We also see that
the dose distribution generated from our algorithm is different from that of
the IMRT algorithm, which is also given for comparison.

Finally, Figure 4.4 shows a sampling of the apertures and the beam in-
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tensities calculated by our algorithm for this problem.
For the second of our clinical tests, we tackle a more complicated case

of cancer in the head-and-neck region. This case involves two different PTV
regions, labeled PTV1 and PTV2. PTV1 once again expands on the GTV,
which consists of two connected components of tumors, and a prescription
dose of 73.8 Gy is chosen for it. PTV2, however, comprises a larger target
area that additionally contains nearby high-risk nodal regions. We choose
a different prescription dose of 54 Gy for this target. Critical structures
include the submandibular gland and parotid gland which again have dose
limits around the range of 20 or 30 Gy.

Figure 4.5 shows the results of our algorithm in this case, along with
the results of an IMRT algorithm for comparison. Once again, images are
presented overlaying dosages and their level-sets on a particular slice of a scan
of the patient’s head and neck region with circled structures. These images
show though both our algorithm and the IMRT algorithm are applying higher
doses of radiation to the target structures, they are different in the rest of
the distribution of the doses.

For a more detailed look at how the doses are affecting the structures of
interest, we turn to the DVH plot. This plot definitively shows the target
structures receiving similarly high doses from both algorithms and critical
structures receiving lower doses, which is the desired form. Our algorithm,
however, seems to be applying lower doses to a greater volume of the crit-
ical structures. Thus, our results, once again, are better than those of the
competing IMRT algorithm.

Figure 4.4 additionally shows a sampling of the apertures and the beam
intensities calculated by our algorithm for this problem.

From these tests on clinical cases of cancer, we see that our algorithm has
the desired characteristics of a good treatment plan, with high doses applied
to target structures and low doses applied to critical structures. Furthermore,
our dose distributions are different from those of other algorithms and in
many situations show critical structures receiving less dosage.

5 Conclusion

In summary, we have in this paper developed a variational model and
the associated numerical techniques for optimization of VMAT treatment
plans in cancer radiotherapy. Our variational model places the problem in a
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Figure 4.3: Results of a VMAT plan created by our algorithm shown against
those of another algorithm using the IMRT setup in a clinical case of prostate
cancer. The first row shows our dose distributions (left) and those of the
IMRT algorithm (right), with dose amounts (red for high, blue for low) and
their level-sets overlayed on a chosen slice of a patient’s scan with structures
of interest circled. The second row shows the DVH curves for our algorithm
(solid lines) and those of the IMRT algorithm (dashed lines).
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Head-and-Neck Prostate

Figure 4.4: The beam apertures during the gantry rotation and the beam
intensities for the VMAT plans computed by our algorithm in the case of
prostate cancer (left) and head-and-neck cancer (right). Note in these two
cases, the leaves are oriented in the horizontal direction.
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Figure 4.5: Results of a VMAT plan created by our algorithm shown against
those of another algorithm using the IMRT setup in a clinical case of head-
and-neck cancer. The first row shows our dose distributions (left) and those
of the IMRT algorithm (right), with dose amounts (red for high, blue for
low) and their level-sets overlayed on a chosen slice of a patient’s scan with
structures of interest circled. The second row shows the DVH curves for our
algorithm (solid lines) and those of the IMRT algorithm (dashed lines).
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framework that allows the use of mathematical techniques such as the level-
set method for shape optimization. We adopted the binary version of this
method, with advantages in speed and simplicity for the aperture part of
the optimization, and a modified gradient descent approach for the intensity
part. For each, we listed in detail the steps involved, ultimately creating a
complete algorithm with characterstics of guaranteed energy decrease and
constraint satisfaction, discrete in the case of apertures. We then conducted
tests verifying constraint satisfaction and studying the quality of our com-
puted dose distributions with some comparisons to existing algorithms in
clinical cases of cancer. These tests revealed that our algorithm shows great
promise in the generation of desired dose distributions for treatment plans
in cancer radiotherapy.

Much future work remains, though, in further preparing our approach
for real-world use. This includes the need for experiments on more clinical
cases; the addition of more freedoms and constraints that arise, for example,
in generalizing MLC orientations and gantry rotations; and more investiga-
tions into desired forms for the energy and its minimization such as including
various penalty constants into the optimization and a look into partial con-
vexification of the energy for global minimization. Thus, we believe we have
created an algorithm that represents a strong first step in a new direction
and hope that future work can allow this direction to realize the full potential
of VMAT in cancer radiotherapy.
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