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ABSTRACT

Theory of wavelet frames and their applications to image restoration problems have been extensively studied
for the past two decades. The success of wavelet frames in solving image restoration problems, which includes
denoising, deblurring, inpainting, computed tomography, etc., is mainly due to their capability of sparsely ap-
proximating piecewise smooth functions such as images. However, in contrast to the wide applications of wavelet
frame based approaches to image restoration problems, they are rarely used for some image/data analysis tasks,
such as image segmentation, registration and surface reconstruction from unorganized point clouds. The main
reason for this is the lack of geometric interpretations of wavelet frames and their associated transforms. Re-
cently, geometric meanings of wavelet frames have been discovered and connections between the wavelet frame
based approach and the differential operator based variational model were established.! Such discovery enabled
us to extend the wavelet frame based approach to some image/data analysis tasks that have not yet been studied
before. In this paper, we will provide a unified survey of the wavelet frame based models for image segmentation?
and surface reconstruction from unorganized point clouds.® Advantages of the wavelet frame based approach are
illustrated by numerical experiments.

Keywords: Image segmentation, surface reconstruction, variational method, (tight) wavelet frames, split Breg-
man algorithm.

1. INTRODUCTION
1.1 Wavelet Frames and Applications in Image Restoration

The theory of the multiresolution analysis (MRA) based wavelet frames, especially tight wavelet frames, were
extensively studied in the past two decades.*® Examples of tight frames includes translation invariant wavelets,”
curvelets,'® and framelets,” etc. In contrast to orthogonal bases, tight frames provide redundant representations
to signals and images. The redundancy of tight frames usually gives more robust algorithms and the wavelet
system leads to sparse approximation for piecewise smooth functions, such as images, due to their short supports
and high orders of vanishing moments. Such property is known to be desirable for image restoration problems
including denoising, inpainting, deblurring, and medical imaging (e.g. CT and MRI).

Image restoration problems can be generally classified as ill-posed linear inverse problems. If the problem
is not carefully handled, the solution one obtains may contain various artifacts due to the ill-pose nature of
the problem. In order to reduce the amount of artifacts while preserving key features of the image, e.g. edges,
various regularization based optimization models were proposed in the literature. Among all regularization based
models for image restoration, variational methods and wavelet frames based approaches are widely adopted and
have been proven successful. The trend of variational methods for image restoration started with the refined
Rudin-Osher-Fatemi (ROF) model'! which penalizes the total variation (TV) of the image to be recovered. The
ROF model is especially effective on restoring images that are piecewise constant, e.g., binary images. Other
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types of variational models were also proposed after the ROF model. We refer the interested readers to the

papers'> 19 and the references therein for further details.

Wavelet frame based approaches for image restoration are relatively new and came from a different path.
The basic idea of wavelet frame based approaches is that images can be sparsely approximated by properly
designed wavelet frames, and hence, the regularization used for the majority of wavelet frame based models is
the ¢1-norm of the wavelet frame coefficients. Due to redundancy of wavelet frames, there are three different
formulations of wavelet frame based models: the analysis based approach,?%2! the synthesis based approach?? 26
and the balanced approach.2”2% Wavelet frame based approaches were further developed and applied for general
image restoration problems?” 3% and medical imaging.?”3® More recently, the property of sparse approximation
of wavelet frames was further explored for image restoration problems, where the £g-norm of the wavelet frame
coefficients was penalized instead of the #;-norm.3% 40

Although wavelet frame based approaches have been well developed and widely adopted in image restoration,
their applications to some image/data analysis tasks are rarely known, especially those requiring geometric
regularization of the objects-of-interest in the images/data, such as image segmentation, image registrations,
surface reconstruction from unorganized point clouds, etc. In the literature, such problems can be well described
and solved by variational models instead.

The main obstacle of extending wavelet frame based approaches to tackle such problems was the lack of
geometric interpretation of wavelet frame transforms and wavelet frame based models. Since variational models
are widely used to solve those problems, it is natural to study the relations between wavelet frame based mod-
els and variational models. In image restoration, although wavelet frame based models take similar forms as
variational models, they were generally considered as different approaches because, among many other reasons,
wavelet frame based approaches is defined for discrete data, while variational methods assume all variables are
functions. In addition, the theoretical development of wavelet frames is different in flavor from that of variational
techniques. Although some studies in the literature indicated that there was a relation between Haar wavelet
and total variation,*! it was unclear if there exists a general relation between wavelet frames and variational
models (with general differential operators). This fundamental question was recently answered by Cai et al.!
where the authors established a general connection between one of the wavelet frame based approaches, namely
the analysis based approach, and a general variational model. It was shown that the analysis based approach
can be regarded as a finite difference approximation of a general variational model with a general differential
operator; and different choices of parameters, as well as wavelet frames, of the analysis based approach result
in different orders of approximation as image resolution goes to infinity. More interestingly, through a careful
analysis the authors showed that the solutions (i.e. minimizers or approximate minimizers) of the analysis based
approach also approximate the solutions of the corresponding variational model. Such connections not only
grant geometric interpretation to wavelet frame transform and wavelet frame based models, but also enable us to
extend the application of wavelet frames to other image and data analysis tasks including image segmentation?
and surface reconstruction.?

In this paper, we focus on a survey of the recent developments of the applications of wavelet frames in image
segmentation? and surface reconstruction from unorganized point clouds.?

1.2 Image Segmentation

Image segmentation is an important problem in computer vision and medical image analysis. The objective
of image segmentation is to provide a visually meaningful partition of the image domain. Although it is usually
an easy task for human to separate background and different objects for a given image, it is still a great challenge
to design automated algorithms for image segmentation in general.!® 1842

Image segmentation can be formulated mathematically as follows. Given an image f and its domain 2, based
on its gray values (or RGB values for color images), we seek a “meaningful” partition of Q as follows:

Q=0 UQU---UQ,.

Here, 0 is the background of the image f and €2, j = 2,...,m, are the domains representing different objects-
of-interest. In this paper, we will focus on the particular case m = 2, i.e. the two-phases image segmentation



problem. One of the main challenge for image segmentation is that a “meaningful” partition is not only image
dependent, but also application dependent. In other words, if the target image f is changed, or, for the same
image f, the ultimate objective of image segmentation is changed, one should obtain a different partition of
the domain 2. Therefore, it is an art to design a partitioning rule according to the specific type of image and
application in hand.

Regularization based variational techniques have been widely used for general image segmentation problems.
It is rather crucial to incorporate any prior knowledge one may have for the domains of the objects-of-interest
), or their boundaries 0€2;. Variational image segmentation started with the work by Mumford and Shah*? and
the active contour models.*>#> Based one the Mumford-Shah formulation and level set method, the Chan-Vese
model*®47 (also known as active contour without edges, i.e. ACWE) was proposed which improves the earlier
results in terms of both segmentation accuracy and computation efficiency. In the later work,*® 4 the authors
proposed a segmentation model by replacing the regularization term of the Chan-Vese model by the geometric
active contour functional,** which generates better segmentation results. More recently, convexified models®?53
for the Chan-Vese model, as well as the improved model of Chan-Vese,*® were proposed which significantly
improved computation efficiency for general image segmentation problems. When more specific knowledge of the
objects-of-interest is available, properly designed shape priors can be used instead of generic priors.>* 26

Other than variational models, wavelets and wavelet frames were also applied to texture classification and
segmentation.?”™ %8 However, it was not clear how we could apply wavelet frames to general image segmentation
tasks and what was their relation to variational techniques. This question was recently answered by Dong, Chien
and Shen,? where they proposed a general wavelet frame based two-phases image segmentation model.

Image segmentation plays an important role in medical image analysis as well. Segmenting biological struc-
tures, e.g. cortical or subcortical structures, blood vessels, tumors etc., from various types of medical images
is very important for detecting abnormalities, studying and tracking progress of diseases, and surgery planning.
Medical image segmentation is a difficult problem due to the fact that medical images commonly have poor
contrasts, different types of noise, and missing or diffuse boundaries. There are numerous algorithms devel-
oped in the literature targeting on the segmentation of biological structures. We refer interested readers to the

papers®® %8 and the references therein for further details.

1.3 Surface Reconstruction

Surface reconstruction from unorganized/scattered point clouds (shall be called surface reconstruction in
short), is an important problem in geometric modeling. Given a set of scattered points

X:{le,xg,...,.’lﬁn} CQCR3

that are sampled from some unknown surface S, the surface reconstruction problem is to construct a surface
S from the observed data X such that S approximates S. It has received a lot of attention in the computer
graphics community in recent years because of the fast development of laser scanner technology which enables
the point-based representation for highly detailed surfaces, and its wide applications in areas such as reverse
engineering, product design, medical appliance design, archeology, etc.

Surface reconstruction has been studied for decades and has a rich literature. One of the earliest algorithm
was to locally estimated the signed distance function of the true surface based on the measured point samples.%”
Smooth surfaces can also be built by fitting radial basis functions to a given point cloud,”® which was later
adapted to large data sets.”t A variational level set method was later proposed by Zhao et al.”? where an energy
functional was introduced that utilized the distance function associated to the given data points; and the energy
functional was minimized by solving a level set equation derived from the gradient flow. More recently, extensions
of the earlier work of Zhao et al.”> were proposed” 7> where computation efficiency of surface reconstruction
was greatly improved.

Rather than computing a single global approximation for a given point cloud, the approaches utilizing the
moving least squares locally fit smooth functions to each subset of sampled points and then smoothly combine
the fitting functions together.”®7” A different and yet related approach is known as the nonlinear projection
method.”™ A point-set surface is defined as the set of stationary points of a projection operator, which was first



used for point based modeling and rendering.”® Another popular approach is to construct a polyhedral surface
from the input set of points using the Voronoi diagram,®® 34 which is closely related to Voronoi-based algorithms
for medial axis estimation.

When the given set of points are sampled from the graph of a 2-dimensional function, a wavelet frame
based model was proposed by Ji et al..8% where the authors used a simple principal shift invariant space and its
associated wavelet frame transform to fit the given data points. However, the assumption that the points are
sampled from a graph of a function is not satisfied for certain applications, such as the data obtained from a 3D
laser scanner. The first wavelet frame based model that reconstructs surfaces from general scattered points was
recently proposed by Dong and Shen.?

2. WAVELET FRAME BASED APPROACHES

Image segmentation and surface reconstruction are generally considered as different problems in the literature.
Indeed, image segmentation is to determine a certain meaningful partition of the image domain based on image
intensities, while surface reconstruction is to determine a surface that interpolates or approximates the given
sample points. However, the development of level set method for image segmentation and surface reconstruction
has somehow unified the two different problems. The basic idea is to find a level set function whose 0 level set
(or in general, v level set) labels the boundary of the object-of-interest for image segmentation; or represents the
reconstructed surface for surface reconstruction.

We start this section by a brief introduction of wavelet frames. Then, we will present a general wavelet frame
based model, together with a fast numerical algorithm, for both image segmentation and surface reconstruction.
The wavelet frame based model can be regarded as certain discretization of a general variational model using
general differential operators.!® However, using wavelet frame based formulation has clear advantages over
standard discretization of the variational model, as what has already been discovered in image restoration.27>36-3%
First of all, fast wavelet frame based optimization algorithms used for image restoration problems can also be
applied for image segmentation and surface reconstruction. Secondly, the wavelet frame transforms contains a
rich family of difference operators that can be understood as various discretizations of a family of differential
operators. The multi-level nature of the wavelet frame decomposition automatically applies different difference
operators adaptively to the geometric structure of the level sets. Hence, features of the object-of-interest in an
image, as well as details contained in the given point cloud, can be well reconstructed.

2.1 Wavelet Frames

In this subsection, we will briefly introduce the concept of (tight) wavelet frames. Interesting readers should
consult the references* ¢ for theories of (wavelet) frames and framelets, the survey paper” and lecture notes® for
details on the theoretical developments and recent applications of wavelet frames.

A countable set X C La(R) is called a tight frame of Ly(R) if

F=> (f) Vf € LyR), (2.1)

PpeX

where (-,-) is the inner product of La(R). For given ¥ := {¢1,...,9%,} C La(R), the affine (or wavelet) system
is defined by the collection of the dilations and the shifts of ¥ as

X(U) = {p p:1<L<r; jk€Z} with hpipi=2""1(20 - —k). (2.2)

When X (¥) forms a tight frame of Lo(R), it is called a tight wavelet frame, and v, £ = 1,...,r, are called the
(tight) framelets.

To construct a set of framelets, usually, one starts from a compactly supported refinable function ¢ € La(R) (a
scaling function) that generates a multiresolution analysis (MRA) of Ls(R), with a refinement mask hq satisfying



Figure 1. Piecewise linear refinable spline and framelets.

¢ vy v,

Here qg is the Fourier transform of ¢, and EO is the Fourier series of hy. For a given compactly supported refinable
function, the construction of a tight framelet system is to find a finite set ¥ that can be represented in the Fourier
domain as R L

Ye(2:) = heg
for some 27-periodic hy. The unitary extension principle (UEP)? shows that the system X () in (2.2) generated
by ¥ forms a tight frame in Ly(R) provided that the masks /f;g for £ =0,1,...,r satisfy

STh(©F =1 and > he(he(€+7) =0 (2.3)
=0

£=0

for almost all £ in R. While kg corresponds to a lowpass filter, {hy; ¢ =1,2,...,r} must correspond to highpass
filters by the UEP (2.3). The sequences of Fourier coefficients of {hg; £ = 1,2,...,r} are called framelet masks. In

our implementation, we adopt the piecewise linear B-spline framelets.’ The refinement mask is ﬁo = cos?(%
P , D p D 5),

whose corresponding lowpass filter is hg = i[l, 2,1]. The two framelet masks are hy = —@ sin(§) and hy =

sin?( é), whose corresponding highpass filters are

2
2 1
hl = %[1707_1]7 h2 = Z[_172a _1]

The associated refinable function and framelets are given in Figure 1. With a one-dimensional framelet system
for Ly(R), the s-dimensional framelet system for Lo(R®) can be easily constructed by tensor products of one-
dimensional framelets.®®

In the discrete setting, a discrete image u is an s-dimensional array. We use W to denote fast tensor product
framelet decomposition and use W' to denote the fast reconstruction.® Then by the UEP, we have W W = I,
i.e. u=WTWu for any image u. We will further denote an L-level framelet decomposition of u as

Wu={W,ju:0<I<L-1,5€1I},
where I denotes the index set of all framelet bands.
2.2 Wavelet Frame Based Approaches and Fast Algorithms
2.2.1 Wavelet Frame Based Model

We now present a wavelet frame based model for both image segmentation and surface reconstruction prob-
lems. The model is given as follows:

etpin, X Wully + H(u, e, f), (2.4)
and
1
L-1 2
IX-Wally = {0 > MW jul? ; (2.5)
1=0 \jeI



where V' is some convex set, W ; is the part of framelet decomposition corresponding to the Ith level and jth
band; and \; ; is some preassigned and spatially variant parameter. If «* is the minimizer of (2.4), then for
some fixed scalar v € [0,1] we have Q; = {z € Q : v*(2) < v} and Qs = Qf for image segmentation; and
S ={zx € Q:u*(x) =~} for surface reconstruction.

REMARK 1. The {1-norm given by (2.5) is known as the isotropic {1-norm of wavelet frame coefficients.” The
anisotropic counterpart, defined as follows, is the standard £1-norm commonly used in the literature:

A Wally o= |1 Ay (Wi jul
1.j .

It was found that the isotropic {1-norm was superior than the anisotropic ¢1-norm in terms of both quality of the
image restoration and efficiency of the corresponding numerical algorithm.! This is the reason why we focus on
the isotropic £1-norm in this paper.

2.2.2 Fast Optimization Algorithm

To solve the frame based model (2.4), we apply the split Bregman algorithm?3® 86 together with a coordinate
descend strategy®”®® that handles optimization with multiple variables. The split Bregman algorithm was first
proposed by Goldstein and Osher®® and was shown to be powerful in solving various variational models, e.g. ROF
and nonlocal variational models.®% 89 Convergence analysis of the split Bregman algorithm was later provided
for wavelet frame based image restoration model.36 It was recently realized that the split Bregman algorithm is
equivalent to the alternating direction method of multipliers (ADMM)%° 92 applied to the augmented Lagrangian
of the underlying optimization problem.?3-9°

Now, we briefly describe the idea of the derivation of the algorithm based on the augmented Lagrangian
method.?3% Introducing a new variable d in (2.4) and setting d = Wu, then the model (2.4) can be rewritten
equivalently as

min  [A-d|1 + H(u,c, f) s.t. d=Wu. (2.6)
ueV,ceR™

Then the augmented Lagrangian for (2.6) can be written as
L(u,d, ev) = |A-dlly + H(us e, f) + (o, Wu — d) + 5[ Wu = dl3,

for some p > 0. Then the augmented Lagrangian method can be described as an iteration of the following two
steps:

(uk+1, dk+17 Ck+1) =arg min ﬁ(u7 d,c, Uk)
u€V,d,c

2.
VL = gk §(WuktT - @iy, (2.7)

for some § > 0. If we solve the first optimization problem of (2.7) in an alternative fashion (also known as the
coordinate descend method®”#) and choose § = p, then after some simply manipulations of the augmented
Lagrangian,® %97 we obtain the fast algorithm for the wavelet frame based model (2.4) which is summarized
in Algorithm 1. Note that the operator 7(+) in (2.8) is the isotropic shrinkage operator!:?® (corresponding to
the isotropic ¢1-norm we are using in (2.5)), and the second identity of (2.8) is a well-known result that can be
easily verified.'?

2.2.3 Particular Models and Algorithms

Model (2.4) and the Algorithm 1 take different forms for image segmentation and surface reconstruction prob-
lems. As an example, we present the following wavelet frame based models and their corresponding algorithms,
which are also the ones we use in our simulations.



Algorithm 1 Fast Algorithm for Model (2.4)
Given an input f, fix the space V', and select the parameters A and p > 0. Initialize the algorithm by choosing
uw=0,d"=0,c" =cp, v°=0, and k = 0.
while stopping criteria are not met do
1. Update u:

ukts = arg min H (u, c*, f) + gHWu —d" + 073,
u

uFH = Py (ubtE),

where Py is a projection operator onto V.

2. Update d:
d* = argmin |\ - d||, + HHd — (Wbt +o)|3
d 2 (2.8)
= 7}\/M(Wuk+1 + o).
3. Update c:
" = argmin H(u ™ ¢, f).
4. Update v:
OFTL =k kL gkt
5. k=k+ 1.
end while
Image Segmentation:
Given an observed image f, consider the following wavelet frame based image segmentation model?
min IA- Wi+ ((e1 — f)* = (ca — f),u), (2.9)

0<u<l,(c1,c2)ER?

and, forall 0 <! < Land j€l,
o

Lt+od,; IWifl?

The fast algorithm for (2.9) can be easily derived from Algorithm 1. We summarize it in Algorithm 2. Note that
the operation M(f,) in step 3 outputs the mean value of f within the domain €.

Aj =

Surface Reconstruction Model:

Given a set of scattered points X = {z1,22,...,7,} C Q C R?, find the distance function ¢(z) defined as

p(x) == Jnf lz—yll2, =€, (2.10)

which can be obtained by solving the Eikonal’s equation.?® 10 The distance function was first used by Zhao et
al.”? for surface reconstruction problems, and was used and analyzed by various later work”® 101,102 a5 well.

Then, we consider the following wavelet frame based surface reconstruction model?

min1 [IAN- Wully + (2f — 1, u), (2.11)

0<u<

and, forall 0 <! < Land 3 €1,
Arg = (),
with some scalar a > 0. Here, we take f as a characteristic function, i.e. f = xa, where JA is an initial

approximation to the surface S from which the given data set X is sampled. In other words, the role of f in
(2.11) is to provide an initial guess to the surface S that we want to reconstruct. Similar to image segmentation,



Algorithm 2 Fast Algorithm for Image Segmentation?

Given an input image f, select the parameters (o, 0) in A, and pick 4 > 0 and v € [0,1]. Initialize the
algorithm by choosing u® =0, d° =0, ) =1, § =0, vY =0, and k = 0.
while stopping criteria are not met do

1. Update u:
1
W= W@ —oh) = = (e = ) = (S - )
I
uFtl = max{min{ulﬁ%7 1},0}.
2. Update d:

d*T =Ty (Wub Tt 4 ok,
3. Update ¢ = (¢1,¢2):
A= M(£OHY), G = M@, QM = (Ut > 4,
4. Update v:
R = oF 4 Wkt — gkt

5. k=Fk+1.
end while

Output: B
QG ={zcQ:u" <y} and Q, =Qf,

with k the stopping iteration.

Algorithm 3 Fast Algorithm for Surface Reconstruction?

Given an input f = xgo with 9Q° an initial approximation to the surface to be reconstructed, compute the
distance function ¢ by solving the Eikonal’s equation and pick the parameters a, g > 0 and v € [0, 1]. Initialize
the algorithm by choosing u® =0, d® =0, v° =0, and k = 0.

while stopping criteria are not met do

1. Update u:
1
uFtE = W (dF = ok — ;(Zf —1).
uktt = rnax{rr1ir1{uk'~'%7 1},0}.
2. Update d:
d* = T (WUl 4 o).
4. Update v:
VRl = ok gkt — gkt
5. k=k+1.
end while
Output:

Q:{mEQ:uESW},

with k the stopping iteration and 0 the reconstructed surface.




the fast algorithm for the surface reconstruction model (2.11) can be derived from Algorithm 1. We summarize
it in Algorithm 3.

REMARK 2.

1. Under certain conditions, the wavelet frame based model (2.4) can be shown to be a certain discretization
of the following variational model?

i . Nl
el |v- D(u)|[y + H(u, ¢, f), (2.12)

where D :={Dj; : 1 < |j| < s} is a vector of differential operators of order s and

2

[v - D(u)lx == > vilDjuf?
1<|jI<s
1
2. The variational model (2.12) includes some of the well-known segmentation and surface reconstruction mod-
els in the literature. For example, it includes the partially convezified two-phases segmentation model®? %1
of the Chan-Vese model*% 47 as a special case:
v Vully +{(er = £)? = (2 = £)*,u). (2.13)

min
0<u<1,(c1,c2)€ER?

Also, when
1
V=1s), D=V and H(wef)=olu-fI3,

the variational model (2.12) becomes the surface reconstruction model used (iteratively) by Goldstein, Bres-
son and Osher.™ In addition, the variational model

min1 lv-Vul|1 + (2f — 1,u) (2.14)

0<u<

L 75

was used by Ye et a as the first step of their entire surface reconstruction procedure.

3. The discretization provided by wavelet frames is also a good discretization, and is generally superior than
variational models discretized in a standard manner.?” 36738 The wavelet frame based approaches have a
built-in adaptive mechanism via the multiresolution analysis that provides a natural tool for this purpose.
To illustrate the benefit of using the wavelet frame based model (2.4) for image segmentation and surface
reconstruction, we present some 2D comparisons (Figure 2) of the variational models (2.13) and (2.14)
with the wavelet frame based models (2.9) and (2.11). Note that all parameters were properly chosen for
optimal segmentation and surface reconstruction results.

3. SIMULATIONS

In this section, we present some numerical results for image segmentation and surface reconstruction. We
refer the interested readers to the original work for more examples (such as 3D medical image segmentation).? 3

3.1 Image Segmentation

We apply Algorithm 2 to several test images that we obtained online. Large Gaussian white noise is added to
these images beforehand. We fix our choices of parameters o = 0.02, 0 = %, ©=>5 and v = 0.5 for all the test
images. The wavelet frame system is chosen to be the piecewise linear tight wavelet frame system constructed
from B-spline of order 1° (see the example given in Section 2.1), and the level of decomposition is chosen to be
1,i.e. L =1. We adopt the following stopping criterium

[Wuk —a¥||;
[ £1l2

The test images and the segmentation results are shown in Figure 3.

<1074



Figure 2. Comparisons in 2D for image segmentation (first row) and surface reconstruction (second row). The blue curves
are the results of variational models (2.13) and (2.14); and the red curves are the results of wavelet frame based models
(2.9) and (2.11). Images in the second and third columns are zoom-in views of the first column.

s 3 o 2

Figure 3. Image segmentation: the first row presents the original images; the second row presents the corresponding noisy
images; the third row presents the segmentation results with 921 label in red; the fourth row presents the zoom-in views
corresponding to the images in the third row.



3.2 Surface Reconstruction

We apply Algorithm 3 to reconstruct surfaces from three point sets: “Asian Dragon”, “Thai Statue” and
“Lucy”. All the point data is obtained from the Stanford 3D Scanning Repository (URL: www-graphics .stanford
.edu /data /3Dscanrep) created by the Stanford Computer Graphics Laboratory. We fix the parameters e = 500,
1 =0.04 and v = 0.5 for all the data, and adopt the following stopping criterium

HukJrl _ukH

2 —4
<5 x 107
[[uk |12

Same as image segmentation, the wavelet frame system is chosen to be the piecewise linear tight wavelet frame
system constructed from B-spline of order 1, and the level of decomposition is chosen to be 1. The grid sizes

of the computation domain 2 for the three point data are 271 x 160 x 187 (“Asian Dragon”), 201 x 324 x 177
(“Thai Statue”) and 221 x 136 x 364 (“Lucy”).

To get better initialization f, we adopt the idea proposed by Ye et a Given a point set X and its
corresponding distant function ¢(x), we compute f by solving the following Eikonal’s equation using fast sweeping
method!??

1.75

1
Vfl=——
Vil= s
where ¢ is some properly chosen parameter. We shall skip the details here, but interested reader should consult
Ye et al.”® and Zhao'%° for details.

The reconstructed surfaces are presented in Figure 4, where the first row presents the initial approximation
of the surface corresponding to f, and the final results are presented in the second row.
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