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Abstract. Using fiducial markers on patient’s body surface to predict the tumor

location is a widely used approach in lung cancer radiotherapy. The purpose of this

work is to propose an algorithm that automatically identifies a sparse set of locations

on the patient’s surface with the optimal prediction power for the tumor motion. In

our algorithm, it is assumed that there is a linear relationship between the surface

marker motion and the tumor motion. The sparse selection of markers on the external

surface and the linear relationship between the marker motion and the internal tumor

motion are represented by a prediction matrix. Such a matrix is determined by solving

an optimization problem, where the objective function contains a sparsity term that

penalizes the number of markers chosen on the patient’s surface. Bregman iteration is

used to solve the proposed optimization problem. The performance of our algorithm

has been tested on realistic clinical data of four lung cancer patients. Thoracic 4DCT

scans with 10 phases are used for the study. On a reference phase, a grid of points

are casted on the patient’s surface (except for patient’s back) and propagated to other

phases via deformable image registration of the corresponding CT images. Tumor

locations at each phase are also manually delineated. We use 9 out of 10 phases of the

4DCT images to identify a small group of surface markers that are most correlated with

the motion of the tumor, and find the prediction matrix at the same time. The 10th

phase is then used to test the accuracy of the prediction. It is found that on average

6 to 7 surface markers are necessary to predict tumor locations with a 3D error of

about 1mm. It is also found that the selected marker locations lie closely in those

areas where surface point motion has a large amplitude and a high correlation with

the tumor motion. Our method can automatically select sparse locations on patient’s

external surface and estimate a correlation matrix based on 4DCT, so that the selected

surface locations can be used to place fiducial markers to optimally predict internal

tumor motions.
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1. Introduction

Modern radiotherapy techniques, such as Intensity Modulated Radiation Therapy

(IMRT), are capable of delivering highly conformal radiation dose to a cancerous target

while sparing critical structures and normal tissues. Intra-fraction tumor motion caused

by patient respiration, however, may lead to geometric miss of the target and hence5

potentially compromise the efficacy of these techniques while treating tumors at lung

or upper abdomen area. To mitigate this problem, a number of techniques have been

developed, such as gated treatment, for which accurate modeling and prompt prediction

of tumor motion are necessary (Jiang, 2006b; Jiang, 2006a).

Tumor localization methods can be generally categorized according to the locations10

of surrogates. Methods using internal surrogates, such as gold markers implanted in

or near tumor, are accurate but have issues like the risks of pneumothorax for lung

cancer patients (Arslan et al., 2002; Geraghty et al., 2003), marker migration (Nelson

et al., 2007), and the extra imaging radiation dose (Jiang, 2006b). In contrast, external

surrogate based tumor localization is usually noninvasive and radiation free. In such15

methods, a regression model is first built between the coordinates of some empirically

selected external surrogates and those of the tumor using a training data set. Such a

model will be utilized to predict the tumor location using the real-time measurements of

the marker locations during a treatment via, for example, Cyberknife Synchrony system

(Accuray Corporate, Sunnyvale, CA, USA) (Pepin et al., 2011). Yet, the accuracy of this20

method usually relies on the correlation between external marker motion and internal

tumor motion for a particular patient (Hoisak et al., 2004).

In fact, there are a few questions one should keep in mind while using external

markers for tumor tracking. First of all, how many external markers are necessary?

While using more markers may potentially provide more comprehensive information for25

tumor location estimation, it is evident that the motion of points on a patient surface is

strongly correlated and information from many surface markers is likely to be redundant.

Clinically, it is necessary and desirable to use a minimum number of markers to predict

the tumor motion to a satisfactory degree. Second, given the number of markers, where

shall we optimally place them? Despite a lot of studies regarding the patient breathing30

pattern and the selection of marker locations(Yan et al., 2006; Wu et al., 2008), markers

are placed empirically in most clinical practice.

In this study, we will attempt to answer the aforementioned two questions utilizing

a sparse optimization approach. Specifically, our objective is to choose a sparse set of

points from all the points on the front surface of a patient, so that a linear motion model35

yields the smallest error in tumor location prediction. With a novel optimization model

to formulate this objective in a clean and precise mathematical language, as well as

an effective numerical algorithm to solve the problem, we can effectively yet efficiently

identify the key surface points used to predict tumor motion. A linear regression model is

also developed during the optimization process, such that those markers collaboratively40

predict tumor locations to a satisfactory extent.
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2. Methods and Materials

We start with an introduction of some notations. Denote Y ∈ R3×m as a 3 × m

matrix whose column vectors are the three Cartesian coordinates of the center of

the tumor at various times tj with j = 1, 2, . . . ,m. Suppose there are k candidate45

surface points available for tumor motion prediction. We denote the coordinates of

the collection of all of those surface points at a given time tj as a column vector

Xj = [x⃗1(tj), x⃗2(tj), . . . , x⃗k(tj)]
T , where each vector x⃗i = [x⃗i1, x⃗i2, x⃗i3] for i = 1, ..., k

contains three entries corresponding to the three Cartesian coordinates of the point i.

If we assemble all the collections of markers Xj associated with different time tj, we will50

have the following matrix X := [X1, X2, · · · , Xm] ∈ R3k×m.

2.1. Optimization Model

Assume, for simplicity, there is a linear motion model that relates the external marker

motion and the tumor motion. Mathematically speaking, there exist a matrix A ∈ R3×3k

such that AX ∼ Y . Note that the columns of the matrix A can be also associated to55

those k surface points, each with three coordinates. If one column of the matrix A is

non-zero, the corresponding coordinate for that surface point is then utilized to predict

the tumor motion. As it is our purpose to select only a few surface points for tumor

motion prediction, the problem can be casted as finding a matrix A with only a few

non-vanishing columns, such that the motion of tumor recorded in Y can be accurately60

characterized by AX. Although this is simply a linear motion prediction model, our

numerical experiments indicate that such an assumption is reasonable and leads to

accurate tumor location estimations. We shall refer to the problem of optimal marker

selection as the problem of finding the linear dependence of the motion of the internal

tumor with the motion of some sparsely selected markers.65

We propose our optimal marker selection model as follows:

min
A

{∥A∥2,1 : AX = Y } , (1)

where ∥A∥2,1 :=
∑

j

(∑
i a

2
i,j

) 1
2 and A = (ai,j). In this optimization problem, the

objective function is defined in such a way that it groups all the matrix elements

in a column of A utilizing an ℓ2-norm and then takes ℓ1-norm among all columns.70

Minimizing such an objective function term enables us to enforce sparsity at only the

level of matrix columns. This idea is inspired by that of compressed sensing (Candes

et al., 2006; Candes and Tao, 2006; Candes and Tao, 2005; Donoho, 2006), which is a

recent revolutionary concept in information theory. The applications of such a ℓ2,1 norm

has been recently explored in many problems, such as beam orientation optimization75

for IMRT(Jia et al., 2011), to effectively select only a few groups of elements. Similar

idea was also used in (Esser et al., 2011) where the ℓ1,∞ norm was used for matrix

factorization with applications in hyperspectral image unmixing. We remark that the

model (1) not only sparsely selects markers needed to track the motion of an internal
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tumor, but also provides the linear dependence of the motion of the selected markers80

with that of the tumor at the same time. All such information is integrated within the

solution matrix A.

2.2. Fast Numerical Algorithm

To solve the proposed optimization problem (1), we use a Bregman distance-based

algorithm proposed by Yin et. al. (Yin et al., 2008), which is proven to be efficient for85

ℓ1 minimization problems. Given matrices X and Y , the fast algorithm that solves (1)

can be written into an iterative form as:

Ak+1 = argmin
A

{
µ∥A∥2,1 + 1

2
∥AX − Y k∥2F

}
,

Y k+1 = Y k + Y − Ak+1X,
(2)

where k is the iteration index and ∥ · ∥F is the Frobenius norm. The optimization

problem in the first subproblem of (2) can be solved using the proximal forward-90

backward splitting algorithm (Combettes and Wajs, 2006; Hale et al., 2007), which

by itself is an iterative algorithm as:

Ap+1 = Tµ(A
p − δ(ApX − Y k)XT ), (3)

where p is the iteration index in this subproblem and Tµ(B), for a given matrix

B = [B1, B2, . . . , Bm], is defined as

Tµ(B) :=

[
max(|B1| − µ, 0)

B1

|B1|
, · · · ,max(|Bm| − µ, 0)

Bm

|Bm|

]
.

We note that (Donoho, 1995; Wang et al., 2007) Tµ(B) is the closed form solution

to min
X

{
µ∥X∥2,1 + 1

2
∥X −B∥2F

}
. For computation efficiency, we shall not solve the95

subproblem (2) accurately by using numerous iterations of (3), but only use one iteration

instead. Now, applying (3) (with only one iteration) to (2), we have the following fast

algorithm that solves (1) (also known as the Bregmanized operator splitting algorithm

(Zhang et al., 2010)):

Algorithm 1 Optimal Marker Selection Algorithm

Step 0. Initialization: k = 0, A0 = 0 and Y 0 = Ȳ where Ȳ = Y − ym with ym ∈ R3

being the mean vector of the columns of Y .

while stopping criteria is not satisfied do

Step 1.

Ak+1 = Tµ(A
k − δ(ApX − Y k)XT )

Step 2.

Y k+1 = Y k + Y − Ak+1X

end while
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The proof of the mathematical properties of this algorithm, such as convergence,100

is beyond the scope of this paper. Interested readers can consult references for more

details(Yin et al., 2008; Zhang et al., 2010).

For realistic patient data, because of the presence of noise and the fact that the

motion of internal tumor is only approximately linearly dependent on the external

markers, we should not expect the relative residual ∥AkX−Y ∥F/∥Y ∥F decrease to 0. In

fact, numerically we observe that the relative residual should have a lower bound whose

value depends on X and Y and it is very difficult to estimate beforehand. Therefore,

we adopt the following stopping criteria:

∥AkX − Y ∥F
∥Y ∥F

< ϵ1 or
∥Ak−1 − Ak∥F

∥Ak∥F
< ϵ2.

In other words, we fix an ϵ1 as a satisfactory amount for the residual; meanwhile, if such

residual is not attainable, we will terminate the algorithm when Ak is not changing too

much according to the tolerance ϵ2.105

When Algorithm 1 is implemented we choose δ = 2
∥X⊤X∥22

which makes sure the

stability of the algorithm (see for example (Yin et al., 2008)). The parameter µ has an

influence mainly on the speed of the convergence, but not much on the quality of the

results. In our numerical experiments, we fix it to be 0.1. The parameters ϵ1 and ϵ2
in the stopping criteria controls the quality of the results. ϵ1 has a major effect on the110

results, while ϵ2 is to make sure the algorithm terminates after a reasonable time when

ϵ1 is too small. In practice, since there is always noise present in the data, we do not

want AX = Y to be satisfied exactly. Otherwise, we would be end up with choosing

much more markers than necessary, just to compensate on apparent motion caused by

noise. Therefore, ϵ1 and ϵ2 cannot be too small. However, if ϵ1 and ϵ2 are too large,115

the algorithm may select fewer markers, but the prediction errors will be large as well.

Therefore, ϵ1 and ϵ2 (mostly ϵ1) are the parameters that balance between number of

markers and prediction accuracy. In our numerical experiments, we choose ϵ2 = 10−7

and ϵ1 = 0.11, 0.08, 0.03 and 0.0555 for patient 1-4. The values of ϵ1 are specifically

chosen for optimal prediction errors. In practice, it is not possible to optimize ϵ1 for120

each patient to minimize the prediction error. One potential approach to overcome this

difficulty is to let the algorithm run till a fixed number of markers are selected. The

targeting number of markers, e.g. 5 ∼ 7 should be clinically practical and yet still be

able to predict tumor motion to a satisfactory degree. Another approach is to pre-set

the ϵ1 value to the mean optimal value determined in this or any following patient125

studies. The resulting predicted motion may not be optimal for a particular patient but

it should be accurate enough for clinical practice. It is our future work to investigate

these practical issues.

2.3. Patient Data

To validate our algorithm with realistic clinical cases, 4DCT scan data of four lung130

cancer patients is used. For those patients, a four-slice GE LightSpeed CT scanner



Optimal Marker Locations for Tumor Motion Estimation 6

(GE Medical Systems, Milwaukee, WI, USA) was used to acquire the 4DCT data for

treatment simulation. Each axial CT slice has a thickness of 2.5mm and the 4DCT

was obtained using respiratory signals from the Varian RPM system (Varian Medical

Systems, Inc., Palo Alto, CA, USA). The 4DCT scan consists of ten different phases135

of one breathing cycle; and the CT volume at each respiratory phase consists of 100 to

144 slices of CT images covering the most of thorax area depending on patients. Each

slice of CT image has 512× 512 pixels, with a pixel size of 0.977× 0.977mm2. For each

patient, tumor GTV was manually contoured on 4DCT scan images of ten respiratory

phases by an expert observer and the 3D tumor center coordinates were identified.140

Meanwhile, the external surfaces of each patient, excluding the patient’s back, at

each phase are extracted by segmenting the CT images using a simple threshold method.

For each patient, the CT image volume at the end of inhale is set as the target image;

the other nine CT image volumes, corresponding to the other nine different respiratory

phases, are set as moving images. The correspondence between surfaces at different145

phases is established by deformable image registration (Thirion, 1998; Gu et al., 2010).

When surface points are available on the external surfaces of each patient, we further

sub-sampled the point sets uniformly to reduce the total number of candidate points

for a better computational efficiency. In our experiments, we choose approximately 200

candidate surface points for each patient.150

2.4. Validation

To validate our marker selection algorithm, we employ an leave-one-out cross validation

(LOOCV) method. Specifically, 10 tests are performed for a patient, and for each test,

we single out one of the 10 respiratory phases and use the other 9 to form the matrix Y

and solve for the matrix A using Algorithm 1. We then validate our method by using155

the matrix A to predict the location of the tumor at the phase that has been singled

out. The deviation of the predicted tumor location from the actual tumor location is

characterized by the 3D Euclidean distance between them in mm.

The patients’ 4DCT image volumes cover a complete breathing cycle, hence contain

information of external surface motion. We could in principle identify regions of interest160

(ROIs) on the patient surface that strongly correlate with tumor motions. It is expected

that the marker locations selected by Algorithm 1 should fall closely into those ROIs.

This also serves as a criterion for the justification of the correctness of our marker

selection algorithm. To select the ROI, we consider the following two metrics. First,

from the deformation vector fields between different respiratory phases, the motion165

trajectory for all surface points were extracted. The correlation function between the

internal tumor motion in the S-I direction and the motion vector of each point on the

external surface was employed as a metric. However, only part of the external surface

has considerable motion amplitude and those points with small motion amplitude should

not be considered for predicting tumor motions despite their possible high correlations170

with tumor S-I motion. Therefore, we only focus on the surface region with large
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motion amplitudes. Combining the two criteria, we define the ROI as the areas on the

surface in which the motion amplitude is larger than 80% of the maximum value and

the correlation is above 0.85. Although those threshold values for the two criteria are

chosen empirically, the general conclusions presented in the rest of this paper are found175

not sensitive to them.

3. Results

3.1. Marker selection
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Figure 1. Left: Markers selected by our algorithm are shown as red circles on one of

the patient’s surface. Right : the LOOCV results for the same patient using the phases

1 through 9 as training data (blue dots) and the phase 10 as the testing data (red dot).

The red circle is the predicted tumor location.

We have studied the validation of our surface marker selection algorithm on 4 lung

cancer patients. The selected 6 surface markers in one typical patient (patient No. 4)180

are drawn in 3D space on the patient surface, as shown in the left panel of Fig. 1.

Meanwhile, in the right panel of Fig. 1, we demonstrate the LOOCV results for the

same patient using the phases 1 through 9 as training data and the phase 10 as the

testing data. Specifically, the blue dots are the locations of the tumor in the training

phases and the red dot is the location of the tumor at the phase 10. The red circle is the185

predicted location using the selected surface markers and the matrix A. The 3D distance

between the true tumor location and the predicted location is 0.83mm, indicating the

great capability for tumor motion prediction of our algorithm.

A summary of the results of all 10 tests for each of the 4 patients is given in Table 1.

For each patient, we compute the mean and the standard deviation of the 3D errors for190

the predicted tumor locations and the number of selected markers over all the 10 tests

in the LOOCV. It is found that, on average, our algorithm can automatically select

about 6 surface markers that collaboratively predict tumor motion with an 3D error

about 1mm.

Algorithm 1 is implemented using MATLAB on a laptop with Intel Core i7 (1.73195

GHz) CPU and 8.0G RAM. As for the computation time, it is found that the average

time required to perform one optimization is about 14sec. We emphasize that the
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Error (mm) #Markers Time (sec)

Patient mean std mean std mean std

1 1.85 1.15 5.5 0.85 10.6 4.5

2 1.22 1.06 5.5 1.58 4.6 1.9

3 0.44 0.28 5.4 1.84 10.8 3.0

4 0.83 0.29 7.5 1.35 30.5 11.6

Average 1.08 0.69 5.98 1.04 14.1 5.2

Table 1. Summary of tumor location prediction errors, the numbers of markers

selected, and the computation time.

time reported here is the one for marker selection. Once the markers are selected, the

matrix A becomes available. The prediction of tumor motion using selected markers

only requires a simple matrix multiplication and hence the prediction can be achieved200

in a negligible amount of computation time. From Table 1, it is also found that the

computational time for marker selection varies from case to case, which is possibly

ascribed to the different patient sizes.

In order to see how much the selected markers are correlated with each other, we

remove the least important marker at each time and calculate the prediction errors205

using the markers left. The importance of a marker is determined by the ℓ2-norm

of the corresponding column of the matrix A from Algorithm 1. If the marker being

removed is correlated with one of the remaining makers, the prediction error should not

be impacted significantly. The results are presented in Figure 2. It shows that the 6th

marker is correlated with the 5th marker in the sense that it does not provide a significant210

decrease in prediction error. This can be easily fixed by decreasing the tolerance ϵ1 in

the stopping criteria. In fact, one may as well add the maximum allowable number of

markers in the stopping criteria, which is very easy to implement. Other than the 6th

marker, the rest of the markers are uncorrelated, except for patient 3, which shows that

each of the selected marker has significant contribution to the prediction and prediction215

error will noticeably increase if some of them are removed. For patient 3 (red curve

in Figure 2), although there is a 50% increase in error when the number of markers is

reduced to one, the magnitudes of the errors are already small, and thus we may only

need to choose 1 or 2 markers. The reason that our algorithm picked multiple markers

is because relative error is used in the stopping criteria, and less markers will be selected220

if we replace it by the absolute error ∥AkX − Y ∥F .
When only one marker is to be used, it is usually placed in the area that has the

largest motion amplitude and highest correlation with tumor motion. This is actually

the typical way of placing a marker for tumor localization in clinical practice. We use

the marker location found by our algorithm and then resolve the problem AX = Y225

by restricting A, X and Y to this single location. Note that resolving for A this way

can further reduce the prediction error comparing to the errors (using single marker)

shown in Figure 2. The results are shown in Table 2. The relatively large prediction



Optimal Marker Locations for Tumor Motion Estimation 9

errors (especially for patient 1,2 and 4) in comparison with the situation using optimally

placed markers indicates the advantages of our method. In practice, the gain of using our230

method to select multiple markers over the conventional single marker method should

be patient dependent. Although for some patients, e.g. patient 3, the gain could be

very limited, we believe for most patients, multiple markers are indeed needed and our

method should be able to noticeably reduce the prediction error in comparison to the

traditional single marker method, as supported by the results of patient 1, 2 and 4.235
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Figure 2. The above curves shows the (average) prediction errors v.s. (average)

number of markers used (averaged among all 10 leave-one-out simulations). Errors are

measured in mm.

Prediction Errors (mm) Patient 1 Patient 2 Patient 3 Patient 4 Average

Our Method 1.85 1.22 0.44 0.83 1.08

Single Marker 6.24 2.49 0.47 3.33 3.13

Table 2. Comparison between traditional single marker selection and our optimal

multiple markers selection.

During treatment, the physical locations of the markers placed by a therapist may

not exactly match the digital locations suggested by the proposed method. In order

to show robustness of the proposed method against the error during maker placement

in a real treatment, we have conducted the following experiments. For each patient

and each of the 10 leave-one-out tests, instead of using the computed marker locations240

by Algorithm 1, we randomly perturb these computed markers within a disk of radius

1cm-5cm on the patient surface. For each leave-one-out test, we repeat the experiment
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for 50 times at each perturbation level. We plot the mean errors calculated over all the

50 experiments and the 10 leave-one-out tests in Figure 3. As one can see, although the

deviations of the physical marker locations lead to larger prediction errors, the errors245

are still very well controlled. In particular, if the actual markers are placed within a 1cm

disk of the identified position (which indeed can be achieved in practice), the prediction

errors will only be moderately increased. This fact may be ascribed to the smoothness

of the motion at the patient surface. As such, the motions at nearby points are very

similar. Hence a little deviation of the marker placement would not lead to large changes250

to the predicted tumor locations.
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Figure 3. This figure shows the robustness of our proposed method in terms of

marker perturbation. Each of the 4 graphs shows the predictions errors v.s. radius

of perturbation, and the vertical bars illustrate the standard deviations of each case

among all 50 tests and 10 leave-one-out tests. Note that for the case σ = 0, we assume

all markers are placed at the exact locations selected by the algorithm. Thus, the

results here are the same as in Table 1, and the variance is only caused by the 10

leave-one-out tests.

3.2. Comparison with ROI

The correlation between the internal tumor motion in the S-I direction and the external

surface motion is shown on Fig. 4. In Fig. 5, we also present the amplitude of external
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surface motion. Combining the correlation map and the motion amplitude map, the255

ROIs for each patient can be identified, shown as red regions in Fig. 6, where the ROIs

have correlation coefficients larger than 0.85 and surface motion amplitude greater than

80% of the maximum value. Apparently, the ROIs are highly dependent on different

breathing motion patterns among patients. We also plot in Fig. 6 the locations of

markers selected with our algorithm for one of the leave-one-out tests. We can see that260

most of the marker positions selected by our algorithm fall inside or close to the ROIs,

which indicate the robustness of our algorithm.
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Figure 4. Color maps showing the correlation coefficients between the external surface

motion and the internal tumor motion for 4 patients.

4. Discussions

4.1. Limitations and future work

The major limitation of this work is the lack of data to further validate the proposed265

model and algorithm. The results would be much more convincing, if the model is

validated in the subsequent respiratory cycles, rather than in the same 4D-CT data via

the leave-one-out scheme. Yet, it is very difficult to obtain such data from real patients

treated at our clinic. It is our objective in future work to collect more data to validate

our method in a comprehensive manner.270
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Figure 5. Color maps showing the amplitude of external surface motion for 4 patients.

One underlying assumption of 4DCT is the periodicity of breathing motion and

we believe that the 4DCT images can represent the average patient breathing pattern.

Therefore, the motion prediction model built on 4DCT images should be valid to a

good extent. Yet, we would like to point out that 4DCT data may not be ideal for

building motion prediction model. First, the 4DCT data only represent one breathing275

cycle and cannot account for variations among different breathing cycles. Second, the

4DCT images at each phase do not come from the same breathing cycle. Moreover,

4DCT images contains artifacts caused by the reconstruction process, e.g. unphysical

horizontal bands seen in the patient surface images in Figs. 4 and 5. These artifacts

will cause errors when determining surface motions. In considering all of these facts,280

the accuracy of the predicted tumor motion will be inherently limited.

Additionally, the 4DCT data set is usually acquired during the treatment planning

stage. Yet, it has been observed that the patient motion pattern may change among

treatment fractions(McClelland et al., 2011) as well as the correlation between external

surrogates and the tumor motion, which may certainly degrade the validity of our model.285

However, the validation of the tumor prediction accuracy before each treatment fraction

is a difficult problem not unique to our method. The comparison results in Table 2 are

valid only under the assumption that the internal/external correlation is consistent

between model construction and model application and thus give the upper limit of our
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Figure 6. Color maps showing the regions of interest (where the motion amplitudes

are relatively large and the correlation coefficients are relatively high) and the locations

of the selected markers for one of the leave-one-out tests.

model.290

Another potential problem of the current experimental setting is the possibility

of over-fitting the data. When data is sufficient, the amount of data we choose for

the learning and test sets should be comparable. We need to conduct comprehensive

experiments to make sure our proposed model not only fits the data well, but also

provides accurate predictions. At the currently stage, we are not able to acquire that295

many data to facilitate such experiments, whereas it is definitely worth studying in the

future when more data is available.

Although our entire procedure (marker selection and prediction) needs further

validation using more patient data in a variety of different clinical scenarios, we would

like to point out that our method still serves as an innovative way of choosing optimal300

marker numbers and locations utilizing the concept of sparsity. Such choice made by

our method is not only automated and requires minimal human interaction, but is also

more reliable than the traditional method using only one marker (see Table 2 which

shows that choosing multiple markers can significantly reduce prediction errors).

Another way to validate the results is to see if the locations of the markers selected305

from each of the 10 leave-one-out tests are consistent. Based on our observations,

however, the sets of selected markers are not exactly the same as each other. This can
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be ascribed to the numerical error in the algorithm, such as the early termination of the

iteration, and in the data, such as the deformable registration error and the presence of

noise. These errors will be well controlled if we have more training data. However, due310

to current restrictions, only limited number of training data (only 10 phases in a 4DCT)

can be obtained. Nonetheless, a few marker locations repeatedly appear in all the tests,

which indicate some key area on the patient surface for predicting tumor motion. The

capability of finding those key areas using our algorithm in different leave-one-out tests

validates our algorithm to a certain extent. We believe if more data is available, then315

the sets of markers should be very similar for different tests. We shall investigate this

in the future when more data is available.

4.2. Further improvement of the proposed model (1)

The major assumption of the proposed model is the linear dependence of the coordinates

of the tumor Y and the coordinates of markers X. However, the actual dependence of320

X and Y may not be linear, and a nonlinear model may produce better results (less

markers or/and smaller prediction errors).

We note that the major novelty of the proposed model is to utilize sparsity and

the ℓ2,1 norm, which are rather general concepts. Therefore, linearity is not crucial

for our model, and it can be modified to facilitate nonlinearity. Taking the nonlinear

model of (Ruan et al., 2008) as an example, if the dependence of X and Y is quadratic

AX2 + BX = Y, where the squares are taken on each entry of X, then our model (1)

can be easily modified, for example, to the following one

min
A,B

{
∥A∥2,1 + ∥B∥2,1 : AX2 +BX = Y

}
However, if a nonlinear model is used, more unknowns need to be solved than using a

linear model, which means more data is required for reliable results. Therefore, we did

not consider nonlinear dependency of X and Y in this paper due to the limited data.325

Another assumption hidden in our model is that the location of tumor only depends

on the locations of the surface markers at the same time point. However, in reality, due

to hysterisis, the tumor location may as well depend on the marker positions at previous

time points. There have been some work alone this line in the literature (Low et al.,

2005; Gao et al., 2008). Here we briefly describe how we can extend our current model330

to properly consider temporal information of the data.

Suppose the current location of the tumor depends on the current and several

previous locations of the surface markers. Let n be the total number of time point

that will affect the locations of the tumor. We let A be a 3-dimensional tensor with

A ∈ R3×3k×n and denote each of the n slices of A as Aj ∈ R3×3k. We let X be another 3-

dimensional tensor with X ∈ R3k×m×n with each of the n slices denoted as Xj ∈ R3k×m.

Each of the Xj are formed by shifting the columns (which correspond to time point) of

X (defined at the beginning of Section 2) to the right by j periodically. Now, we define
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the linear operation A⊗X as

A⊗X :=
n∑

j=1

AjXj;

and define the generalized ℓ2,1-norm of A as

∥A∥2,1 :=
∑
i2

(∑
i1,i3

a2i1,i2,i3

) 1
2

.

Then, our model (1) can now be generalized to

min
A

{∥A∥2,1 : A⊗X = Y } .

This model can be solved via a similar algorithm as Algorithm 1 proposed in this paper

and will be investigated in our future work.

5. Conclusions

In this paper, we proposed a novel mathematical model to automatically determine the335

optimal number and locations of fiducial markers on patient’s surface for predicting

lung tumor motion. We also introduced an efficient numerical algorithm for solving

the proposed model. Experiments on the 4DCT data of 4 lung cancer patients have

shown that, by using our method, usually 6-7 markers are selected on patient’s external

surface. Most of these markers are in the regions where the surface motion is relatively340

large and the correction between the surface motion and the internal tumor motion is

relatively high. Using these markers, the lung tumor positions can be predicted with an

average 3D error of approximately 1mm. Both the number of markers and the prediction

accuracy are clinically acceptable, indicating that our method can be used in clinical

practice.345
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Esser, E., M. Möller, S. Osher, G. Sapiro and J. Xin (2011), ‘A convex model for non-negative matrix

factorization and dimensionality reduction on physical space’, Arxiv preprint arXiv:1102.0844 .

Gao, G., J. McClelland, S. Tarte, J. Blackall and D. Hawkes (2008), Modelling the respiratory motion

of the internal organs by using canonical correlation analysis and dynamic mri, in ‘The First370

International Workshop on Pulmonary Image Analysis’, Lulu. com.

Geraghty, PR, ST Kee, G McFarlane, MK Razavi, DY Sze and MD Dake (2003), ‘CT-guided

transthoracic needle aspiration biopsy of pulmonary nodules: Needle size and pneumothorax

rate’, Radiology 229(2), 475–481.

Gu, Xuejun, Hubert Pan, Yun Liang, Richard Castillo, Deshan Yang, Dongju Choi, Edward Castillo,375

Amitava Majumdar, Thomas Guerrero and Steve B. Jiang (2010), ‘Implementation and

evaluation of various demons deformable image registration algorithms on a GPU’, Physics

in Medicine and Biology 55(1), 207–219.

Hale, E., W. Yin and Y. Zhang (2007), ‘A fixed-point continuation method for ℓ1-regularization with

application to compressed sensing’, CAAM Technical Report TR, Rice University, Houston, TX380

pp. 07–07. CAAM Technical Report TR07-07, Rice University, Houston, TX.

Hoisak, JDP, KE Sixel, R Tirona, PCF Cheung and JP Pignol (2004), ‘Correlation of lung tumor

motion with external surrogate indicators of respiration’, International Journal of Radiation

Oncology Biology Physics 60(4), 1298–1306.

Jia, Xun, Chunhua Men, Yifei Lou and Steve B. Jiang (2011), ‘Beam orientation optimization for385

intensity modulated radiation therapy using adaptive l(2,1)-minimization’, Physics in Medicine

and Biology 56(19), 6205–6222.

Jiang, Steve B. (2006a), ‘Radiotherapy of mobile tumors’, Seminars in radiation oncology 16(4), 239–

248.

Jiang, Steve B. (2006b), ‘Technical aspects of image-guided respiration-gated radiation therapy’,Medical390

Dosimetry 31(2), 141–151.

Low, D.A., P.J. Parikh, W. Lu, J.F. Dempsey, S.H. Wahab, J.P. Hubenschmidt, M.M. Nystrom,

M. Handoko and J.D. Bradley (2005), ‘Novel breathing motion model for radiotherapy’,

International Journal of Radiation Oncology* Biology* Physics 63(3), 921–929.

McClelland, JR, S. Hughes, M. Modat, A. Qureshi, S. Ahmad, DB Landau, S. Ourselin and DJ Hawkes395

(2011), ‘Inter-fraction variations in respiratory motion models’, Physics in Medicine and Biology

56, 251–272.

Nelson, Christopher, George Starkschall, Peter Balter, Rodolfo C. Morice, Craig W. Stevens and

Joe Y. Chang (2007), ‘Assessment of lung tumor motion and setup uncertainties using implanted

fiducials’, International Journal of Radiation Oncology Biology Physics 67(3), 915–923.400

Pepin, EW, H. Wu, Y. Zhang and B. Lord (2011), ‘Correlation and prediction uncertainties in the

cyberknife synchrony respiratory tracking system.’, Medical physics 38(7), 4036.

Ruan, D., J.A. Fessler, JM Balter, RI Berbeco, S. Nishioka and H. Shirato (2008), ‘Inference of

hysteretic respiratory tumor motion from external surrogates: a state augmentation approach’,

Physics in medicine and biology 53, 2923–2936.405

Thirion, J.P. (1998), ‘Image matching as a diffusion process: an analogy with maxwell’s demons’,

Medical image analysis 2(3), 243–260.

Wang, Y., W. Yin and Y. Zhang (2007), ‘A fast algorithm for image deblurring with total variation



Optimal Marker Locations for Tumor Motion Estimation 17

regularization’, Rice University CAAM Technical Report TR07-10 .

Wu, Huanmei, Qingya Zhao, Ross I. Berbeco, Seiko Nishioka, Hiroki Shirato and Steve B. Jiang410

(2008), ‘Gating based on internal/external signals with dynamic correlation updates’, Physics

in Medicine and Biology 53(24), 7137–7150.

Yan, Hui, Fang-Fang Yin, Guo-Pei Zhu, Munther Ajlouni and Jae Ho Kim (2006), ‘The correlation

evaluation of a tumor tracking system using multiple external markers’, Medical Phisics

33(11), 4073–4084.415

Yin, W., S. Osher, D. Goldfarb and J. Darbon (2008), ‘Bregman iterative algorithms for l 1-

minimization with applications to compressed sensing’, SIAM J. Imaging Sci 1(1), 143–168.

Zhang, X., M. Burger, X. Bresson and S. Osher (2010), ‘Bregmanized nonlocal regularization for

deconvolution and sparse reconstruction’, SIAM Journal on Imaging Sciences 3, 253.


