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Randomized Iterative Hard Thresholding: A Fast
Approximate MMSE Estimator for Sparse

Approximations
Robert Crandall, Bin Dong, Ali Bilgin

Abstract—Typical greedy algorithms for sparse reconstruction
problems, such as orthogonal matching pursuit and iterative
thresholding, seek strictly sparse solutions. Recent work in
the literature suggests that given a priori knowledge of the
distribution of the sparse signal coefficients, better results can
be obtained by a weighted averaging of several sparse solutions.
Such a combination of solutions, while not strictly sparse,
approximates an MMSE estimator and can outperform strictly
sparse solvers in terms of mean l2 reconstruction error. Existing
algorithms show promising results in improving performance
based on approximate MMSE estimation, but can be prohibitively
expensive for large-scale problems. We introduce a novel method
for obtaining such an approximate MMSE estimator by replacing
the deterministic thresholding operator of Iterative Hard Thresh-
olding with a randomized version. This algorithm achieves the
performance of the recently introduced RandOMP with much
greater computational efficiency, suitable for application to large-
scale problems.

I. INTRODUCTION

TYPICAL greedy algorithms for sparse reconstruction
problems seek to find solutions which are strictly sparse

in some predefined dictionary. Recent work suggests that,
given prior knowledge of the distribution of sparse signal coef-
ficients, better results can be obtained by non-sparse estimates
formed by a weighted average of several sparse candidate
solutions. Such a combination of solutions is motivated by the
Bayesian minimum mean-squared error (MMSE) estimator,
which is formed using a weighted average of all possible
sparse solutions. Since the number of possible sparse supports
grows exponentially with signal length, computation of the
MMSE estimator is combinatorially hard, and approximations
must be used in practice.

Recent algorithms for approximating the sparse MMSE
estimator include Randomized Orthogonal Matching Pursuit
(RandOMP, [1]) and Fast Bayesian Matching Pursuit (FBMP,
[2]). In this paper we introduce an efficient method for gener-
ating candidate sparse solutions using a novel randomized hard
thresholding operation. By using this randomized thresholding
in conjuction with a gradient descent step we develop the
Randomized Iterative Hard Thresholding (RIHT) algorithm,
which samples from possible sparse candidate solutions with
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significantly reduced computation times as compared with
RandOMP and FBMP, making it suitable for large-scale prob-
lems. The randomized thresholding operation can be imple-
mented with negligible increase in computation time, making
a single pass of RIHT nearly as efficient as IHT while still
delivering lower mean squared error; thus, we advocate the
use of a randomized thresholding operation when sufficient
prior signal knowledge is available. By running RIHT multiple
times and combining the results, in an algorithm we call
Aggregated Random Iterative Hard Thresholding (ARIHT),
we obtain an approximate MMSE estimate and additional
performance gains.

A. Outline of Paper

In Section II we discuss the regularization of linear inverse
problems by assuming signal sparsity. In Section III we review
iterative hard thresholding (IHT), a fast algorithm for recover-
ing sparse signals. In Section IV we introduce probabilistic
signal models that assume further prior knowledge beyond
sparsity. In Section V we overview the recently introduced
randomized orthogonal matching pursuit (RandOMP) algo-
rithm for approximating an MMSE estimator to the models
from Section IV; RandOMP gives improved performance over
greedy methods such as OMP and IHT. This motivates our
development of the new randomized iterative hard thresholding
(RIHT) algorithm in Section VI, which randomizes IHT to
give an efficient way of generating sparse candidate solutions.
In the same section we also develop the aggregated random-
ized iterative hard thresholding (ARIHT) algorithm, which
combines solutions generated by RIHT to approximate the
MMSE estimate for probabilistic sparse signal models. Using
ARIHT we achieve the performance of RandOMP with greater
computational efficiency. In Section VII we demonstrate the
performance of our algorithm in experiments and compare
with existing algorithms. Discussion and conclusions are given
in Section VIII.

II. REGULARIZED INVERSE PROBLEMS

A. Linear Inverse Problems

Consider the noisy linear inverse problem of recovering a
signal x from a measurement given by an affine transformation
of x:

y = Ax+ e. (1)
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y is the measurement or data we observe, and x is the signal
we wish to recover. A is a linear operator representing the
measurement process through which we observe x, and e is
a noise or error vector which corrupts our observation. We
assume that x ∈ Rn, and the measurement y lies in Rm.
The linear operator A : Rn → Rm can be represented by an
m× n matrix A ∈ Rm×n, and the noise vector e lies in Rm.
We will assume throughout this paper that the matrix A has
full rank, and that m ≤ n; this covers many common signal
processing applications including denoising, image deblurring,
and compressed sensing.

Even in the absence of noise, there are infinitely many
solutions to y = Ax, lying in an affine space of the same
dimension as null(A). In recovering x from (1) we must deal
with both the additive noise and the inherent ambiguity of
the underdetermined linear system. Both of these concerns are
dealt with by adopting a priori assumptions about the structure
of the signal x. A particularly useful assumption is that of
sparsity, or the assumption that most of the coefficients of x
are zero or nearly zero; this assumption makes the recovery of
x feasible. Additional assumptions on the distribution of the
coefficients of x can lead to more accurate reconstructions.

B. Regularization

A common approach to selecting from the space of
solutions is to formulate the search for x as an optimization
problem:

x̂ = arg min
x
C(x)

where C : Rn → R is some appropriately chosen cost function
that quantifies the quality of a particular solution in some way.

If m < n, then since A has full rank by assumption, there
are infinitely many x solving y = Ax; the set of solutions
is the affine space x0 + null(A) where x0 is any particular
solution. One approach to choosing among this space of so-
lutions is to regularize the problem by imposing an additional
constraint on the norm of the recovered solution. For instance,
we can attempt to balance a data fidelity constraint with a
weighted p-norm of the recovered solution; if µ ∈ Rn+ is a
vector of non-negative weights and p ≥ 1, we can seek

arg min
x

Φp,µ(x) = ‖y −Ax‖22 +

n∑
i=1

µi|xi|p. (2)

Iterative thresholding methods combine a gradient descent step
with a thresholding step to efficiently address this problem. See
e.g. [3] for a comprehensive discussion of iterative threshold-
ing methods for 2 for arbitrary p ≥ 1.

C. Sparse Approximations and l0 Regularization

We define a sparse vector to be one whose entries are mostly
zero; to quantify this we use the operator ‖ · ‖0 which counts
the number of nonzero elements in a vector:

‖x‖0 = # {i ∈ {1, . . . , n} s.t. xi 6= 0} .

The problem of recovering the sparsest vector satisfying some
constraint is often called l0-minimization [4].

The assumption of signal sparsity is useful in many prob-
lems. For example, natural images are often well approxi-
mated by a sparse vector in a particular basis. Common image
compression algorithms such as JPEG [5] assume that an
image x can be well approximated by Ψα, where α is sparse
and Ψ is a linear transform. By “well approximated” we mean
that ‖x−Ψα‖ is small in some norm. The ubiquitousness of
the JPEG standard is a testament to the efficacy of sparse
representation methods for most natural images; the visually
important information in images of interest to humans tends
to be concentrated on a low dimensional subspace.

If we expect that signals of interest are sparse, then we can
formulate an l0-optimization problem such as

minimize ‖y −Ax‖22 + λ‖x‖0, (3)

or the constrained version

minimize ‖y −Ax‖22 s.t. ‖x‖0 ≤ k. (4)

These problems are non-convex, and thus much more difficult
to solve than (2). The non-convexity means that in general
we cannot hope to find a global minimizer without resorting
to a combinatorial search over all possible supports [4]. For
an in-depth discussion of the local and global minimizers of
(3) and the relationship between (3) and (4), the interested
reader is referred to [6] and [7]. Note that the choice of k in
(4) (or of λ in (3)) will depend on additional knowledge or
assumptions about the sparsity level of the signals of interest;
however, we will always assume here that k < m.

III. ITERATIVE HARD THRESHOLDING

The class of iterative soft thresholding (IST) methods can
be used to solve problems of type (2), as described in [3].
These methods rely on continuous soft-thresholding operations
to solve the convex problem (2). To solve the non-convex
problem (4), we will focus on one method called iterative
hard thresholding, or IHT ([8], [9], [10]), which is analogous
to IST but with a discontinuous thresholding operation Hk.
Hk is the constrained hard thresholding operator which zeros
out all elements of its argument except the k with largest mag-
nitude (contrast this with the unconstrained hard thresholding
operator Hλ0.5 which sets all elements whose magnitude is
less than λ0.5 to zero; this operator is used when solving (3)).
If there is no unique set of k largest elements then we can
choose randomly or in some prespecified order.

Algorithm 1 Iterative Hard Thresholding
Given x0, iterate

xν+1 = Hk(xν + µνA
∗(y −Axν)) (5)

until either ν > Nmax or ‖y −Axν‖2 < ε.

Thus, the iteration consists of a step in the direction of the
negative gradient of the discrepancy term ‖y − Ax‖22 in (4),
then a greedy projection onto a sparse support to satisfy the
constraint ‖x‖0 ≤ k. The stepsize µν can be selected adap-
tively to guarantee convergence under quite general conditions;
see [11] for a description of stepsize selection for IHT.
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If in addition A satisfies a restricted isometry property, we
are guaranteed convergence to within a constant times the
norm of the error ‖e‖2 of the best k-sparse approximation to
the true signal x (see [9] for details). These guarantees, along
with the simplicity of implementation and speed, make IHT
and related algorithms quite attractive for large-scale sparse
signal processing problems.

IV. PROBABILISTIC SIGNAL MODELS

The more information about the signal is available to us, the
more accurately we should be able to reconstruct x. In solving
an optimization problem such as (4), our only assumption is
that x is k-sparse (or well approximated by a k-sparse vector).
If in addition we have some probabilistic model of how these
sparse coefficients are distributed, then we can move from
the deterministic framework of (4) to statistical estimation
techniques that take advantage of our prior knowledge. In
particular, we will seek an estimator which is optimal in
terms of the l2 reconstruction error, which turns out to be
a weighted combination of locally optimal solutions. Our goal
is to exploit this additional prior knowledge to improve on the
results obtainable by IHT.

A. A General Model for Sparse Signals

Suppose that the signal x and the noise e are random
variables with known distributions. Let S denote the support
of the signal x: S ⊂ {1, 2, . . . , n} is the set {i : xi 6= 0}
encoding the locations of the nonzero coefficients of x. The
set of all possible supports (of which there are 2n) is denoted
Ω. We assume that S is a random variable with known discrete
probability density P(S) over Ω. The density of the signal x
conditioned on a given support, p(x|S), is also known; thus,
we can think of x as being chosen by first drawing a support
randomly from Ω with probability P (S), then choosing the
nonzero coefficients on S according to p(x|S). The full prior
density on x is then found by marginalizing over the possible
supports:

p(x) =
∑
S∈Ω

p(x|S)P (S).

The noise vector e has known density pe(e).

B. MAP and MMSE Estimators

Given these three distributions P (S), p(x|S), and pe(e)
which describe our a priori knowledge of the system, we
can compute two important estimators for x: the maximum
a-posteriori probability (MAP) estimator, and the minimum
mean-squared error (MMSE) estimator.

The MAP estimate is found by choosing the most probable
support, then choosing the most probable solution on that
support:

SMAP = arg max
Ŝ

P (Ŝ|y)

xMAP = arg max
x̂

p(x̂|SMAP , y)

Finding the MAP estimate is related to solving the l0 problem
(3) or (4); that is, we can think of greedy algorithms such as

IHT (5) or orthogonal matching pursuit [12] as approximate
MAP estimators TODO CITE. To improve on these solutions,
we look to the MMSE estimator.

The MMSE estimate minimizes the average l2 error condi-
tioned on the data y, and is defined as

xMMSE = arg min
x̂
E(‖x− x̂‖22|y). (6)

It is well known that the MMSE estimator is given by the
expected value of x conditioned on the measurement y:

xMMSE = E(x|y)

or equivalently, for our sparse model,

xMMSE =
∑
S∈Ω

E(x|y, S)P (S|y). (7)

Note that each of the E(x|y, S) is a constrained MMSE
estimate, solving (6) with the constraint that the support is
S. It is clear from (7) that the MMSE is a weighted average
of the locally optimal solutions E(x|y, S), weighted by the
probability that a given support is the correct one. Even though
the true solution x is known to be sparse, the MSE-optimal
estimator is not.

The computational complexity of both the MAP and MMSE
estimators is exponential in signal length, since there are up to
2n possible supports for x; their computation is NP-hard for
sparse systems [4]. This difficulty arises because the posterior
p(x|y) =

∑
p(x|y, S)P (S) is multimodal even if the p(x|S)

are unimodal, so there are many local minimizers. Even so, we
can hope to seek practical approximations to these estimates
that outperform naive reconstructions (i.e., reconstructions
which do not make use of p(x) and pe(e)). Approximations to
the MAP estimator are discussed, for example, in [13], while
the MMSE estimator for the sparse case has been discussed
recently in [14] (for overdetermined systems) and in [1], [2]
for the underdetermined case.

C. A Special Case: Gaussian Signal and Noise

For concreteness let us introduce a signal model which
we will use in our numerical experiments. As in [1], we
choose this model for our analysis because it is mathematically
tractable; however, the procedures described in this paper
could in principle be repeated for any distributions P (S),
pe(e), and p(x|S), but obtaining simple closed-form expres-
sions for the posterior such as (8) will not be feasible for many
models.

Suppose that the support S has known distribution described
by P (S). For example if the support length is known to be to
k, and all supports of length k are equally likely, then P (S) =

0 if #S 6= k and P (S) = k!(n−k)!
n! if #S = k. Once a

support is selected, the nonzero elements of x are then chosen
independently from a normal distribution N(0,Σx), where Σx
is diagonal with entries σ2

x,i, and the elements of the noise
vector are chosen independently from N(0, σ2

e). The MMSE
estimator is then computed as follows. Define

QS =
1

σ2
e

A∗SAS + Σ2
x
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where again AS is the submatrix of A formed by selecting
only the columns corresponding to the support S. Define

zS =
1

σ2
e

Q−1
S A∗Sy,

which is the k-vector giving the values of the nonzero coeffi-
cients of E(x|y, S). Then if we define IS to be the n×k zero-
fill matrix formed by choosing the k columns of the identity
matrix corresponding to x, we have

E(x|y, S) = ISzS

There are 2n such solutions, one for each possible support,
which are local minimizers of E(‖x − x̂‖2|y) constrained to
a particular support S.

The posterior support density conditioned on the measure-
ment is

P (S|y) ∝ exp

(
z∗SQSzS

2
+

1

2
log(det(Q−1

S ))

)
(8)

where the constant of proportionality can be calculated using
the normalization requirement

∑
S P (S|y) = 1. The MMSE

estimator is then given by

xMMSE =
∑
S∈Ω

P (S|y)ISzS ,

and the MAP estimate is found by maximizing (8) with respect
to S then computing xMAP = ISMAPzSMAP . Thus, the MAP
estimate is one of the local minimizers E(x|y, S), while the
MMSE is a weighted combination of all such local minimizers.

D. Approximate MMSE Estimation by Sampling

Equation (7) suggests a Monte Carlo procedure for ap-
proximating the MMSE estimator. Suppose that we can draw
a random sample of supports {Si}Ni=1 from the distribution
P (S|y). From our sampled supports {Si} we generate a set
of candidate solutions {zSi}Ni=1, then combine them by simple
averaging:

x̂ =
1

N

N∑
i=1

ISizSi . (9)

Then as the number of samples N → ∞, this estimate
approaches the MMSE solution (6).

If most of the energy of the MMSE estimate is concentrated
on a few highly probable supports, then we can hope to achieve
a good estimate with a number of samples that is much fewer
than the total number of possible supports. The difficulty,
then, is in developing a procedure for sampling from P (S|y)
without performing any combinatorial search over all supports.
An approximate Gibbs sampler is used in [1] to build up a
support one atom at a time, and a Markov chain monte carlo
method is developed in [2]. Our procedure will sample from
P (S|y) by randomizing the thresholding operation in IHT.
This procedure is very efficient, generating an entire support
in a single step and requiring only the sorting of a “key vector”
of weights of length n.

V. RANDOMP

To motivate our procedure for randomizing the thresholding
operation in IHT we review the recently introduced Random-
ized Orthogonal Matching Pursuit (RandOMP [1]) algorithm.
In general, sampling from P (S|y) would require us to compute
P (S|y) for every possible support S. In [1] an approximate
Gibbs sampler is proposed. Suppose that x is known to have
only one non-zero element; that is, #S = k = 1. Then
S = {i} for some i ∈ {1, ..., n}, QS becomes the scalar

QS ≡ qi =
‖ai‖22
σ2
e

+
1

σ2
x,i

,

and

zS ≡ zi =
σ2
x,i

σ2
x,i‖ai‖22 + σ2

e

a∗i y.

Then (8) reduces to

P (S = {i}|y) ∝ exp

(
σ2
x,i|a∗i y|2

2σ2
e(σ2

x,i‖ai‖22 + σ2
e)
− 1

2
log(qi)

)
.

(10)
Now there are only n support probabilities to compute. If we
choose a set of N supports at random based on (10), then the
sum in (9) will approach the MMSE estimate as N approaches
infinity.

So what do we do when k > 1? We can build up a
support greedily, one atom at a time, by assuming that at
each step the next element should be chosen from the density
(10) (with the elements already chosen removed and the
distribution renormalized at each step). This is the procedure
for RandOMP described in [1]. Specifically, we start with
an empty support S0 = ∅ and the initial estimate x0 = 0.
At iteration ν we compute the residual rν = y − Axν .
Then we compute an updated set of support probabilities for
{1, ..., n}\Sν , conditioned on the ν elements already chosen,
as

P (i|Sν , y) ∝ exp

(
σ2
x,i|a∗i rν |2

2σ2
e(σ2

x,i‖ai‖22 + σ2
e)
− 1

2
log(qi)

)
.

(11)
Note the difference between (11) and (10): in (11) we correlate
the columns of A with the residual rν , rather than the data
vector y, to account for the support that has been selected
so far. Also, the constant of proportionality is different, since
there are k − ν atoms to choose from rather than k.

So, at each iteration we update the support by choosing i
randomly with probability (11) and setting Sν+1 = Sν ∪ {i}.
The estimate is then updated to xν+1 = E(x|y, Sν+1). This
iteration is repeated until a predetermined support length k
is reached, or until the norm of the residual y − Axν falls
below some chosen threshold ε. Once the stopping criterion
is reached, we store xν as one of the samples in (9). This
procedure is repeated N times, and the final solution is
obtained by simple averaging. When k = 1 the result is an
MMSE estimator in the limit of Navg → ∞. For k > 1 the
sampling is inexact but works well in practice [1].
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VI. RANDOMIZED ITERATIVE HARD THRESHOLDING

The RandOMP procedure introduced in [1] and summarized
above gives improved performance over OMP by randomizing
the support selection step in order to approximate the MMSE
estimator instead of the MAP estimator. Inspired by the
success of this algorithm, we propose a similar modification
of IHT which achieves comparable performance but with
significantly reduced computation time for large problems.

The primary advantage of IHT over OMP is improved com-
putational efficiency. Each algorithm requires correlation of
the current residual with the dictionary columns: A∗(y−Axν).
This computation is performed once per iteration in each algo-
rithm. For OMP and RandOMP, the total number of iterations
must be on the order of the signal sparsity level k, since one
atom is added to the support at each iteration (a method for
accelerating this procedure for RandOMP is examined in [15]).
IHT, on the other hand, provides an estimate with support
length k at each iteration, and the number of iterations depends
on how long it takes the gradient descent to converge rather
than how long it takes to build up the necessary support length,
so IHT scales better with increasing k for large signals.

Furthermore, OMP requires computation of the pseudoin-
verse of a submatrix of A of the form A†S at each step where
S is the current support estimate, while IHT requires only
application of the transpose operation A∗. This is an advantage
when the operation A and its transpose can be applied as a fast
transform such as a fast Fourier- or wavelet transform; for very
large systems computations of the form (A∗SAS)−1 become
impractical or slow. We will demonstrate in experiments the
improved efficiency of our algorithm.

A. Definition of RIHT

Our randomized algorithm RIHT replaces the determinis-
tic hard thresholding operation Hk with a randomized hard
thresholding operator HP̃ , which selects a support S with
probability P̃ (S) and sets to zero all elements on the com-
plement of S. Note that in general P̃ (S) can be a function of
the input x, and that in practice it will typically not be equal
to the model distribution P (S|y).

At each step we estimate an adaptive stepsize µν using a
procedure similar to the one described in [11]. We first esti-
mate an initial stepsize µ0 by performing a line search along
the gradient direction restricted to the largest k components
Hk(A∗(y−Axν)). We then form an intermediate estimate x̃,
and apply the randomized hard thresholding operation HP̃ (x̃)
to determine the current support Sν+1. We then recompute
the stepsize µν using a line search in the direction HSν+1

(x̃),
and compute the final result for the current step by projecting
xν + µνA

∗(y − Axν) onto the chosen support Sν+1. The
procedure is summarized in Algorithm 2.

A solution generated by RIHT is not an MMSE estimate but
rather an approximation of E(x|y, S), chosen with probability
approximately P (S|y). Thus, to form an MMSE estimate, we
combine these candidate solutions {xi}

Navg
i=1 by simple averag-

ing to find what we dub the Aggregated Randomized Iterative
Hard Thresholding (ARIHT) solution x = 1

Navg

∑Navg
i=1 xi,

Algorithm 2 Randomized Iterative Hard Thresholding (RIHT)

Given y, x0, and P̃ . Set ρ0 = ‖y‖2
Initialize iteration count to ν = 0, result to x0

While abs(‖ρν‖ − ‖ρν−1‖) > tol
1. Compute residual rν = y −Axν
2. Compute running average of residual norms

ρν =
1

ν

ν∑
i=1

‖rν‖2

2. Initial stepsize guess based on deterministic hard thresh-
olding:

µ0 =
‖Hk(A∗rν)‖22
‖AHk(A∗rν)‖22

3. Compute intermediate estimate x̃ = xν + µ0A
∗rν

4. Compute support Sν+1 by randomized thresholding:

Sν+1 = supp(HP̃ (x̃))

5. Update stepsize using line search on chosen support:

µν =
‖HSν+1(A∗rν)‖22
‖AHSν+1

(A∗rν)‖22
6. Compute

xν+1 = HSν+1
(xν + µνA

∗(y −Axν)) (12)

where HSν+1
denotes projection onto the chosen support

Sν+1.
8. Increment iteration count ν = ν + 1

which is an approximation to the MMSE estimate (7) of the
form (9).

Note that we have not yet specified how the randomized
thresholding distribution P̃ is chosen. Later we will give a
specific example for the case of the model described in IV-C.

B. RIHT when P̃ (S) = P (S|y)

It is instructive to examine an idealized version of the
RIHT algorithm where we assume we have no computational
limitations. Suppose for the moment that we can choose the
thresholding operator H such that it selects a support S
with probability exactly P̃ (S) = P (S|y). In this idealized
scenario the expected value of the sequence generated by the
RIHT Algorithm 2 converges to a unique minimizer of an
l2-regularized problem. The expected value of the sequence
generated by RIHT can also be thought of as the result of
ARIHT in the limit Navg →∞.

The probability of selecting a given support is independent
of the iteration number since P (S|y) depends only on the
measurement y. We have

E(xν+1|xν) = E(H(xν +A∗(y −Axν))),

where the expectation on the right hand side is over the support
probabilities P (S|y). It is easy to see that

E(xν+1|xν) = D(xν +A∗(y −Axν))
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where D ∈ Rn×n is the diagonal matrix whose entries are
Dii = P (i ∈ S|y). By integrating out the conditional over
xν , we find

E(xν+1) = D(E(xν) +A∗(y −AE(xν)));

that is, the expectation at step ν + 1 can be computed recur-
sively as a damped Landweber iteration using the expectation
at step n, where each coefficient is scaled by its probability
of appearing in the true support.

Algorithm 3 Aggregated Random Iterative Hard Thresholding
(ARIHT)

Given Navg , and P̃
for i = 1 to Navg
1. Compute candidate solution xi using Algorithm 2
Combine candidate solutions by averaging to obtain final
result

x =
1

Navg

Navg∑
i=1

xi

Suppose for simplicity that Dii 6= 0 (which will be true
almost surely for the Gaussian signal model in Section IV-C),
and that ‖A‖22 < 2 . Then the sequence E(xν) converges to
the unique minimizer of the functional (by theorem 3.1 in [3])

Φ2,D(x) = ‖y −Ax‖22 +

n∑
i=1

1−Dii

Dii
|xi|2

= ‖y −Ax‖22 +

n∑
i=1

P (i /∈ S|y)

P (i ∈ S|y)
|xi|2 (13)

given by

x? = (I −D(I −A∗A))−1DA∗y. (14)

This functional heavily penalizes the squared magnitude of
coefficients on improbable supports (as the ratio P (i/∈S)

P (i∈S) →
∞), while coefficients on very probable supports are allowed
to converge to whatever value best minimizes the discrepancy
term ‖y −Ax‖2.

The minimizer to Φ2,D given by (14) is not equivalent to
the MMSE estimate in general, even though we assumed (un-
realistically) that the true probabilities P (S|y) were available
to us. We observe that the minimizer depends only on the
probabilities P (i ∈ S|y) of individual coefficients appearing
in the support, and that these probabilities are not sufficient to
reconstruct the full support probabilities P (S|y). For example,
the P (i ∈ S|y) do not tell us anything about correlations
between different elemenets i, j appearing in a support S.

In the special case where the dictionary A is unitary, then
(14) reduces to

x? = DA∗y.

which is a constant multiple of the unitary-dictionary MMSE
estimator [16]

x? =
σ2
x

σ2
x + σ2

e

DA∗y.

C. Random Thresholding by Weighted Random Sampling

For RIHT to be practical we must avoid combinatorial
computations of the type required to compute P (S|y) on
every possible support. The difficulty, then, is in selecting
a randomized thresholding operation that is both practical to
implement on real problems, and useful in the sense that it
outperforms IHT for the proposed model.

A particular class of randomized thresholding operators can
be implemented by weighted random sampling. Given a set
of n elements and a vector w ∈ Rn of non-negative weights,
a weighted random sample (WRS) of length k is chosen as
follows.

Algorithm 4 Weighted Random Sample
Given a set {1, 2, ..., n} and a vector of non-negative
weights w ∈ RN
Initialize S = ∅.
While #S < k, iterate
• Choose i ∈ {1, ..., n}\S with probability

wi∑
j∈{1,...,n}\S wj

• Add i to S: S = S ∪ {i}

An efficient algorithm to generate a WRS given the weights
w is described in [17]; we first generate a vector U ∈ Rn
whose entries are drawn independently from the uniform
distribution on [0, 1], then compute a vector of “keys” Ki =

U
1/wi
i . We then sort these keys in descending order of mag-

nitude, and the indices of the largest k keys will constitute a
WRS as described in algorithm 4.

To cast RIHT as a weighted random sampling problem, we
first examine the special case of a unitary dictionary A, for
which a closed-form, non-combinatorial MMSE solution is
given in [16].

D. A Special Case: Gaussian Signal, Unitary Dictionary

Consider the signal model given in IV-C, and suppose for
now that the dictionary A is unitary. Then (8) reduces to

P (S|y) ∝
∏
i∈S

exp

(
1

2σ2
e

σ2
x,i

σ2
x,i + σ2

e

|a∗i y|2
)

(15)

Achieving these support probabilities by sampling is difficult.
A straightforward method would be to select a support S by
sampling k elements from {1, 2, ..., n} independently, with
replacement, selecting element i to add to the support on a
given step with probability pi ∝ exp

(
1

2σ2
e

σ2
x,i

σ2
x,i+σ

2
e
|a∗i y|2

)
. If

we end up with a support containing k unique indices, we are
done; if there are duplicates, we consider the support invalid
and repeat the same procedure until a valid support is selected.
This method will not be practical, since we are sampling with
replacement and the probability of selecting the same index
twice will typically be very large.

In [16], the authors bypass this difficulty by computing the
probabilities P (i ∈ S|y) in a recursive way that does not
require random sampling or combinatorial computation, and
use this to derive a closed-form expression for the MMSE
estimate when the dictionary is unitary. For our purposes, since
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we need to actually pick a support for RIHT to make sense, we
will use the weighted random sampling technique mentioned
above (sampling without replacement). In particular, let us
select weights

wi ∝ exp

(
1

2σ2
e

σ2
x,i

σ2
x,i + σ2

e

|a∗i y|2
)

(16)

Generating a WRS from these weights will result in support
probabilities that approximate, but do not match exactly, those
given in (15) (the probability of a support S being chosen will
not be exactly proportional to the product of the weights wi for
i ∈ S). Since the dictionary is unitary, x+A∗(y−Ax) = A∗y,
and only one iteration is necessary.

E. Selection of Thresholding Operator in Practice

In practice the dictionary A will not be unitary in appli-
cations such as compressed sensing where m < n, and we
need an approximate sampling procedure. RandOMP uses the
recursive probabilities (11) which depend on the residual rν of
the estimate at iteration ν. For RandIHT, we will instead use
the magnitudes of the coefficients of the intermediate estimate

x̃ν+1 = xν + µνA
∗(y −Axν),

and the support of xν+1 = H(x̃ν+1) is chosen by using the
WRS algorithm above with weights

wi ∝ exp

(
σ2
x,i|x̃iν+1|2

2σ2
e(σ2

x,i‖ai‖22 + σ2
e)
− 1

2
log(qi)

)
. (17)

We are, in effect, crudely assuming that the columns of the
matrix A are orthonormal when they are not; this allows us
to make our thresholding decision based on the magnitudes of
individual coefficients rather than on all the possible quadratic
forms z∗SQSzS that appear in the true support probability (8).
In order for any sparse recovery algorithm to work, however,
we expect a certain degree of incoherence in the dictionary A;
this means that our assumption of orthonormality is not “too
bad” in that we expect most of the energy of z∗SQSzS to come
from the diagonal entries of QS , so that the approximation (17)
is close.

F. Stopping Criteria

The stepsize selection procedure of [11] guarantees that for
normalized IHT the norm of the residual y − Axν decreases
at each step. No such guarantee is possible for RIHT, since
the random thresholding operator has a nonzero probability of
picking a sub-optimal support at each step. As such we pro-
pose a stopping criterion for the randomized algorithm based
on the running average of the residual norm. In particular, let
ρν = 1

ν

∑ν
i=1 ‖y−Axi‖2 be the average of the residual norm

of RIHT for iterations 1 through ν. Then we terminate the
algorithm when |ρν − ρν−1| < ε for some tolerance ε; that
is, we stop when the running average of the residual is not
changing by much. In Figure 1 the residual norm for a single
pass of RIHT is plotted as a function of iteration number,
along with the running average of the residual norm; due to
the random nature of the algorithm the residual norm does not

Fig. 1. Norm of residual y − Axν as a function of iteration number ν for
IHT (blue) and RIHT (red). The running average of the RIHT residual, which
is used as a stopping criterion, is shown in green.

converge, but the running average does converge empirically
and can be used as a stopping criterion.

VII. EXPERIMENTS

A. Recovery of Synthetic 1D Signals

We begin by examining the performance of RIHT and
ARIHT on one-dimensional signals generated according to the
model in Section IV-C. The support of the signal x is chosen
uniformly at random from the set of supports of length k. The
dictionary A ∈ Rm×n is generated by drawing its entries from
an i.i.d. normal distribution N (0, 1) and then normalizing the
columns to have unit l2 length. The noise vector e ∈ Rm is
i.i.d. Gaussian with known σ2

e , and we form the measurement
y = Ax+e. The nonzero entries of x are drawn from N (0, 1).
For ARIHT and RandOMP we set Navg = 10.

We compare the proposed algorithms with IHT, OMP,
RandOMP, and FBMP. We also include a comparison with a
non-greedy method, namely the l1-magic toolbox [18]. OMP
and IHT are both greedy methods that find local minima of
(4), and they perform similarly on these examples. l1-magic
finds a global minimizer of the convex functional (2) with
p = 1. FBMP is another Bayesian method that approximates
the MMSE estimator; this algorithm outperforms RIHT at low
noise levels but not as well for larger σe.

An example signal and the approximations obtained by IHT,
RIHT, and ARIHT are compared in Figure 2. The IHT and
RIHT solutions are sparse, while the ARIHT solution is not;
however, the ARIHT solution has the highest PSNR.

In Figure 3 we visualize the set of candidate solutions
obtained by RIHT using multi-dimensional scaling (MDS, [19]
[20]), a technique for visualizing high dimensional data sets
in a way that approximately preserves distance relationships
between points. We use a small system (m = 20, n = 30,
k = 2) so that the MMSE solution and all of the 435 possible
2-sparse solutions can be computed exactly. The blue circles
represent locally optimal solutions E(x|y, S) on different 2-
sparse supports. The candidate solutions generated by RIHT
are represented as black dots; they fall approximately on the
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Fig. 2. Sample solutions from IHT, RIHT, and ARIHT

Fig. 3. Visualization of solutions obtained by IHT, RIHT, and ARIHT, for
m = 20, n = 30, k = 2. Projected into two dimensions by multi-dimensional
scaling (MDS). The true MMSE, as shown by the teal square, is computed
by brute force. The ARIHT solution (black X) is obtained by averaging the
RIHT solutions (black dots), and gives an approximation to the true MMSE.

locally optimal solutions. The approximate MMSE solution
obtained by ARIHT (black X) is closer to the true MMSE
(teal square) than the IHT solution.

In the first experiment we fix the sparsity level to k = 6
and vary the noise level σe. We assume that the sparsity level
k is known exactly. The recovered signal PSNR is plotted
against σe in Figure 4. Note that RIHT outperforms IHT and
OMP; this is notable because the computational complexity of
RIHT is similar to that of IHT, so we have achieved improved
performance at little additional cost.

Next we fix the true sparsity level at ktrue = 8 and the noise
level at σe = 0.15, but vary the assumed sparsity level used
in the recovery algorithms; PSNR is displayed as a function
of assumed sparsity in Figure 5. This figure showcases an
important feature of the randomized algorithms, namely that

Fig. 4. Mean PSNR as a function of σe for synthetic 1D signals, averaged
over 500 trials. σx = 1, m = 128, n = 512, k = ktrue = 6

Fig. 5. Mean PSNR as a function of k for synthetic 1D signals, averaged
over 500 trials. σx = 1,σe = 0.15, m = 128, n = 256, ktrue = 8

they are significantly more robust with respect to choice of
assumed sparsity level; this is important since the optimal
choice of sparsity is rarely known in practice.

Again it is important to note that, while ARIHT does better
than RIHT, RIHT outperforms IHT. This is not the case for the
RandOMP algorithm, which performs worse than OMP when
the RandOMP solutions are not combined by averaging (when
Navg = 1). An important consequence is that RIHT can im-
prove performance without adding computational complexity;
additional improvement can be obtained by increasing Navg
and using ARIHT.

In Figure 7 we plot the reconstruction PSNR from ARIHT
as a function of Navg to demonstrate the improvement in
performance obtained by averaging the individual candidate
solutions generated by RIHT; as Navg grows we form a better
approximation of the MMSE estimate, but for this experiment
we see diminishing returns beyond Navg = 10.

B. Experiments on Computational Complexity

We now examine the computational complexity of RIHT
and ARIHT and compare with the comparable existing al-
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Fig. 6. Mean PSNR as a function of number of measurements for synthetic
1D signals, averaged over 500 trials. σx = 1, m = 128, n = 512, k =
ktrue = 6

Fig. 7. Mean PSNR for RIHT as a function of Navg

gorithms, OMP and RandOMP. The process of randomizing
the hard thresholding operation adds negligible complexity,
requiring only generation of the key vector Ki as described
in VI-C, and sorting of the keys by magnitude. As such,
the computation time required for Algorithm 2 is approxi-
mately the same as that required for IHT. The complexity
of the aggregated Algorithm 3 scales linearly with Navg .
Since each candidate solution can be generated independently,
this algorithm is easily parallelizable. The algorithm was not
parallelized in these experiments.

Running times as a function of signal length are compared
on the left side of Figure 8. The corresponding reconstruction
PSNR for each algorithm is shown on the right. For these
experiments we set m = n/2 and k = 0.1m, and increase the
signal length n. RIHT run times are comparable to IHT, but
RIHT gives better performance; additional performance gain
can be obtained using ARIHT. For larger signals, ARIHT is
faster than even the deterministic OMP.

VIII. CONCLUSIONS

In this work we introduced introduced the RIHT algorithm
for solving sparse linear inverse problems. This algorithm
modifies the classical IHT by introducing a randomized hard
thresholding operator. The resulting Algorithm 2 (RIHT) ex-
ploits prior knowledge of the distribution of signal and noise
coefficients to obtain lower mean-squared error as compared
with IHT, with minimal additional computational complexity.
Algorithm 3 (ARIHT) combines the random candidate solu-
tions generated by RIHT to approximate an MMSE estimator
and achieve additional performance gains, with a computa-
tional cost that increases linearly with the number of candidate
solutions used in the average.

Since RIHT and ARIHT require only applications of the
operator A and its adjoint, they can be implemented efficiently
using fast transforms such as the FFT. Unlike competing
approximate MMSE methods such as RandOMP, RIHT does
not require inversion of matrices of the form A∗SAS , which
becomes prohibitive for large-scale problems. Furthermore,
the randomized thresholding operation immediately returns
a full candidate support at each step, so the running time
scales better with signal size and sparsity as compared with
RandOMP. We have demonstrated that RIHT is practical for
much larger-scale problems than RandOMP.

In this work we only investigated the application of a
randomized thresholding operation to optimization problems
of the form (4), but we expect that improved results could
be obtained for other l0-regularized problems by similarly re-
placing the deterministic hard thresholding with a randomized
version.
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APPENDIX
BOUNDEDNESS OF THE RIHT SEQUENCE

In the body of the paper we have not discussed convergence
of the RIHT algorithm in a formal way. We have seen from
our experimental results that RIHT converges in the sense of
a running average of the residual norm ‖y−Ax‖, and that the
aggregated algorithm ARIHT appears to converge ergodically,
in the sense that as Navg → ∞ and the iteration number
ν →∞ we see convergence. We prove here a practical result
that guarantees that the sequence xν generated by RIHT is
bounded given a condition on the spark of A.

The spark of a matrix, written spark(A), is the smallest
number of columns of A that can be combined to form a
linearly dependent set. We will assume that the dictionary
of interest A has spark(A) > k, where k is the sparsity
of x (such matrices are abundant; they can be generated
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Fig. 8. Left: Comparison of average run time in seconds (on a log scale) as a function of signal length. Right: Corresponding reconstruction PSNR (dB).
Number of measurements is set to m = n/2, and the sparsity level is set to k = 0.1m.

deterministically, and random Gaussian matrices are full-spark
almost surely [21]) This property guarantees that any k-
column submatrix of A has full rank, which is a necessary
and sufficient condition for the local minimizers of (4) on a
particular support S to be unique [6]. The non-zero entries of
the minimizer restricted to a given support S are given by the
k-vector

x?S = (A∗SAS)−1A∗Sy. (18)

where AS is the submatrix of A formed by taking only those
columns corresponding to the support S.

The sequence xν generated by RIHT is bounded in Rn, as
long as ‖A‖22 < 2 and spark(A) > k (recall that we make
this assumption on the spark throughout this paper).

If we iterate Algorithm 2 for a given choice of P̃ , then we
have

xν+1 = Dν+1(I −A∗A)xν +Dν+1A
∗y

where Dν+1 is the diagonal matrix with ones on the entries
corresponding to supp(xν+1) and zeros elsewhere. For a given
starting point x0, then, we have

xν =

[
1∏
i=ν

Di(I −A∗A)

]
x0+

ν∑
i=1

i+1∏
j=ν

Dj(I −A∗A)

DiA
∗y

(19)
Here the matrix product with the larger index on bottom
indicates that the matrices are multiplied from left to right
starting with the largest index, i.e.

1∏
i=ν

Di(I−A∗A) = Dν(I−A∗A)Dν−1(I−A∗A)...D1(I−A∗A).

Dν is a random sequence of diagonal matrices with ‖Dν‖2 =
1. There are NS such matrices, one for each allowed support
S. The probability distribution of this random sequence de-
pends on the starting point x0, and the random thresholding
probabilities P̃ .

Suppose that the dictionary has been scaled to satisfy
‖A‖22 < 2. Then ‖(I − A∗A)x‖2 ≤ ‖x‖2, with equality iff
x ∈ null(A). It follows immediately that the first term in (19)
is bounded, since ‖Di(I −A∗A)‖2 ≤ 1 which implies

‖
1∏
i=ν

Di(I −A∗A)x0‖2 ≤ ‖x0‖2

for all ν.
By assumption, spark(A) > k, so there are no nonzero

k-sparse vectors in null(A). Then

‖(I −A∗A)Di‖2 < 1

for all i, and in particular, since there are only finitely many
different matrices Di (one for each support) we have

‖(I −A∗A)Di‖2 < C

for some constant C < 1 that is independent of i. Then

‖
ν∑
i=1

i+1∏
j=ν

Dj(I −A∗A)

DiA
∗y‖2 ≤

ν∑
i=1

Cν−i‖A∗y‖2

=
1− Cν

1− C
‖A∗y‖2.

Thus, the sequence xν is bounded with

‖xν‖2 ≤ ‖x0‖2 +
1

1− C
‖A∗y‖2.

We conjecture that the sequence E(xν) of expected states
converges as ν →∞, although we have not proven it. We do
see ergodic convergence in practice in our numerical results,
and are exploring proofs in ongoing research.
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