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X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical 

concern in most image guided radiation therapy procedures. It is the goal of this 

paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT 

images from undersampled and noisy projection data so as to lower the imaging 20 

dose. For this purpose, we have developed an iterative tight frame (TF) based 

CBCT reconstruction algorithm. A condition that a real CBCT image has a 

sparse representation under a TF basis is imposed in the iteration process as 

regularization to the solution. To speed up the computation, a multi-grid method 

is employed. Our GPU implementation has achieved high computational 25 

efficiency and a CBCT image of resolution            can be 

reconstructed in ~5 min. We have tested our algorithm on a digital NCAT 

phantom and a physical Catphan phantom. It is found that our TF-based 

algorithm is able to reconstrct CBCT in the context of undersampling and low 

mAs levels. We have also quantitatively analyzed the reconstructed CBCT 30 

image quality in terms of modulation-transfer-function and contrast-to-noise 

ratio under various scanning conditions. The results confirm the high CBCT 

image quality obtained from our TF algorithm. Moreover, our algorithm has also 

been validated in a real clinical context using a head-and-neck patient case. 

Comparisons of the developed TF algorithm and the current state-of-the-art TV 35 

algorithm have also been made in various cases studied in terms of reconstructed 

image quality and computation efficiency. 
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1. Introduction 

 

Cone Beam Computed Tomography (CBCT) is of central importance in cancer 

radiotherapy. It is particularly convenient for accurate patient setup in image guided 

radiation therapy (IGRT). Yet, the high imaging dose to healthy organs (a few cGy per 5 

scan) (Islam et al., 2006; Kan et al., 2008; Song et al., 2008) in CBCT scans is a clinical 

concern, especially when CBCT scan is performed before each fraction for the entire 

treatment course. The imaging dose in CBCT can be reduced by reducing the number of 

x-ray projections and lowering mAs levels (tube current and pulse duration). In these 

approaches, however, the consequent CBCT images reconstructed using conventional 10 

FDK algorithms (Feldkamp et al., 1984) are highly degraded due to insufficient and 

noisy projections. It is therefore desirable to develop new techniques to reconstruct high 

quality CBCT from undersampled and noisy projection data. 

Recently, a burst of research in compressed sensing (Donoho and Tanner, 2005; 

Candes and Romberg, 2006; Candes et al., 2006; Candes and Tao, 2006; Donoho, 2006; 15 

Tsaig and Donoho, 2006) have demonstrated the feasibility of recovering signals from 

incomplete measurements through optimization methods in various mathematical 

situations. A number of techniques developed in this field have been introduced to the CT 

or CBCT reconstruction problems from undersampled data (Sidky et al., 2006; Sidky and 

Pan, 2008; Chen et al., 2008; Cho et al., 2009; Jia et al., 2010b) and have shown their 20 

tremendous power in solving such complicated problems. The key idea is that medical 

images can be sparsely approximated by certain linear transformation and penalizing the 

  -norm of the image in the transformed domain will enable us to recover the unknown 

image from highly undersampled data. Using the idea of compressed sensing and sparse 

approximation of images under transformations to perform CBCT reconstruction has 25 

indeed become one of the central topics in medical imaging. Recently, one of the image 

transformation techniques called tight-frame (TF) transform (Daubechies et al., 2003) has 

attracted a lot of attentions. These tight frames have the same structure as the traditional 

wavelets, except that they are redundant systems that generally provide sparser 

representations to piecewise smooth functions than traditional wavelets. The TF approach 30 

is found to be extremely effective and efficient in solving many image restoration 

problems (Cai et al., 2008; Cai et al., 2009b; Cai et al., 2009a; Cai and Shen, 2010). A 

short survey on the theory and applications of TF was given by Shen (2010) and a much 

more detailed survey was given by Dong and Shen (2010). CBCT reconstruction problem 

can be generally viewed as a 3-dimensional image restoration problem. In such a 35 

problem, it has been noted that the discontinuities of the reconstructed piecewise smooth 

image provide very important information, as they usually account for the boundaries 

between different objects in the volumetric image. In the TF approach, one tries to restore 

TF coefficients of the image, which usually correspond to important features, e.g. edges, 

as opposed to the image itself. This allows us to specifically focus on the reconstruction 40 

of the important information of the image, hence leading to high quality reconstruction 

results.  
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Besides its effectiveness, TF approach also has attractive numerical properties. First, 

recently invented numerical schemes specifically designed for the TF approach lead to a 

high convergence rate (Shen et al., 2009; Shen, 2010; Dong and Shen, 2010). Second, the 

numerical scheme only involves simple matrix-vector or vector operations, making it 

straightforward to implement the algorithm and parallelize it in a parallel computing 5 

structure. It is these numerical properties that lead to high computational efficiency in 

practice. Moreover, general purpose graphic processing units (GPUs) have offered us a 

promising prospect of increasing efficiencies of heavy duty tasks in radiotherapy, such as 

CBCT FDK reconstruction (Xu and Mueller, 2005; Li et al., 2007; Sharp et al., 2007; Xu 

and Mueller, 2007; Yan et al., 2008), deformable image registration (Sharp et al., 2007; 10 

Samant et al., 2008; Gu et al., 2009b), dose calculation (Jacques et al., 2008; Hissoiny et 

al., 2009; Gu et al., 2009a; Jia et al., 2010a), and treatment plan optimization (Men et al., 

2009; Men et al., 2010). Taking advantages of the high computing power of the GPU, the 

computation efficiency of TF-based CBCT reconstruction is expected to be enhanced 

considerably. 15 

We have developed a novel CBCT reconstruction algorithm based on TF and 

implemented it on GPU. The motivation of this work is to provide a new approach for 

CBCT reconstruction, in addition to the well known FDK-type algorithms and the state-

of-the-art iterative reconstruction algorithms, such as total variation (Sidky and Pan, 

2008). This work, along with some preliminary validations, will be presented in this 20 

paper. Our experiments on a digital phantom, a physical phantom, and a real patient case 

demonstrate the possibility of reconstructing high quality CBCT images from extremely 

undersampled and noisy data. The associated high computational efficiency due to the 

good numerical property of the TF algorithm and our GPU implementation makes this 

approach practically attractive. Our work, by introducing the novel TF algorithm to the 25 

CBCT reconstruction context for the first time, will shed a light to the CBCT 

reconstruction field and contribute to the realization of low dose CBCT. The rest of this 

paper is organized as following. Section 2 will describe our method as well as 

implementation details. In section 3 we will provide the reconstruction results and 

necessary analysis on the reconstructed volumetric images. Finally, section 4 will 30 

conclude our paper. 

 

2. Methods 

 

2.1 Model and Algorithm 35 

 

Let us consider a patient volumetric image represented by a function      with   

          . A projection operator    maps      into another function on an x-ray 

imager plane along a projection angle  : 

                     
    

 
 , (1) 

where               is the coordinate of the x-ray source and            is the 40 

coordinate of the projection point on the x-ray imager,               being a unit 
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vector along the projection direction. Fig. 1 illustrates the geometry. The upper 

integration limit      is the length of the x-ray line. Denote the observed projection 

image at the angle   by      . Mathematically speaking, a CBCT reconstruction 

problem is formulated as to retrieve the volumetric image function      based on the 

observation of       at various angles given the projection mapping in Eq. (1). 5 

 

Figure 1. The geometry of x-ray projection. The operator    maps       in    onto another 

function               , the x-ray imager plane, along a projection angle  .      is the 

length from    to    and      is that from    to  . The source to imager distance is   . 

The CBCT image reconstruction from few projections is an underdetermined 

problem. Because of insufficient measurements made at only a few x-ray projections, 

there are indeed infinitely many functions   satisfying the condition               . 

Therefore, regularization based on some assumptions about the solution   has to be 

performed during the reconstruction process. These regularization-based CBCT 10 

reconstruction approaches usually result in solving challenging minimization problems. 

The most commonly used approach is an alternative iteration scheme, where, within each 

iteration step, conditions to be satisfied by the solution is imposed one after another. In 

our problem, there are three conditions that need to be satisfied by the solution, and three 

key operations will be performed in each iteration step accordingly. These conditions, as 15 

well as the operations ensuring them, will be described in the following. 

First, the x-ray projection of the reconstructed volumetric image      should match 

the observation      . This condition is commonly achieved by solving a linear system 

    , where   is the matrix representation of the projection operator   , and   and   

are vectors corresponding to the solution      and the observation      , respectively. 20 

Nonetheless, since this is a highly underdetermined problem, any numerical scheme 

tending to directly solve      is unstable. Instead, in this work we perform a 

minimization of an energy             
  by using a conjugate gradient least square 

(CGLS) algorithm. This algorithm is essentially an iterative algorithm, which generates a 

new solution   given an initial guess  . We formally denote this process as          , 25 

and the details regarding the implementation of the CGLS algorithm will be discussed in 

section 2.2.2. The CGLS algorithm enables us to efficiently solve this minimization 
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problem, and hence ensures the consistency between the reconstructed volumetric 

image      and the observation      .  

Second, we impose a regularization condition to the solution      that it has a sparse 

representation under a TF system          . The solution      can be decomposed by 

  into a set of coefficient as                 , where   stands for the convolution 5 

of two functions. In this paper, we use the piece-wise linear TF basis (Dong and Shen, 

2010; Shen, 2010). Specifically, in 1D, the discrete forms of the basis functions are 

chosen as    
 

 
       ,    

  

 
        , and    

 

 
         , where    is known 

as a low pass filter and the other two are high pass filters. This is because for a given 1D 

signal, the convolution with    leads to its low frequency component, i.e. smoothed 10 

skeleton, while convolutions with the other two give high frequency oscillatory parts 

such as noise signals or edges. The 3D TF basis functions used for the CBCT 

reconstruction problem can be constructed by the tenser product of the three 1D basis 

functions, i.e.                          , with integers  ,  ,   chosen from 0, 1, or 

2 and           . Among these basis functions, the one with           is 15 

the low pass filter, while the other 26 functions are high pass ones. Correspondingly, the 

coefficient       is called the low frequency component and the rest belong to high 

frequency category. The transform from      to the TF coefficient       via convolution 

is a linear operation. To simplify notation, we can denote this transformation in a matrix 

notation as           . We emphasize here that the introduction of the matrix   is 20 

merely for the purpose of simplifying notation. In practice, we still compute this 

transformation via convolution but not matrix multiplication. Conversely, the function 

     can be uniquely determined given a set of coefficients      ,           , by 

                   , which can be denoted as            .  

It has been observed that many natural images have very sparse representations under 25 

the TF system  , i.e. there are only a small proportion of the elements among the 

coefficients      that are considerably larger in magnitude than the rest of the elements 

(Dong and Shen, 2010). It is this property that can be utilized a priori to regularize the 

reconstructed CBCT image. A common way of imposing this condition into the solution 

  is to throw away some small TF coefficients among those high frequency components 30 

      for           , as those components usually come from highly oscillatory 

signals in the reconstructed CBCT image  , such as noise. The deletion of these small 

coefficients not only sharpens edges but also removes noises. Meanwhile, the low pass 

components       should be left unchanged, since it corresponds to the low frequency 

signals in  , more likely originated from the underlying true image. 35 

One intuitive way of achieving this regularization is to compare each      ,    

       , with a certain threshold level and set those coefficients below the threshold 

zero. In practice, it is found that a so called vector shrinkage operation usually leads to 

better image quality (Cai et al., 2011). In this method, it is the   -norm of the high 

frequency component                   
    

   
that determines whether we keep or 40 
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discard them as opposed to each      individually. Specifically, the operation we 

perform on the TF coefficients to regularize the CBCT image is 

         
                 

                            
 

       
                            

     , (2) 

where   is a predetermined threshold being a tuning parameter for the reconstruction 

problem. It is understood that such an operation is performed voxel-wise. In particular, if 

          is found at a certain voxel  ,         sets all the high frequency 5 

components       to be zero at this voxel. In summary, to impose regularization on a 

CBCT image, we first decompose   into the TF space, perform a vector shrinkage 

operation described as in Eq. (2), and finally reconstruct   based on the new coefficients. 

This process is symbolically denoted as         .  

Third, since the reconstructed CBCT image     physically represents x-ray 10 

attenuation coefficient at a spatial point  , its positivity has to be ensured during the 

reconstruction in order to obtain a physically correct solution. For this purpose, we also 

perform a correction step of the reconstructed image      by setting its negative voxel 

values to be zero. Mathematically, this operation is denoted by     , where the 

operation   stands for a voxel-wise truncation of the negative values in the CBCT image 15 

 . 

In considering all the components mentioned above, we summarize the 

reconstruction algorithm as in Algorithm A1:     

Algorithm  A1: 

 Initialize:       .  

For         do the following steps until convergence 

1. Update:                  ; 

2. Shrinkage:                   ; 

3. Correct:               . 

 

Note that there is only one tuning parameter   in the algorithm. In practice, its value is 20 

carefully tuned so that the best image quality can be obtained. An example of how we 

choose this parameter is provided in Section 3.2.  

We would also like to point out that there is indeed a set of rigorous mathematical 

theories behind the seemingly heuristic algorithm A1. There is in fact a variation form 

corresponding to this algorithm, in that there exists an energy functional        , whose 25 

minimizer is the reconstructed CBCT image. The algorithm A1 is one of the algorithms 

that efficiently solve the minimization problem. Yet, presenting the exact formulation of 

this variation approach and proof the link to the algorithm A1 is beyond the scope of this 

paper and relative information can be found in Shen (2010), Dong and Shen (2010), and 

Cai (2011). With a simple modification, the convergence rate of A1 can be enhanced 30 

(Shen et al., 2009; Shen, 2010; Dong and Shen, 2010), leading to Algorithm A2 used in 

our reconstruction problem: 

Algorithm  A2: 
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 Initialize:             ,               , 

For         do the following steps until convergence 

1. Compute:           
        

                 ; 

2. Update:                  ; 

3. Shrinkage:                   ; 

4. Correct:               ; 

5. Set:        
 

 
             . 

 

2.2 Implementation 

 

In this paper, the CBCT reconstruction problem is solved with the aforementioned 

algorithm A2 on an NVIDIA Tesla C1060 card. This GPU card has a total number of 240 5 

processor cores (grouped into 30 multiprocessors with 8 cores each), each with a clock 

speed of 1.3 GHz. It is also equipped with 4 GB DDR3 memory, shared by all processor 

cores. Utilizing such a GPU card with tremendous parallel computing ability can 

considerably elevate the computation efficiency. In this section, we describe some key 

components of our implementation.  10 

 

2.2.1 GPU parallelization 

 

In fact, a number of computationally intensive tasks involved in algorithm A1 and A2 

share a common feature, i.e. applying a single operation to different part of data elements. 15 

For computation tasks of this type, it is straightforward to accomplish them in a data-

parallel fashion, namely having all GPU threads running the same operation, one for a 

given subset of the data. Such a parallel manner is particularly suitable for the SIMD 

(single instruction multiple data) structure of a GPU and high computation efficiency can 

be therefore achieved.  20 

Specifically, the following components in A2 fall into this category: 1) We simply 

parallelize the voxel-wise vector shrinkage in the Step 3 and the positivity correction of 

the CBCT image in the Step 4 with one GPU thread responsible for one voxel. 2) The 

transformation of a CBCT image   into the TF space is merely a convolution operation 

                . This computation can be performed by having one GPU thread 25 

compute the resulted       at one   coordinate. The inverse transformation from the TF 

coefficient       to the image      is also a convolution operation and can be achieved 

in a similar manner. 3) A matrix vector multiplication of the form      is frequently 

used in the CGLS method. This operation corresponds to the forward x-ray projection of 

a volumetric image      to the imager planes, also known as a digital reconstructed 30 

radiograph. In our implementation, it is performed in a parallel fashion, with each GPU 

thread computing the line integral of Eq. (1) along an x-ray line using Siddon’s ray-

tracying algorithm (Siddon, 1985; Jacobs et al., 1998; Han et al., 1999).  
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2.2.2 CGLS method 

 

Another key component in our implementation is the CGLS solution to the optimization 

problem            
   in Step 2 of A2. In this step, a CGLS method is applied to 

efficiently find a solution        to this least square problem with an initial value of      5 

in an iterative manner (Hestenes and Stiefel, 1952). The details of this CGLS algorithm 

are given in Appendix 1 in a step-by-step manner. Each iteration step of the CGLS 

algorithm includes a number of fundamental linear algebra operations. For those simple 

vector-vector operations and scalar-vector operations, we utilize CUBLAS package 

(NVIDIA, 2009) for high efficiency. In addition, there are two time-consuming 10 

operations requiring special attention, namely matrix-vector multiplications of the form  

     or      , where   is the x-ray projection matrix. Though it is straightforward 

to accomplish      on GPU with the Siddon’s ray-tracing algorithm as described 

previously, it is quite cumbersome to carry out a computation of the form      . It is 

estimated that the matrix  , though being a sparse matrix, contains approximately 15 

      non-zero elements for a typical clinical case studied in this paper, occupying 

about 16 GB memory space. Such a huge matrix   is too large to be stored in a GPU 

memory, not to mention computing its transpose. Therefore, a new algorithm for 

completing the task       has to be designed. Without thinking too much, one can 

compute       by still using the Siddon’s algorithm. Such an operation, however, is a 20 

backward one in that it maps a function      on the x-ray imager back to a volumetric 

image      by updating its voxel values along all ray lines. If Siddon’s ray-tracing 

algorithm were still used in the GPU implementation with each thread responsible for 

updating voxels along a ray line, a memory conflict problem would take place due to the 

possibility of simultaneously updating a same voxel value by different GPU threads. 25 

When this conflict occurs, one thread will have to wait until another thread finishes 

updating. It is this fact that severely limits the maximal utilization of GPU's massive 

parallel computing power.  

To overcome this difficulty, we analytically compute the explicit form of the resulted 

volumetric image function      when the operator    acts on a function      on the x-30 

ray imager and obtained a close form expression 

              
      

    
 

      

               . (3) 

Here    is the coordinate for a point on imager where a ray line connecting the x-ray 

source at    and the point at   intersects with the imager.    is the distance from the x-

ray source S to the imager, while      and       are the distance from    to   and from 

   to    on the imager, respectively. See Fig. 1 for the geometry.    and    are the pixel 35 

size when we descretize the imager during implementation and   ,   , and    are the 

size of a voxel. The derivation of Eq. (3) is briefly shown in Appendix 2. Eq. (3), in fact, 

indicates a very efficient way of performing       in a parallel fashion. To compute 

     at a given  , we simply take the function values of        at the coordinate   , 

multiply by proper prefactors, and finally sum over all projection angles  . In numerical 40 
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computation, since we always evaluate      at a set of discrete coordinates and    does 

not necessarily coincide with these discrete coordinates, a bilinear interpolation is 

performed to obtain       . Now it is ready to perform the parallel computing with each 

GPU thread for a voxel at a given   coordinate. Extremely high efficiency is expected 

given the vast parallelization ability of the GPU. 5 

 

2.2.3 Multi-grid method 

 

Another technique we employed to increase computation efficiency is multi-grid method 

(Brandt, 2002). It has long been known that, the convergence rate of an iterative approach 10 

solving an optimization problem is usually worsened when a very fine grid size   ,   , 

and    is used. Moreover, fine grid also implies a large number of unknown variables, 

significantly increasing the size of the computation task. A well known multi-grid 

approach can be utilized to resolve these problems. Suppose we try to reconstruct a 

volumetric CBCT image      on a fine grid    of size  , we could start with solving the 15 

problem on a coarser grid      of size    with the same iterative approach as in 

Algorithm A2. Upon convergence, we smoothly extend the solution     on     to the 

fine grid    using, for example, linear interpolation, and use it as the initial guess of the 

solution on   . Because of the decent quality of this initial guess, only a few iteration 

steps of Algorithm A2 are adequate to achieve the final solution on   . This idea can be 20 

further used while seeking the solution     by going to an even coarser grid of size   . In 

practice, we employed a 3-level multi-grid scheme, i.e. the reconstruction is sequentially 

achieved on grids           .  

 

2.3 Comparison with TV reconstruction algorithm 25 

 

In the following reconstruction cases, we have also compared our proposed TF-based 

reconstruction algorithm with the current state-of-the-art iterative CBCT reconstruction 

algorithm, which uses total variation (TV) as regularization (Sidky and Pan, 2008; Jia et 

al., 2010b). Specifically, the TV method we employed in this paper tries to reconstruct a 30 

CBCT image by solving an optimization problem 

         
 

 
       

          , where                is the TV-semi 

norm. In our implementation, a forward-backward splitting algorithm akin to the 

Algorithm A1 is used to solve this problem. The main difference from A1 is that the Step 

2 becomes solving a sub-problem of                  
 

 
         , also known as 35 

a Rudin-Osher-Fatemi (ROF) model (Rudin et al., 1992). Solving this model is achieved 

by a simple gradient descent method due to the non-existence of a closed form solution. 

As such, this step becomes an iterative process by itself. We update the solution of this 

sub-problem along the negative gradient direction in each step with an adaptively 

adjusted step length. This process terminates when the energy function value decreases 40 

less than a certain amount, for instance, 0.1%, in two successive steps. The TV method is 

also implemented on GPU with the aforementioned multi-grid reconstruction scheme. 



10             X. Jia et al. 

10 

Details regarding this algorithm have been previously presented by Jia et. al.(Jia et al., 

2010b). To ensure the fairness of this comparison, the parameter     is adjusted 

manually for each case studied, so that the best image quality can be obtained.  

 

3. Experimental Results 5 

 

In this section, we present the CBCT reconstruction results on a NURBS-based cardiac-

torso (NCAT) phantom (Segars et al., 2001), a Catphan phantom (The Phantom 

Laboratory, Inc., Salem, NY), and a real patient at head-and-heck region. All of the 

reconstructed CBCT images are of a resolution            voxels with the voxel 10 

size chosen as                  . The x-ray imager resolution is         

covering an area of          . The reconstructed images are much shorter than the 

imager dimension along the z-direction due to the cone beam divergence. The x-ray 

source to axes distance is        and the source to detector distance is       . All of 

these parameters mimic realistic configurations in a Varian On-Board Imager (OBI) 15 

system (Varian Medical Systems, Palo Alto, CA). In all cases we studied, a total number 

of 40 x-ray projections are used to perform the reconstruction. For the digital NCAT 

phantom, x-ray projections are numerically computed along 40 equally spaced projection 

angles covering a full rotation with Siddon's ray tracing algorithm (Siddon, 1985; Han et 

al., 1999; Jacobs et al., 1998). As for the Catphan phantom case and the real patient case, 20 

they are scanned in the Varian OBI system under a full-fan mode in an angular range of 

    . 363~374 projections are acquired and a subset of 40 equally spaced projections is 

selected for the reconstruction.  

Though reducing radiation dose can be achieved by both reducing mAs and number 

of projections, in this paper, we focus our work on sparse view (i.e. 40 projections) 25 

reconstruction for the consideration of computational efficiency. In our algorithm, the 

length of the measurement   and the number of rows of the matrix   are linearly 

proportional to the number of projections. Increasing the projection number will therefore 

considerably enlarge the problem size and hence prolong the computation time per 

iteration. Yet, it has been demonstrated that for a given dose level superior image quality 30 

with less streaking artifacts is obtained by reducing the radiation dose per projection 

compared with reducing the number of projections (Tang et al., 2009). So for a given 

dose but more number of projections, less iteration steps are probably needed to achieve a 

certain image quality and hence the total computation time may not be prolonged. 

However, according to our experiments, it is found that reducing the number of 35 

projections is more efficient in terms of shortening the computation time. In some clinical 

applications, such as positioning a patient in radiotherapy, computation efficiency is an 

important factor to evaluate the feasibility of a reconstruction algorithm. We therefore 

focus our study on those cases with reduced number of projections in this paper.  

 40 

3.1 NCAT phantom and Catphan phantom 
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We first test our reconstruction algorithm with a digital NCAT phantom. It is generated at 

thorax region with a high level of anatomical realism (e.g., detailed bronchial trees). In 

this simulated case, the projection data are ideal, in that it does not contain 

contaminations due to noise and scattering as in real scanning. Under this circumstance, a 

powerful reconstruction algorithm should be able to reconstruct CBCT image almost 5 

exactly. For example, Sidky et. al. have shown that the TV method can yield accurate 

reconstruction from very few views (Sidky and Pan, 2008). To test the TF algorithm, we 

first perform the reconstruction with a large number of iterations (10~30 iterations in one 

multi-grid level) to get high image quality. The central slice of the reconstructed CBCT 

image and the ground truth image are presented in Fig. 2 (a) and (c), respectively. 10 

Additionally, we also plot profiles along a horizontal and a vertical cut in this slice for the 

reconstructed image, the ground truth image, as well as the absolute error between them 

in Fig. 2 (d) and (e). Clearly, the reconstruction error mainly occurs at the boundary of 

the images, where the intensity changes dramatically. To quantify the reconstruction 

 

 

  

Figure 2. The central slice of the reconstructed NCAT phantom by (a) TF method, (b) TV 

method, and (c) the ground truth image. Dash lines indicate where the profiles in bottom rows are 

taken. (d) and (e) show the comparisons of the image profiles between the reconstructed image 

and the ground truth image along a horizontal cut and a vertical cut by TF method, while (f) and 

(g) are for TV method. The absolute error is also plotted. 
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accuracy in this case, we compute the relative root mean square (RRMS) error as 

               , where   is the reconstructed image and    is the ground truth one. 

It is found that the reconstructed 3D volumetric CBCT image attains an RRMS error of 

        in this case. If we only compute the RRMS error in the phantom region, i.e. 

excluding those background outside the patient, the RRMS error is        . These 5 

numbers clearly demonstrate the ability of the TF algorithm to reconstruct high quality 

CBCT images in this ideal case. For a comparison purpose, we also present the 

reconstruction result using the TV method in Fig. 2 (b), (f), and (g), where similar image 

quality is observed. The RRMS error is         for the whole image and         

for the region excluding the background. 10 

It is worth mentioning that the reconstruction time for this case is about 10~20 min 

on an NVIDIA Tesla C1060 card. In practice, CBCT is mainly used for the patient 

alignment purpose in cancer radiotherapy, where a fast reconstruction is of essential 

importance. Though this 10 min reconstruction time has been a big improvement 

compared with those currently available similar iterative CBCT reconstruction algorithms 15 

on CPU, it does not satisfy the requirement in real clinical practice. The above study only 

serves a purpose of demonstrating the feasibility of using TF as a regularization approach 

to reconstruct CBCT in an ideal context. In some clinical practice, such as for positioning 

a patient in cancer radiotherapy, it is adequate to perform less number of iterations for 

fast image reconstruction, while still yielding acceptable image quality. For this purpose, 20 

in the rest of this paper we focus our study to the reconstruction results completed within 

a given number of iteration steps. In particular, excepted stated otherwise, the iteration 

steps on the three multi-grid levels are 5, 10, and 15 from the coarsest grid to the finest 

grid, respectively. This will control the total computation time in about 5~6 min. Same 

requirements on the number of iterations apply to the state-of-the-art TV-based iterative 25 

reconstruction algorithm to make a fair comparison.  

Under this condition, the reconstructed CBCT images for the NCAT phantom at the 

central transverse slice using various algorithms are shown in Fig. 3. We have also 

scanned a Catphan phantom using Varian OBI at 1.0 mAs/projection and one slice of the 

resolution phantom is displayed in Fig. 4. First of all, clear streak artifacts are observed in 30 

the images produced by the conventional FDK algorithm due to the insufficient number 

of projections. In contrast, both the TV algorithm and the TF algorithm are able to 

reconstruct high quality CBCT images even under this extremely under-sampling 

circumstance and limited number of iteration steps.  

While comparing the TV and the TF methods, the image qualities are quite similar, 35 

though they are slightly different showing different types of artifacts unique to these two 

methods. For the TV method, it tends to produce a CBCT image with a high degree of 

smoothness due to the explicit penalty on the image gradient in the TV term.  Meanwhile, 

the edges and small structures in the image are blurred to a certain extent as a 

consequence. On the other hand, the TF method is more capable of capturing fine 40 

anatomical structures and producing sharper edges. Yet, unlike the TV method, TF 

penalize the image smoothness in an indirect way, i.e. through TF coefficients. This 

relatively weak control on the image smoothness causes some small but visible residual 
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streaks, though those streaks are suppressed considerably compared to the FDK results. 

   

   

Figure 4. One transverse slice of the reconstructed CBCT images for the physical Catphan 

phantom from 40 projections at 1.0 mAs/projection. Top row, from left to right: images 

reconstructed using TF algorithm, TV algorithm, and FDK algorithm; Bottom row: zoom in 

view of the square area for the corresponding images. 
 

   

   

Figure 3. One transverse slice of the reconstructed CBCT images for the digital NCAT 

phantom from 40 projections. Top row, from left to right: images reconstructed using TF 

algorithm, TV algorithm, and FDK algorithm; Bottom row: zoom in view of the square area 
for the corresponding images. 
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For instance, there are still some residual streak artifacts seen on the Catphan phantom 

case reconstructed by the TF method, but the image sharpness is improved at the lung 

edges and the small structures inside the lung are less blurred in the NCAT phantom. It is 

also worth noticing that these artifacts found in the TF and the TV results are mainly due 

to the early termination of the reconstruction process. If it is allowed to perform the 5 

iteration for a much longer them, both methods can remove their corresponding artifacts 

to a fairly good extent, as indicated in Fig. 2 for the TF method and in previous studies by 

Sidky et. al. (Sidky and Pan, 2008) for the TV method. 

  

3.2 Quantitative analysis 10 

 

The Catphan phantom contains a layer consisting of a single point-like structure of a 

diameter        , see Fig. 5(a). This structure enables us to measure the in plane 

modulation transfer function (MTF) of the reconstructed CBCT images, which 

characterizes the spatial resolution inside the transverse plane. For this purpose, we crop 15 

a square region of size              in this slice centering at this structure. After 

subtracting the background, we compute the point spread function. The MTF is obtained 

by first performing 2D fast Fourier transform and then averaging the amplitude along the 

angular direction.  

First, at a constant mAs level of                   , we compare the spatial 20 

resolution in the images reconstructed by the TF, the TV, and the FDK algorithms. Fig. 

6(a) presents the patch images containing the dotted structure and the corresponding 

measured MTF curves. Apparently, the structure is blurred most by the FDK algorithm, 

and slightly more by the TV method than by the TF method. As a consequence, the TF 

method results in the best MTF curve among all three methods and therefore yields the 25 

highest spatial resolution on the reconstructed images. Second, for the TF method, we 

compare the resolution at different mAs levels and the results are depicted in Fig. 6(b). 

As expected, the spatial resolution is deteriorated when low mAs level scan is used due to 

more and more noise component induced in the x-ray projections. Especially, at an 

extremely low mAs level of 0.1 mAs/projection, the dotted structure is almost not 30 

  
(a) (b) 

Figure 5. (a) A transverse slice of the Catphan phantom used to measure MTF. (b) A 

transverse slice of the Catphan phantom used to measure    . 
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resolved. For comparison, the TV results are shown in Fig. 6(c). Again, the resolution 

degrades as the mAs level is reduced. At the low mAs level of 0.10mAs/projection, it is 

also found that the spatial resolution of TV results is slightly higher than that of the TF 

method. 

In order to quantitatively evaluate the contrast of the reconstructed CBCT images, we 5 

measure contrast-to-noise ratio (   ). For a given region of interest (ROI),     is 

calculated as          –           , where   and    are the mean pixel values over 

the ROI and in the background, respectively, and   and    are the standard deviation of 

the pixel values inside the ROI and in the background. Before computing the    , a key 

observation is that     is affected by the parameter   which controls to what extent we 10 

would like to regularize the solution via the TF term. In fact, a small amount   is not 

sufficient to regularize the solution, leading to a high noise level and hence a low    . 

In contrast, a large   tends to over-smooth the CBCT image and reduce the contrast 

between different structures. Therefore, there exists an optimal   level in the 

reconstruction. Take the case at 1.0 mAs/projection and 40 projections as an example, we 15 

perform CBCT reconstruction with different    values and compute the      for the four 

(a)  

  

(b)  

  

(c)  

  

Figure 6. (a) Three patches used to measure MTF and the corresponding MTF curves in 

CBCT images reconstructed from TF, TV, and FDK algorithms at 1.0 mAs/projection with 

40 projections. (b) and (c) Three patches used to measure MTF and the corresponding MTF 
curves in CBCT images reconstructed from TF method and TV method at 1.0, 0.3, and 0.1 

mAs/projections with 40 projections. 
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ROIs indicated in Fig.5(b). The results are shown in Fig. 7(a). Clearly, the best    s are 

achieved for             . In principle, the optimal parameter would depend on the 

noise level in the input projection data, which is a function of the system parameters such 

as mAs levels, number of projections, reconstruction resolution etc. as well as the object 

being scanned. The precise establishment of the relationship between the optimal   value 5 

and each of the aforementioned factors will be studied in our future work.  Throughout 

this paper, all the reconstruction cases are performed under the optimal   values except 

stated explicitly. 

In Fig. 7(b)~(d), we plot the dependence of      on mAs levels measured in those 

four ROIs in the CBCT images reconstructed using various algorithms. As expected, a 10 

higher     can be achieved when a higher mAs level is used in the CBCT scan, and 

hence all of the curves generally follow a monotonically increasing trend. FDK algorithm 

attains the lowest     levels due to the absence of image regularization. As for the TF 

algorithms, though relatively high    s can be achieved in high mAs cases, the    s 

decrease with mAs sharply. In contrast, the TV algorithm maintains the     levels better 15 

than the TF algorithm and attains higher    s at low mA cases, indicating its superior 

ability of controlling noise at low mAs contexts. 

 

3.3 Patient case 

 20 

Finally, we present our TF-based CBCT reconstruction results on realistic head-and-neck 

anatomical geometry. A patient’s head-and-neck CBCT scan is taken using a Varian OBI 

system with 0.4 mAs/projection. The reconstruction results using the three reconstruction 

algorithms with 40 x-ray projections are shown in Fig. 8. Due to the complicated 

  

  

Figure 7. (a)    s at various ROIs as functions of the parameter   at 1.0 mAs/projection and 

40 projections. (b)~(d)      computed at various ROIs as functions of mAs levels at 40 
projections reconstructed using our TF algorithm, the TV algorithm and the FDK algorithm.  

 

1E-4 1E-3 0.01
0.0

10.0

20.0

30.0

40.0
 ROI1

 ROI2

 ROI3

 ROI4

 

 

C
N

R



(a)

0.1 1
0.0

10.0

20.0

30.0

40.0

(b)

 ROI1

 ROI2

 ROI3

 ROI4

 

 

C
N

R

mAs/projection

0.1 1
0.0

10.0

20.0

30.0

40.0
(c) ROI1

 ROI2

 ROI3

 ROI4

 

 

C
N

R

mAs/projection

0.1 1
0.0

10.0

20.0

30.0

40.0
(d) ROI1

 ROI2

 ROI3

 ROI4

 

 

C
N

R

mAs/projection



17             X. Jia et al. 

17 

geometry and high contrast between bony structures, dental filling, and soft tissues in this 

head-and-neck region, streak artifacts are severe in the images obtained from FDK 

algorithm. On the other hand, the TV algorithm and the TF algorithm both can capture 

the main anatomical features and suppress the streaking artifacts, while the boundaries, 

especially of those bony structures, are blurred to a certain extent. It is found the TV 5 

algorithm can suppress the streaks better by comparing the residual streaks around the 

dental filling. One the other hand, the TF method leads to visually slighly sharper 

boundaries of the bony structures. 

 

4. Conclusion and Discussions 10 

 

In this paper, we have developed a TF-based fast iterative algorithm for CBCT 

reconstruction. By iteratively applying three steps to impose three key conditions that a 

reconstructed CBCT image should satisfy, we can reconstruct CBCT images with 

undersampled and noisy projection data. In particular, the underline assumption that a 15 

real CBCT image has a sparse representation under a TF basis is found to be valid and 

robust in the reconstruction, leading to high quality results. In practice, due to the GPU 

implementation, the multi-grid method, and various techniques we employed, high 

 

 

 

Figure 8. Two transverse slices and one sagittal slice of a real head-and-neck patient CBCT 
reconstructed from the TF algorithm (first column), the TV algorithm (second column), and the 

FDK algorithm (third column) using 40 projections. 
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compuational efficiecny has been achieved. We have tested our algorithm on a digital 

NCAT phantom, a physical Catphan phantom. Quantitative analysis of the CBCT image 

quality has been performed with respect to the MTF and     under various scanning 

cases, and the results confirm the high CBCT image quality obtained from our TF 

algorithm. Moreover, reconstructions performed on a head-and-neck patient have 5 

presented very promissing results in real clinical applications. In our future work, we plan 

to perform systematical studies to assess the clinical gain of this new algorithm over 

existing algorithms using a large set of representative patient images and a set of 

clinically relevant metrics. 

It is not quite surprising that our TF based iterative reconstruction algorithm 10 

outperforms the FDK algorithm in the undersampling context. But it is of importance and 

interest to compare the TF algorithm with the current state-of-the-art iterative CBCT 

reconstruction algorithm, namely TV. In addition to the comparison results shown in the 

paper, we provide some further discussions regarding these two methods here. However, 

since the following points are made based on our initial studies on only a few cases 15 

presented in this paper, they are by no means conclusive. Further investigation regarding 

the systematical comparison between the two methods is certainly one of our central 

topics in near future. 

First, in all the cases studied in this paper, the image quality from TF and TV 

algorithms are quite similar. Yet, there are some visible differences between those results 20 

showing the unique characteristics of those two algorithms. Since the TV method explicit 

penalizes the image gradient via the TV term, it tends to produce a CBCT image with a 

high degree of smoothness. Meanwhile, the edges in an image are usually blurred to a 

certain extent as a consequence. In contrast, the TF method regularizes an image and 

enforces smoothness in an indirect manner, i.e. through TF coefficients. It is therefore 25 

capable of preserving sharper edges to a better degree, though some residual artifacts are 

often seen in the reconstructed images. One should keep in mind that these artifacts 

unique to those two algorithms occur in the intermediate stage of the iteration, as we only 

performed a few number of iterations to reconstruct those testing cases for the 

consideration of controlling computation time. If reconstructions with a large number of 30 

iterations are allowed, both TV and TF are capable of removing their own artifacts to a 

satisfactory degree, as having been demonstrated in Fig. 2 for the TF algorithm and in 

many other studies for the TV algorithm. Under that circumstance, the difference 

between the reconstruction results produced by the two algorithms is expected to be 

diminishing.  35 

Second, TV and TF methods show different efficacy in terms of balancing contrast 

and noise, which result in different characteristics in the     plot. Specifically, it is 

found in Fig. 7 that TF leads to higher    s in high mAs cases, while TV achieves 

higher    s in the low mAs limit. It is naturally expect that TV can result in a very high 

   , as it suppresses noise very well. This is, however, not quite the case sometimes due 40 

to the loss of contrast. Since TV solves a minimization sub-problem of           

        
          , i.e. the ROF model, in each iteration, a certain amount of contrast 

is usually lost in this process. This fact has been observed in many studies and even 
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mathematically demonstrated (Meyer, 2001). In contrast, TF method panelizes only high 

frequency components, while leave low frequency components unchanged. The unaltered 

low frequency components serve as a skeleton of the reconstructed image, which 

maintains the image contrast. It is this fact that TV achieves relatively lower    s in the 

high mAs cases. On the low mAs limit, where a large amount of noise signal appears in 5 

the projections, TV start to demonstrate its superior ability of controlling noise in the 

reconstructed images relative to the TF algorithm, leading to higher    s despite the 

loss of contrast. 

Third, the computation efficiency is found different. In our reconstruction, it is 

observed that the absolute computation time per iteration step is 1.1, 4.1, and 15.2 sec for 10 

the TF algorithm on the three multi-scale levels and the corresponding time for TV is 

about 1.8, 5.1, and 17.7 sec. Among each iteration, CGLS update accounts for about 70% 

of the computation time. Comparing TV and TF algorithms, the main difference is at the 

stage of performing image regularization. TV solves an ROF model in this sub-problem, 

while TF uses a deterministic way of thresholding the TF coefficients. Since the ROF 15 

model is solved with a simple gradient descent method, which is an iterative algorithm by 

itself, the performance is relatively lower than the deterministic way employed in the TF 

algorithm. Yet, there exist some novel algorithms that solve the ROF model very fast 

given the current development on image processing. For instance, the split Bregman 

algorithm (Goldstein and Osher, 2009) has been shown to be capable of solving the ROF 20 

model with an high efficiency, though we did not exploit the possibility of integrating 

this algorithm in this work. 

Last but not least, we would like to point an interesting connection between the TV 

algorithm and the TF algorithm. When computing the TF coefficient by convolving a 

signal   with a high pass filter, such as    
  

 
        , the result is essentially an 25 

approximation of  the partial derivative with a central finite difference scheme. Therefore, 

utilizing the information of                   
    

   
 to enforce the image 

smoothness is to some degree similar to using a TV term of   
  

  
 
 
  

  

  
 
 
  

  

  
 
 
 in 

its discrete format. Though this argument is not rigorous, the connection between the TV 

algorithm and the TF algorithm has been recently mathematically established under a 30 

certain conditions (Cai et al., 2011). 
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Appendix  

 

1. CGLS algorithm 

 

CGLS algorithm (Hestenes and Stiefel, 1952) solves the least-square problem 5 

           
  in an iterative manner using conjugate gradient method. Specifically, the 

algorithm performs following iterations: 

Algorithm  CGLS: 

 Initialize:     ;             ;                 ;            
 

 
; 

For          , do the following steps 

1.            

2.                 
 

 
; 

3.                     ,                     ; 

4.                ; 

5.                
 

 
; 

6.                 ; 

7.                       .   

Output        as the solution. 

Noticing that in the context of CBCT reconstruction with only a few projections, the 

normal equation          is indeed underdetermined. The convergence of the CGLS 

algorithm for underdetermined problems have been studied previously (Kammerer and 10 

Nashed, 1972). In our reconstruction algorithm, the CGLS is used as a means to ensure 

the data fidelity condition during each iteration step of the reconstruction. Specifically, 

given an input image       , the CGLS algorithm outputs a solution           

which is better than the input in the sense that the residual         
  is smaller than 

       
 . This fact always holds regardless the singularity of the linear system.  15 

Since the use of CGLS is merely for ensuring data fidelity via minimizing the 

residual    norm, in each outer iteration of our TF algorithm, it is not necessary to 

perform CGLS iteration till converge. In practice,       CGLS steps in each outer 

iteration step is found sufficient. This approach is also favorable in considering the 

computation efficiency, as more CGLS steps per outer iteration step will considerably 20 

slow down the overall efficiency.   

 

2. Derivation of Eq. (3) 

 

Let           and           be two smooth enough functions in the CBCT image 25 

domain and in the x-ray projection image domain, respectively. The operator    
, being 

the adjoint operator of the x-ray projection operator   , should satisfy the condition 

      
          , (A1) 

 where       denotes the inner product. This condition can be explicitly expressed as 
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       =                  . (A2) 

Now take the functional variation with respect to      on both sides of Eq. (A2) and 

interchange the order of integral and variation on the right hand side. This yields 

   
      =  

 

     
                         

 

     
        . (A3) 

With help of a delta function we could rewrite Eq. (1) as  

                             . (A4) 

Now substituting (A4) into (A3), we obtain  

   
                            

      

       
     , (A5) 

where    is the coordinate of a point on imager, at which a ray line connecting the source 5 
   and the point   intersects with the imager.       is the length from    to    and      
is that from    to  . The source to imager distance is   . Additionally, a summation over 

projection angles   is performed in Eq. (3) to account for all the x-ray projection images.   
One caveat when implementing (A5) is that this equation is derived from condition 

(A1), where the inner product of two functions is defined in an integral sense. In the 10 

CGLS algorithm, both   and    are viewed as matrices. Therefore an inner product 

defined in the vector sense, i.e.              for two vectors   and  , should be 

understood in (A1). Changing the inner product from a function form to a vector form 

results in a numerical factor in Eq. (3), simply being the ratio of pixel size      to the 

voxel size       . We have tested the accuracy of such defined operator    in terms of 15 

satisfying condition expressed in Eq. (A1). Numerical experiments indicate that this 

condition is satisfied with numerical error less than 1%. Though this could lead to CT 

number inaccuracy in the reconstructed CBCT image, absolution accuracy of CT number 

is not crucial in the use of CBCT in cancer radiotherapy, since CBCT is mainly used for 

patient setup purpose. Meanwhile, the readers should be aware of this potential 20 

inaccuracy of the Hounsfield Unit when utilizing Eq. (3).  
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