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ABSTRACT

Histological staining is vital in clinical pathology for vi-
sualizing tissue structures. However, these techniques are la-
borious and time-consuming. Digital virtual staining offers
a promising solution, but existing methods typically rely on
Generative Adversarial Networks (GANs), which may suffer
from artifacts and mode collapse. Motivated by the success of
diffusion models, we present DUST, a novel Diffusion-based
Unified framework for versatile Stain Transfer in histopathol-
ogy. To enhance domain awareness and task-specific perfor-
mance, we propose a dual encoding strategy that integrates
the stain types of both the source and target domains. Ad-
ditionally, we introduce a dynamic dual-output head to ad-
dress the unstable intensity issue encountered with conven-
tional DDPM implementations. Validated on a curated four-
stain kidney histopathological dataset (H&E, MT, PAS, and
PASM), DUST demonstrates superior versatile stain transfer
capabilities. Our research highlights the potential of diffusion
models to advance virtual staining, paving the way for more
efficient digital pathology analyses.

Index Terms— Virtual staining, Versatile stain transfer,
Diffusion models, Kidney histopathology

1. INTRODUCTION

Histological staining is crucial for visualizing tissue struc-
tures and cellular morphology in clinical pathology. Common
stains like hematoxylin and eosin (H&E) provide essential
contrast between nuclei and extracellular matrices. Special
stains such as Masson’s trichrome (MT), Periodic Acid-Schiff
(PAS), and Periodic Acid-silver Methenamine (PASM) are
used to highlight collagen fibers, glycoproteins, and basement
membranes, respectively. Despite their significance, these
staining processes are time-consuming and labor-intensive,
involving extensive sample preparation and manual execution
by skilled histotechnicians. Moreover, given that the same
section cannot be repeatedly stained, the necessity for multi-
ple tissue sections for different stains poses challenges, espe-
cially in resource-constrained environments, hindering acces-
sibility and increasing costs.
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Fig. 1. Framework Overview. Left: The versatile stain trans-
fer problem, i.e., conversion across four stain domains: H&E,
MT, PAS, and PASM. Right: Our proposed unified diffusion-
based framework, which incorporates the source image and
stain information as additional conditions. For stain condi-
tioning, we introduce a dual encoding strategy that integrates
information from both the source and target domains.

Recently, the advent of digital virtual staining has emerged
as a transformative approach, enabling the conversion of one
stain to another through deep learning [1]. Previous research
has predominantly focused on developing specialized mod-
els to transfer H&E stains to one [2] or a few [1, 3] special
stains, largely due to the prevalence of H&E staining. Yet,
the concept of a unified framework that facilitates versa-
tile stain conversion, i.e., translating any given stain to any
desired stain (Figure 1 left), remains relatively unexplored.
Developing such a framework is advantageous for two key
reasons. First, despite H&E’s affordability, it has its limita-
tions in providing detailed surface and color contrast, making
the translation from special stains beneficial for capturing
complementary details [1]. Second, the proven synergy of
generalist models in both natural [4] and medical imag-
ing [5] underscores the potential of a unified framework to
surpass the capabilities of specialized models. By enabling
efficient broad-spectrum stain conversion, this framework al-
lows pathologists to instantly switch between different stain
types within their existing workflows, thus supporting swift,
effective, and high-throughput pathological analysis.

Furthermore, traditional stain transfer techniques [3,
6, 1, 7, 2] often rely on Generative Adversarial Networks



(GANs) [8, 9, 10, 11], which can suffer from issues like ar-
tifacts and mode collapse. Additionally, unpaired translation
methods [6, 3] lead to suboptimal results due to their inabil-
ity to leverage pixel-wise correspondence, indispensable for
detailed pathological images [7]. Fortunately, emerging dif-
fusion models [12] have beat GANs in terms of stability and
image quality across natural image generation [13, 14, 15],
denoising, and translation [16] tasks, providing a promising
alternative.

In this paper, we propose DUST, a novel Dffusion-based
Unified framework designed for versatile Stain Transfer in
histopathology to address these limitations. Our method inte-
grates the source image and the stain types of both the source
and target domains as additional conditions to enable multi-
task learning. Unlike the commonly used one-hot encod-
ing [10, 6, 3] or adaptive normalization strategies [17, 18],
we propose a dual encoding strategy to integrate the stain
types of both source and target domains, thereby enhancing
its task-specific performance. Furthermore, we addressed the
issue of unstable intensity encountered with conventional De-
noising Diffusion Probabilistic Models (DDPM) implemen-
tations [12] by introducing a dynamic dual-output head [19].
Validated on our curated kidney histopathological four-stain
(H&E, MT, PAS, and PASM) dataset, our method demon-
strates superior performance on versatile stain transfer in the
proof-of-concept transfer cycle. Our study underscores the
potential of diffusion models in advancing the field of virtual
staining.

2. METHOD

2.1. Unified Diffusion Framework

Problem Formulation. Versatile stain transfer can be for-
mulated as a multi-domain image-to-image translation prob-
lem. Denote the set of histopathological stain domains with
K stains as S = {1, 2, . . . ,K}. Given any source-target pair
of stains {s0, s1} ⊂ S and a source image x with stain s0,
we aim to apply a unified framework that can transfer the
style of x from domain s0 to the desired domain s1, while
preserving the content of x. The entire dataset is denoted
as D = {(x(i)

1 ,x
(i)
2 , . . . ,x

(i)
K ) | i = 1, 2, . . . , N}, where

x
(i)
j ∈ R3×H×W represents the i-th pathological slice with

stain j. Here, we have K = 4 corresponding to the stains
H&E, MT, PAS, and PASM.
Preliminaries. We briefly review key concepts of diffusion
models [12]. Diffusion models initiate with a forward diffu-
sion process that gradually adds Gaussian noise to an initial
image x0, i.e., q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), with√

ᾱt being hyperparameters. This process is reparameterized
as xt =

√
ᾱtx0+

√
1− ᾱtϵt, where ϵt ∼ N (0, I) represents

the sampled noise. Then x0 can be easily backtraced via:

x0 =
1√
ᾱt

(xt −
√
1− ᾱtϵ). (1)

The reverse diffusion process, which reconstructs the
original data by reversing the noise, is approximated by
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). Training op-
timizes the variational lower bound on the log-likelihood
of the initial data, simplified to Lθ = − log pθ(x0|x1) +∑

t DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt)). By characterizing
the mean µθ as a noise prediction network ϵθ and fixing
the variance [12], the training process simplifies to minimiz-
ing the mean-squared error between the predicted and actual
noise, i.e., Lsimple(θ) = ∥ϵθ(xt, t)− ϵt∥22.
Unified Diffusion Framework. To enable versatile stain
transfer between any source-target stain pair, our framework
accommodates additional inputs: the source image c from
stain s0 ∈ S, the desired target stain s1 ∈ S (where s0 ̸= s1),
the noise timestep t, and the noised target image x̃t. Given
the sampled noise ϵt, our unified noise prediction network
ϵθ [12] denoises x̃t conditioned on these inputs, formalized
by the optimization objective:

min
θ

E{s0,s1}⊂SE(c,x)Eϵ∼N (0,I)Et∥ϵθ(x̃t, c, s0, s1, t)−ϵt∥22.

Here the source image c is conditioned via concatenation, and
time features t are conditioned via sinusoidal positional en-
codings and spatial addition [15].

2.2. Advanced Functionality Design

Stain Conditioning. To achieve a unified framework, a cru-
cial aspect is the conditioning on stain domains. We pro-
pose a dual-encoding approach to differentiate between var-
ious tasks. Specifically, we use an integer vector to denote
both the source and target domains. We encode the source
domain as 1 and the target domain as 2, i.e., the stain vector
r = (r1, r2, . . . , rK), where rs0 = 1, rs1 = 2, and ri = 0 for
each i ∈ S \ {s0, s1} (Figure 1 right). This vector is embed-
ded and added with the time embedding to feed to the model
through spatial addition, mirroring the class label condition-
ing approach in LDM [14]. This method incorporates both
the source domain and the target domain into the model, en-
hancing its ability to distinguish between different tasks. The
design can easily be extended to scenarios with multiple input
domains.
Learning Objective. In a preliminary experiment, we ob-
served that a conventional DDPM implementation [12] tends
to produce unstable intensity shifts in the generated images,
an issue evident in Figure 2(c). Closer inspection of the dif-
fusion process revealed errors at larger timesteps t. This phe-
nomenon is associated with the learning objective for noise
prediction, particularly challenging at greater timesteps. Re-
ferring to Equation 1, when t is large,

√
ᾱt approaches zero,

then even minor errors in ϵ can lead to substantial devia-
tions in the final output, which causes the unstable intensity



Table 1. Quantitative results on versatile stain transfer, using
a proof-of-concept translation cycle: H&E→ MT→ PASM→
PAS→ H&E. (FID: Fréchet Inception Distance, KID: Kernel
Inception Distance)

H&E→MT MT→PASM PASM→PAS PAS→H&E
Method FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓
pix2pix [8] 182.75 0.195 225.42 0.211 142.30 0.137 73.78 0.058
CycleGAN [9] 54.03 0.032 77.17 0.045 45.59 0.025 189.65 0.208
Palette [16] 87.35 0.058 51.88 0.012 75.20 0.064 78.10 0.052
StarGAN [10] 84.45 0.068 144.80 0.129 99.30 0.083 87.65 0.072
StarGANv2 [11] 104.51 0.099 151.68 0.190 87.71 0.083 89.30 0.079
Ours 41.76 0.019 42.66 0.012 41.92 0.022 41.46 0.023

Table 2. Ablation studies comparing different strategies of
stain conditioning.

H&E→MT MT→PASM PASM→PAS PAS→H&E
Stain conditioning FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓
1) One-hot enc. 42.28 0.020 47.86 0.020 52.19 0.035 49.05 0.033
2) Dual enc. 41.76 0.019 42.66 0.012 41.92 0.022 41.46 0.023

issue. To mitigate this issue, we incorporate the dynamic
dual-output diffusion head [19] into our framework, which
leverages the complementary strengths of noise prediction
and original image reconstruction, resulting in more stable
outputs (Figure 2(d)). Specifically, we modify the output
channels of our model from C to 3 × C, where C represents
the number of channels in the target images. For RGB images
in our experiments, C = 3. The generate model fθ computes:

ϵθ,xθ, rθ = fθ(x̃t, c, s0, s1, t).

Here ϵθ is the prediction of noise, xθ is the prediction of the
original image, and rθ is a weighting factor. All of ϵθ, xθ,
and rθ have C channels. Subsequently, both xθ and ϵθ can
estimate the forward process posterior mean µ̃t. Specifically,
µx(xθ) represents the mean obtained through the prediction
of the original image xθ, while µϵ(ϵθ) represents the mean
obtained through the prediction of noise ϵθ. We then use rθ
as a weight to combine these two estimates:

µθ = rθ · µx(xθ) + (1− rθ) · µϵ(ϵθ).

Finally, we define our loss function as:

Lθ = ∥ϵθ − ϵt∥22 + ∥xθ − x0∥22 + ∥µθ − µ̃t∥22.

3. EXPERIMENTS

3.1. Experimental Settings

Datasets. We used Whole Slide Imaging (WSI) to obtain 40
slices of mouse kidney tissue for each staining method, in-
cluding H&E, PAS, MT, and PASM. High-resolution scanned
images with approximately ∼17,000×27,000 pixels were
acquired using an Olympus VS200 microscope. The data
were collected within the same batch, thus eliminating po-
tential batch effects. To minimize pixel misalignment across
various stains, we collected each eight slices in sequence

and applied a four-stain cycle: H&E, PAS, MT, and PASM.
Further, we employed VALIS [20], an advanced registra-
tion algorithm, for serial registration of multiple consecutive
slices. The images were 4× downsampled and divided into
256×256 patches, following the approach described in [3].
Only patches containing a minimum of 20% foreground
pixels were retained. After manual examination by expert
pathologists, we created a pixel-level, well aligned paired
dataset. For model training and evaluation, we randomly
partitioned the dataset into two sets, with 29, 566 patches for
training and 3, 532 for testing.
Implementation Details. We adopted a linear variance
scheduler setting the maximum timestep T at 1, 000, with
a noise level interval ranging from 0.002 to 0.02. Our model
architecture is designed upon the efficient-UNet described
in [13], with modifications tailored to our specific task. The
architecture encompasses six stages, with channel numbers
per stage being 32, 64, 96, 192, 256, and 512 respectively.
Following [19], we adjusted the output head’s channel count
from 3 to 9 to incorporate the dynamic dual-output head
strategy. The dimensions for time and stain embedding were
at 1024, incorporating a linear transformation for the stain
vector embedding. We employed the AdamW optimizer
with a constant learning rate of 1 × 10−4. The training was
conducted over 300 epochs for a unified model, accommo-
dating all A2

4 = 12 potential combinations of source-target
domains. The batch size was 48. Our model was developed
using PyTorch and MONAI frameworks and was trained on
three NVIDIA A800 80G GPUs. For sampling, we used an
advanced sampler, DPM-Solver++ [21], employing a single-
step mode with 20 steps, translating a 256× 256 image using
∼ 0.7s on a single A800 GPU.
Evaluation Metrics. Given the challenges in obtaining exact
ground truth matches, even after registration [7], and the vari-
ability in stains produced by the same technician [1], we em-
ployed unpaired metrics in our experiments. Specifically, we
utilized the Fréchet Inception Distance (FID) and the Kernel
Inception Distance (KID). It is important to note that methods
like SSIM, which evaluate structural similarity, are not well-
suited for consecutive tissue slices. This is because consecu-
tive slices inherently exhibit structural differences. Therefore,
we opted for widely-used metrics in generative tasks, such
as FID and KID, which are commonly accepted as standard
evaluation metrics in the field. These metrics provide a robust
assessment of the quality and realism of generated images,
aligning with the current best practices in the community.
Baselines. Our comparative analysis includes a variety of
baseline methods, encompassing both GAN-based strategies
(such as pix2pix [8], CycleGAN [9], StarGAN [10], and Star-
GANv2 [11]) and a diffusion-based approach (Palette [16]).
For methods not inherently equipped for multi-domain tasks
(specifically pix2pix, CycleGAN, and Palette), we conducted
individual training for each domain pair. Each model was de-
veloped using official source code and trained for 300 epochs.



PA
S 
→

H
&E

H
&E

 →
M

T

(a) (b) (c) (d)

Fig. 2. Image translation comparison: (a) Source, (b) Target,
(c) DDPM [12], (d) Our method. The conventional DDPM
implementation using a learning objective for noise prediction
yields unstable intensity shifts, while our approach ensures
stability.

3.2. Quantitative & Qualitative Results

Our Framework’s Proficiency in Versatile Stain Trans-
fer. Utilizing a conceptual conversion cycle (H&E→ MT→
PASM→ PAS→ H&E), we demonstrated our framework’s
superiority in versatile stain transfer. As indicated in Table
1, our method surpasses competing techniques significantly
in FID and KID metrics, recording an average FID of around
42 and a KID of approximately 0.02.

Our method, in contrast to Palette [16], which is another
diffusion-based approach that trains separate networks for
each task, exhibits superior performance across all tasks. No-
tably, it outperforms Palette in the H&E to MT translation
task, achieving an FID improvement of approximately 45.59.
Additionally, our method demonstrates enhanced detail cap-
ture, possibly due to the introduced dynamic dual-output
head. For instance, while Palette struggles with accurately
representing cell nuclei and glomerulus boundaries, as ob-
served within the red box in the fourth row of Figure 3(e),
our framework achieves precise translations. This under-
scores the synergistic effect of our all-in-one pathological
translation framework over task-specific models, resonating
with the emerging trends in generalist and foundation mod-
els [5, 4, 22].

In comparison to other multi-domain methods like Star-
GAN [10] and StarGANv2 [11], our framework main-
tains consistent performance across all tasks, unlike the
others which may falter in specific conversions, such as
MT→PASM, and struggle with style capture (see Figure
3(d)). This demonstrates that our method can maintain stabil-
ity across multiple domains while using a unified framework.

3.3. Ablation Studies

We conducted an ablation study focusing on the design of
stain conditioning. Besides our dual-encoding strategy, we
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Fig. 3. Visualization of image translation results using var-
ious methods in the proof-of-concept cycle: H&E→ MT→
PASM→ PAS→ H&E. From left to right: (a) Source, (b) Tar-
get, (c) CycleGAN [9], (d) StarGAN [10], (e) Palette [16], (f)
Our method. Our approach effectively captures the target do-
main’s style while retaining the source image’s content. (Best
viewed when zoomed in.)

employ a one-hot encoding scheme. In this method of stain
conditioning, the source domain is disregarded, and a single
number is used to represent the target domain s1. Our re-
sults demonstrate that dual-encoding yields superior perfor-
mance compared to one-hot encoding. As detailed in Table
2, our “dual-encoding” strategy outperforms “one-hot encod-
ing” strategy in all the four tasks. Our dual-encoding strat-
egy, by integrating source stain information, enhances task
differentiation within the framework. Consequently, we have
selected the dual-encoding approach for our framework.

4. CONCLUSION

We propose a novel diffusion-based unified framework for
versatile stain transfer (DUST) in histopathology. By inte-
grating dual encoding strategies and a dynamic dual-output
head, it achieves superior performance in transferring images
across multiple stain types. Our extensive experiments on a
four-stain kidney histopathological dataset showcase its po-
tential to advance the field of virtual staining towards effi-
cient, accessible and high-throughput pathological analysis.

5. COMPLIANCE WITH ETHICAL STANDARDS

This study was performed in line with the principles of the
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