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ABSTRACT

High-dimensional clustering arises frequently from many areas in natural sciences, technical disciplines and
social medias. In this paper, we consider the problem of binary clustering of high-dimensional data, i.e. classifi-
cation of a data set into 2 classes. We assume that the correct (or mostly correct) classification of a small portion
of the given data is known. Based on such partial classification, we design optimization models that complete
the clustering of the entire data set using the recently introduced tight wavelet frames on graphs.® Numerical
experiments of the proposed models applied to some real data sets are conducted. In particular, the performance
of the models on some very high-dimensional data sets are examined; and combinations of the models with some
existing dimension reduction techniques are also considered.

Keywords: Tight wavelet frames, sparse representation on graphs, spectral graph theory, graph clustering,
high-dimensional data analysis.

1. INTRODUCTION

Recent advances in information and computer technology contribute greatly to the exponential growth of data.
In particular, the dimension that data reside in has increased tremendously which inevitably increases the needs
of efficient techniques to properly handle, process and analyze high-dimensional data sets. High-dimensional
clustering arises frequently from bioinformatics such as disease classifications using high throughput data like
micorarrays or SNPs, machine learning such as document classification and image recognition, and many other
areas in natural sciences, technical disciplines and social medias. The objective of clustering analysis is to discover
groups, or clusters, of similar objects. The objects are usually represented as points in a multidimensional space.
The data points are often regarded as vertices of a certain graph with properly defined weight functions on the
edges depicting similarities among the vertices. Graphical framework is frequently used to exploit underlying
similarities in the data.? ¢ In this paper, we consider the problem of binary clustering of high-dimensional data,
i.e. classification of a data set into 2 classes. We assume that the correct (or mostly correct) classification of a
small portion of the given data is known. Based on such partial classification, we design optimization models
that complete the clustering of the entire data set using the recently introduced tight wavelet frames on graphs.!

In image processing and analysis, redundant systems such as wavelet frames have been implemented with
excellent results in both classical and more challenging problems. Their applications in classical image restora-
tion problems include image inpainting,” super-resolution,® deblurring,’ '? demosaicing'® and enhancement.'*
Wavelet frames are also applied to more challenging image restoration problems such as blind deblurring,'® 16
blind inpainting,!” and denoising with unknown noise type.'® Wavelet frame related algorithms have been devel-
oped to solve medical and biological image processing problems as well, e.g. X-ray computer tomography (CT)
image reconstruction,!” 2 and protein molecule 3D reconstruction from electron microscopy images.?! Further-
more, wavelet frames have been successfully used in video processing,?? 4D CT image reconstruction,?? 24 image
segmentation®® 26 and classifications.?”>2%

Another class of methods for image processing and analysis that is rather successful is the PDE based ap-
proach,?? 31 which includes variational and (nonlinear) PDE based methods. Recently, fundamental connections
between wavelet frame based approach and PDE based approach were established.?? 3% In particular, connections
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to the total variation model,3? nonlinear evolution PDEs,?® and the Mumford-Shah model®* were established.
The series of three papers®? 34 showed that wavelet frame transforms are discretization of differential operators
in both variational and PDE frameworks, and such discretization is superior to some of the traditional finite
difference schemes for image restoration. This new understanding essentially merged the two seemingly unrelated
areas: wavelet frame based approach and PDE based approach. It also gave birth to many innovative and more
effective image restoration models and algorithms.

Recently, there has been a growing interest in formulating graph clustering problems as variational problems,
such as the non-local total variation®® 3? and Ginzburg-Landau functional based models.*® 42 Many of these
models are motivated by variational and PDE-based methods used in image processing. Since wavelet frame
based approach and PDE based approach have strong connections,?? 34 it is natural to ask whether wavelet frame
based approach can be generalized to process and analyze data on graphs. This motivates the recent work! where
the author introduced a new (constructive) characterization of tight wavelet frames in both continuum setting,
i.e. on manifolds, and discrete setting, i.e. on graphs; discussed how fast tight wavelet frame transforms can
be computed and how they can be effectively used to process graph data. In particular, a semi-supervised
graph clustering model was proposed, preliminary numerical experiments on synthetic and real data sets were
conducted, and comparisons with some state-of-the-art clustering methods were provided.

In this paper, we present two new clustering models based on the tight wavelet frame on graphs' that are
specially designed to handle two different scenarios: (1) the known partial classification of the data set is accurate;
and (2) the known partial classification of the data set is mostly accurate. Numerical experiments of the two
models applied to some real data sets are conducted. In particular, the performance of the models on some
very high-dimensional data sets are examined; and combinations of the models with some existing dimension
reduction techniques are also considered.

The rest of the paper is organized as follows. A brief review of the tight wavelet frames on graphs and fast
transformation algorithms! is given in Section 2. Two clustering models with their associated fast numerical
algorithms are introduced in Section 3. Numerical experiments are presented in Section 4.

2. TIGHT WAVELET FRAMES ON GRAPHS

In this section, we briefly review the characterization and construction of tight wavelet frame systems on
graphs, and the fast transformation algorithms proposed in one of the authors’ earlier work.! Interested readers
should consult the original article for full details.

2.1 Preliminaries

We denote a graph as G := {E,V,w}, where V :={vy e R* : k=1,..., K} CR*, ECV xV is an edge
set, and w : E — RT denotes a weight function. In this paper, we choose the following commonly used weight
function

w(vy, vp) = e~ Ive=vw 20 &> 0.

Let A := (a,x ) be the adjacency matrix

{w(vk, vgr)  if v and vy are connected by an edge in E
ak,k' =

0 otherwise,

and D := diag{d[1],d[2],...,d[K]} where d[k] is the degree of node v, defined by d[k] := >",, ai i . Let L be the
(unnormalized) graph Laplacian, which takes the following form

L:=D-—A.
Denote { (A, ug) 52_01 the set of pairs of eigenvalues and eigenfunctions of £. Assuming the graph is connected,

then we have 0 = A\g < A\; < Ay < -+ < Ag_1. The eigenfunctions form an orthonormal basis for all functions
on the graph:

K
<uk, uk/> = Z uk[n]uk/ [n] = 5k,k/-
n=1



Let fo : V — R be a function on the graph GG. Then its Fourier transform is given by
- K
falk] =" falnlux[n].
n=1

2.2 Discrete Tight Wavelet Frame Transforms on Graph G
Given a set of masks {a; : 0 <j <7} C {y(Z), we denote the Fourier series of a; as
(6 == 3 aylklee.
keZ

We define the discrete L-level tight wavelet frame decomposition as

W fa = {Wjfc : (j,1) € B}

with
B:={(1,1),(2,1),...,(r,1),(1,2),..., (r, L)} U{(0, L)} (2.1)
and
— o f@E@e V) falk =1,
Witfalk] := {a;(zNHlAk)ag@NH?Ak) a2V folk] 2 <i< L. (2.2)

The dilation scale N is chosen as the smallest integer such that
Amax = Axg—1 < 2N7T-

Note that the scale N is selected such that 2=V )\, € [0,7] for 0 < k < K — 1. The index j denotes the band
of the transform with 7 = 0 the low frequency component and 1 < j < r the high frequency components. The
index [ denotes the level of the transform.

Given a graph function fg, let @ :== W fg = {a;; ¢ (4,1) € B}, with «;; := W, fq, be its tight wavelet
frame coefficients. We denote the discrete L-level tight wavelet frame reconstruction as W T e, which is defined
by the following iterative procedure in frequency domain

Aok =Y a; NI Na k] forl=L,L-1,...,1, (2.3)
7=0

where a0 1= W T« is the reconstructed graph data from a. Note that W is obviously a linear transformation,
and it is easy to verify that the linear transformation W T defined by (2.3) is indeed the adjoint of W satisfying
(Wfg,a) = (fa,W'a) for all f¢ and a. The following theorem states that {a; : 0 < j < r} generates a
discrete tight wavelet frame on graphs.!

THEOREM 2.1. Given a set of masks {a; : 0 < j <r} C Ly(Z), suppose the following condition is satisfied:

T

> la©)f =1 (2.4)

Jj=0

Then, the discrete tight wavelet frame transforms W and W' defined on G = {E,V,w} by (2.2) and (2.3)
satisfy
W' W fq = fa, forall fo:V —R.

There are many sets of masks satisfying condition (2.4). For example, all masks constructed from the unitary
extension principle??® satisfy (2.4), and hence generate tight frame systems on graphs by Theorem 2.1. Here, we

present two examples, i.e “Haar” and “Linear”.!

Examples.



1. Haar.
do(€) = cos(€/2) and @ (€) = sin(¢/2).

2. Linear.

d0(€) = cos?(£/2), al<§>=%sin<§> and  G(€) = sin®(£/2).

2.3 Fast Tight Wavelet Frame Transform on Graphs (WFTG)

The discrete tight wavelet frame transforms given by (2.2) and (2.3) require the full set of eigenvectors and
eigenvalues of the graph Laplacian, which is computationally expensive to obtain for large graphs. A solution to
such computation challenge is to use polynomial approximation of the masks, such as the Chebyshev polynomi-
als, so that eigenvalue decomposition of the graph Laplacian is not needed.’%* Note that, the masks @;(£) that
we use, as well as those constructed in the literature from the unitary extension principle,*3 are trigonometric
polynomials. Therefore, @;(£) can be accurately approximated by low-degree Chebyshev polynomials*® which
significantly reduces the computation cost of the decomposition and reconstruction algorithms. In our simula-
tions, we choose n = 8 which is sufficient for the applications we consider. Note that, if a higher order B-spline
tight wavelet frame system is used, Chebyshev polynomials with a higher degree may be needed to achieve a
given approximation accuracy. However, just as in image processing, only the lower order systems are mostly
used because they offer a good balance between quality and computation efficiency.

Given mask @;(€)(§) with £ € [0, 7], we denote its Chebyshev polynomial approximation as

1 n—1

@) =T = scio+ Y aTh, Gk = z/ cos(kb)a; (g(COS@) + 1)) de.
0

2 T
k=1
We denote the Chebyshev polynomial approximation of @} as 7;**. Since the masks {a;} we will be using are
real-valued, we have 7" = 7**. If we substitute the approximation @;(§) ~ 7;"*(§) in (2.2), and use the fact that
7;-" are polynomials and Fourier transform on G is unitary, we obtain the WFTG:

Fast Tight Wavelet Frame Transform on Graphs (WFTG)?!
Wfe = {W‘)lfg : (j,l) S B} where

T2 NL) fa 1=1,
W, =q 2.5
J-,lfG {En*(2N+l1£)76n*(2Nl+2£) .. .76”*(27]\[5).]06' l Z 9. ( )
Reconstruction transform W can be defined similarly and we have W W ~ I. Note that, for computational
efficiency, the operations 7;"(s£)fg for decomposition and T;(sL)fa for reconstruction are computed via the
iterative definition of the Chebyshev polynomials. Therefore, in WFTG, only matrix-vector multiplications are
involved.

3. SEMI-SUPERVISED GRAPH CLUSTERING MODELS AND ALGORITHMS

We consider semi-supervised clustering, where the labeling, i.e. clusters, of a small subset of the data is
provided in advance. We will introduce two optimization models and their associated fast numerical algorithms
based on the WETG for two different clustering scenarios. The proposed models and algorithms are motivated
by the earlier work on wavelet frame based image segmentation?® and surface reconstruction,*® as well as the
variational frameworks for image segmentation?”4® and graph clustering.4? 42

Given graph G = {E,V,w}, let |V| = K and T' € Q := {1,2,..., K} be the set of labels where, for i € T', we
know which cluster v; belongs to. Let I' := I'g UT'; where I'g is the index set for cluster 1 and I'; for cluster 2.
Define the cluster-indicator function f : ' — R as

fli] = {O for i € Iy, (3.1)

1 foriely.



Let Rr denote the restriction operator on set I'; i.e. Rru : I' = R for u : Q — R with Rpru = v on I'. Our
objective is to recover a function u : Q — [0,1] with Rru = f, such that the two sets {i | u[i] > 8} and
| u[i] < B} provide a good clustering of the given graph for some 5 € (0,1). In our experiments, we select

{i
B=0.5.

In the recent work,! the following model was proposed to find u

. 1
min v Wulie + 5llur = fl56, (3.2)

u€[0,1]
where the first term impose a regularization of the level sets of u making sure u has regular level sets and is close
to a binary function on G, while the second is the fidelity term making sure that ujp ~ f. Positive numerical
results on both simulated and real data sets were reported and comparison with state-of-the-art methods were
discussed.

In practice, when data f is collected, it is reasonable to assume that we are in one of the following two
situations: (1) f is perfectly accurate; (2) f contains some miss-labelling while the percentage of miss-labelling
is small. Then, model 3.2 is not ideal to model either of the two cases, although decent clustering results may
still be achieved.! In this section, we will propose an optimization model and its associated fast algorithm for
each of the aforementioned scenarios.

3.1 Exact Model

Assume that the labelling-indicator function f is error-free. We propose the following model which will be

referred to as the “exact model”:
min, |lv-Wuli ¢

s.t.  Rru=f, (3.3)
where '
- ] <[ <
T e o
where v > 0 is a scalar tuning parameter.
To solve problem (3.3), we first convert it to its equivalent form:
min, g ||v-d|i.a (3.5)

s.t. Rru = f, Wu=d.
Problem (3.5) can be solved using the augmented Lagrangian method:49 52

(P, d*) = argmin v - dfjy6 + [ Reu — f + Y3 + 5 {|Wu —d" + 053,

Dyt = bf + Rpuktt — f,
5T = bk + Wkt — i1,

If we solve the above subproblem alternatively using only one step for each of the variable u and d, we have
the following algorithm which is known as the alternating direction method of multipliers (ADMM)?? 5% and the
split Bregman algorithm:% %°

u**! = argmin,, B Rru— f+ bi|I3 + BIWu — d* +v%|3,
d" = argming ||v-d|1.q + B ld— (Wurtl 4082,

Dyt =k + Rpuktt — f,

D5 = bk + Wkt — @il



3.2 Robust Model

If there is miss-labelling when data is collected, then the labelling-indicator function f contains errors. Thus,
we cannot enforce that Rpr = f. Assuming that the percentage of the miss-labelling is relatively small, we
propose the following “robust model”:

min v Wl 6+ [Rru — fl,c. (3.7)

where v is given by (3.4). Here, the use of the ¢;-norm in the second term of (3.7) is to properly handle
miss-labelling in f. The use of the ¢;-norm in data fidelity terms is common in variational methods of image
restoration to handle sparse impulse noise or other sparse corruptions.!” 56765

To solve problem (3.7), we convert it to its equivalent form as

ming 4,4, ||v-dill,e+|ldz]1,¢ (3.8)
s.t. Wu= dl, dg = Rr’u — f ’

Same as (3.5), problem (3.8) can be solved using the augmented Lagranging method:

(uf i 3t = argmin [y di |l + lldallc + 5 W — df + 0113 + 5 [ Reu — £ — df + b3,

Vit = b + Wkt — it
b5t = b5 + Rpuktt — f —db™

which leads to the the ADMM algorithm:

uPt! = argmin,, & |Wu —df +b¥]13 + &2 Rru — f — d§ + 0513,

dyt = argming, [[v-dillg+4d — (Wubt! +08)]3,

dst = argming, ||dall1.c + 2| d2 — (Rou— f +b5)|3, (3.9)
byt = by + Wbt —aptt,

b5 = bE + Rpuktt — f —dit

Convergence of the algorithm (3.6) and (3.9) have been discussed in the literature where (rate of) convergence
of these algorithms is also available under suitable assumptions of the objective function.” 6670

4. NUMERICAL SIMULATIONS

In this section, we apply the exact and robust models and their associated algorithms to some real data sets.
In particular, we shall observe how the proposed methods perform on high dimensional data sets, especially when
the dimensions of the data are noticeably higher than the cardinalities of the data sets. Under such situation,
we also observe how the combination of dimension reduction techniques with the proposed method perform on
these high dimensional data sets. Throughout this section, we use “Haar” tight wavelet frame system and the
level of decomposition L is chosen to be 1.

4.1 Low-Dimensional Clustering

We test the exact and robust model (3.3) and (3.7) on two real data sets. These two data sets are considered
as “low-dimensional” since the cardinalities of the data sets are relatively large comparing to the dimensions of
the data. We will compare the performances of the two models on the two data sets under two scenarios: with
and without miss-labelling.

The first real data set we use is the MNIST data set,”! which is available at http:// yann.lecun.com/ exdb/
mnist/. It contains 70000 28 x 28 images of handwritten digits from 0-9. Since our clustering method is binary (2-
classes clustering), we choose the subset with digits 4 and 9 to classify since these digits are harder to distinguish.
This created a data set of 13782 image vectors, which is either 4 or 9. In our numerical simulations, we randomly
draw 500 image vectors from the data set (about 3.62%) as training set and use them to create the known label



set I' and graph data f of (3.2). We repeat this process 100 times and report the average classification errors
(in %) and computation time.

The second data set is the banknote authentication data set from the UCI machine learning repository.” It
is a data set of 1372 features extracted from images (400 x 400 pixels) of genuine and forged banknotes using
wavelet transforms. The goal is to separate the banknotes into being either genuine or forged. In our numerical
simulations, we randomly draw 50 data vectors from the entire data set (about 3.64%) as training set and use
them to create the known label set ' and graph data f of (3.2). We repeat this process 100 times and report
the average classification errors (in %) and computation time.

Numerical results of the exact and robust model on the two data sets with and without miss-labelling are
presented in Table 1 and 2. As we can see, when there is not miss-labelling, the robust model performs comparably
to the exact model. When there is miss-labelling, robust model outperforms the exact model for both cases.
Also, recall that the clustering errors of model (3.2) were 2.76% and 1.64% for MNIST and banknote data sets
without miss-labelling (under the exact experimental settings),! while the errors of the exact model without
miss-labelling are 2.65% and 1.45%. This shows that considering the exact model (3.3) has some advantage over
the earlier proposed model (3.2) when there is no miss-labelling.

Table 1. Clustering errors (%) of MNIST data set. Average computation time (in seconds) for both exact and robust
model is included in parentheses.

Errors (Time)

Exact Model

Robust Model

w/o miss-labelling

2.65% (10.9 sec.)

2.66% (9.6 sec.)

20% miss-labelling

7.57% (11.3 sec.)

7.29% (11.5 sec.)

Table 2. Clustering errors (%) of banknote data set. Average computation time (in seconds) for both exact and robust

model is included in parentheses.

Errors (Time)

Exact Model

Robust Model

w/o miss-labelling

1.45% (4.2 sec.)

1.45% (3.7 sec.)

10% miss-labelling

7.54% (3.9 sec.)

5.89% (4.2 sec.)

4.2 High-Dimensional Clustering

Given a data set containing two classes X (1) = {xgl) ER*:1<j<m}and X® = {:cf) eR:1<j<no},
we consider the situation when ni,ne < s and will refer to the cluster of such data set as high-dimensional
clustering. High-dimensional clustering is a challenging problem. Many classical methods such as the traditional
linear discriminant analysis (LDA) methods do not perform well. The reason is that, with limited number of
observations ny and ns, it is impossible to estimate too many parameters simultaneously and accurately. To
overcome the lack of observations, sparsity based LDA methods were proposed, such as the nearest shrunken
centroids (NSC),” IR,™ FAIR,”™ ROAD,”® LPD"" and the rotate-and-solve (RS) strategy.”® The first part of
this subsection is to apply the proposed exact model (3.3) to benchmark data sets, i.e. gene expression data
sets, that is commonly used for high-dimensional clustering, and compare its performance with state-of-the-art
sparsity based LDA methods that are known to be effective on the gene expression data sets.

The main challenge of the gene expression data sets is that the dimension of the data s is far larger than
the number of observations n; and ny. When the dimension s of the given data set is moderately larger than
ny and ns, we can apply dimension reduction techniques to reduce the original dimension of the data to a
dimension that is smaller than n1,n2, and then apply the exact model (3.3). The second part of this subsection
is to experiment on the performances of different dimension reduction techniques combining with our clustering
method. Throughout this section, we assume that all labels given are accurate, i.e. no miss-labelling.

4.2.1 Gene Expression Data

We consider the two popular gene expression data set: Leukemia™ and lung cancer.8? The two data sets
come with separate training and testing sets of data vectors. The Leukemia data set contains s = 7129 genes
with ny = 27 acute lymphoblastic leukemia (ALL) and ny = 11 acute myeloid leukemia (AML) vectors in the



training set. The testing set includes 20 ALL and 14 AML vectors. The Lung Cancer data set contains s = 12533
genes with n; = 16 adenocarcinoma (ADCA) and ns = 16 mesothelioma training vectors. The testing set has
134 ADCA and 15 mesothelioma vectors.

For Leukemia data set, we put all the 47 (27 training + 20 testing data) ALL vectors and 25 (11 training
+ 14 testing data) AML vectors together and randomly select 23 ALL and 12 AML as training set (about 50%
of data) and the rest as testing set. We repeat the experiments 20 times. We conduct a similar experiment on
Lung cancer data by randomly select 75 ADCA and 15 mesothelioma data vector as training set (about 50% of
data) and the rest as testing set, and repeat 20 times.

The clustering results are presented in Table 3. As we can see that the proposed exact model (3.3) is
comparable to the state-of-the-art methods that are specially designed for high-dimensional clustering. For
Leukemia, the exact model is slightly worse than IR and RS-ROAD; while for Lung, the exact model is better
than the other methods. To see the different between the two data sets, we use t-SNE method®! to visualize the
data sets in R3, which is given in Figure 1. Note that, all LDA methods are based on the assumption that both
of the clusters X(1) and X are sampled from two s-dimensional normal distributions with the same covariance
matrix. As we can see from Figure 1 that such assumption is somewhat valid on Leukemia data set and a linear
classifier is sufficient; while this assumption is clearly invalid on Lung data set. From the plot of Lung data set,
it seems that a nonlinear classifier is more suitable than a linear classifier, which is consistent with our numerical
results in Table 3.

Table 3. Clustering errors and standard deviations for gene expression data sets.

Errors % (std %)

IR™

NSC™

ROAD™

RS-ROAD™

Exact Model

Leukemia
Lung Cancer

4.2708 (2.9998)
3.4669 (1.4381)

8.5135 (8.4232)
10.4396 (7.2675)

6.3514 (5.9650)
1.3736 (1.0621)

1.4595 (3.0721)
0.9341 (0.8931)

5.5714 (4.1945)
0.5889 (0.6004)
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Figure 1. 3D plots of data set Leukemia and Lung.

4.2.2 Combining with Dimension Reduction Techniques

When the dimension of a given data set s is moderately bigger than numbers of observations n; and na, we
may apply dimension reduction techniques before applying the proposed clustering models. Dimension reduction
techniques are often needed to capture important features, discard unwanted noise, and downsize the data set
without information loss before a sophisticated and computationally expensive analysis. Here, we experiment on
a few existing dimension reduction methods in combination of the exact model (3.3). The dimension reduction
methods we select for our experiments are: PCA,%2 classical MDS,®3 Laplacian eigenmap (LapEigen)®* and the
RS method.™ The dimension reduction methods PCA, MDS and LapEigen are implemented in MATLAB using
the dimension reduction toolbox written by Laurens van der Maaten (http://lvdmaaten.github.io/drtoolbox/
#usage).818

We select MNIST data set (numbers 4 and 9) for our tests. To create the situations where the dimension s is
greater than number of observations n1, no, we randomly select subsets of the data set with different cardinalities



(i.e. n1 4+ n2). We use 50% of the data as training and the rest as testing. For each given sub-sampled data
set, we use the exact same experimental setting as in Section 4.1. For each run, we first apply one of the
aforementioned dimension reduction methods and then the clustering model (3.3). All parameters are selected
manually for optimal clustering results. Numerical results are presented in Table 4. As we can see that, when
the total number of observations decreases, the clustering quality of the exact model degrades, which is typical
for most clustering methods. Also, it seems from Table 4 that the best combo of dimension reduction techniques
with our clustering model (balancing between quality and computation efficiency) is simple clustering methods
such as PCA and MDS. The RS method also works well when number of observations are relatively high. One
may use more sophisticated dimension reduction methods. However, when number of observations is small, a
sophisticated dimension reduction method may not improve the final clustering results such as LapEign. However,
to be more conclusive, experiments on more data sets using more dimension reduction methods need to be done
in our future studies.

Table 4. Clustering errors for MNIST data set (number 4 and 6) with varied numbers of observations n1 and na. The
dimension of the data is s = 783. The best result among all the methods for each case is made in bold.
Errors % No DR | PCA | MDS | LapEigen | RS

ny + ng = 276 10.29 7.88 | 8.69 17.65 10.23

ny +ng =413 9.38 7.04 | 6.96 13.13 8.62

ny + ng = 689 5.72 4.30 | 4.14 7.03 4.56

ny + ng = 965 4.93 4.43 4.54 5.73 4.39

ny +no = 1378 4.11 3.53 | 3.39 5.72 3.65
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