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ABSTRACT

Quantitative analysis of numerous repetitive structures in
large volumes is one of the most challenging tasks in biomed-
ical imaging, primarily due to its intensive manual require-
ments. Kidney glomeruli exemplify this challenge due to their
dispersion across the cortical region, high density and micro-
scopic size. To address this, we present a Reference Detection
and Mask Propagation (RDMP) pipeline that combines ob-
ject detection with 2D and 3D mask propagation, gradually
achieving efficient segmentation of the entire volume by us-
ing a 2D reference example. Our method demonstrates robust
performance, achieving a Dice Similarity Coefficient (DSC)
of 0.9096 on microCT data, and when generalized to Syn-
chrotron Radiation X-ray (SRX) data, reaching a DSC of
0.8431 with only minimal bounding box fine-tuning. Overall,
this pipeline shows strong potential for efficient, large-scale
kidney analysis, significantly reducing labor demands and
accelerating kidney disease research.

Index Terms— Large-scale Volume, Reference Detec-
tion, Mask Propagation, 3D Glomeruli Segmentation

1. INTRODUCTION

In biomedical image analysis, handling large-scale repetitive
structures poses a significant challenge, primarily due to the
substantial manual resources required for annotation [1]. The
kidney, essential for waste filtration and fluid balance main-
tenance, is closely associated with various diseases when its
functions are impaired. Accurate diagnosis and treatment
of kidney-related diseases require the creation of a detailed
kidney atlas with precise segmentation of its components [2].
A critical step is the segmentation of glomeruli, which are
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microscopic structures fundamental to the kidney’s filtra-
tion process [3]. With approximately 1,000,000 glomeruli
in each human kidney, their comprehensive segmentation is
a resource-intensive task, highlighting the need for efficient,
reliable methods for segmenting repetitive structures.

A straightforward approach to segmenting large repetitive
structures involves employing object detection models to lo-
cate potential targets before performing segmentation. Ex-
isting methods typically fall into two categories. The first
integrates segmentation modules directly into object detec-
tion networks, exemplified by models like Mask R-CNN [4],
YOLO [5] and DETR [6]. The second approach, often used in
interactive models such as T-Rex [7] and T-Rex2 [8], applies
detected bounding boxes as prompts for interactive segmen-
tation models such as SAM [9]. However, both approaches
are vulnerable to detection errors, as segmentation accuracy
depends heavily on detection results. The tight coupling of
detection and segmentation poses particular challenges in ac-
curately segmenting numerous small, repetitive structures like
glomeruli, especially when initial detections are inaccurate.

To address these limitations, we propose a three-stage
Reference Detection and Mask Propagation (RDMP) pipeline,
illustrated in Fig. 1(a), consisting of sequential stages: 2D ref-
erence detection, 2D mask propagation, and 3D mask propa-
gation. In the 2D detection stage, by giving a reference object,
we enhance the detection model with a visual-prompt branch
and a multi-scale cross-attention (MSCA) module to improve
detection accuracy for small, dense targets. Following de-
tection, we introduce 2D and 3D mask propagation based
on PAM (Propagating Anything Model) [10], a propagation-
based general segmentation model for 3D medical images.
Specifically, in the 2D stage, reference masks are propagated
to segment the detected regions. The 3D stage then extends
these masks to adjacent slices along the vertical axis to com-
plete the full 3D volume. In our pipeline, each successive
stage refines its predecessor’s results: false positives from



Fig. 1. An overview of the proposed RDMP. (a) The RDMP pipeline. (b) The architecture of reference detection model. (c)
The architecture of mask propagation model. 2D mask propagation uses the reference image and its mask to segment detected
patches within the starting slice, while 3D mask propagation extends starting slice’s mask to neighboring slices, producing 3D
segmentation.

detection can be corrected by 2D mask propagation, while
false negatives are mitigated through 3D mask propagation.

The key contributions of our work are as follows:
• Development of a novel Reference Detection and Mask

Propagation (RDMP) pipeline for segmenting large repet-
itive structures, ensuring consistent robustness and accu-
racy.

• Achievement of high accuracy in large-scale Synchrotron
Radiation X-ray (SRX) volumes while requiring minimal
2D bounding box annotations for fine-tuning the model
trained on microCT data, demonstrating strong general-
ization capability.

• Provision of a foundational algorithmic framework for
segmenting massive microscopic structures in high reso-
lution 3D imaging modalities, particularly demonstrated
in microCT and SRX volumes.

2. METHODOLOGY

The RDMP methodology, illustrated in Fig. 1, consists of
three sequential stages: 2D reference detection, 2D mask
propagation, and 3D mask propagation.

2.1. 2D Reference Detection

Given a starting slice xs and a reference object xr cropped
from a slice of the 3D image, the 2D reference detection
aims to locate all glomeruli within xs. As depicted in

Fig. 1(b), a visual-prompt branch and a multi-scale cross-
attention (MSCA) module are integrated into the network
architecture to provide reference information and improve
small-object detection. Specifically, xs and xr are processed
through a shared backbone to generate multi-scale feature
maps {xl

s}Ll=1 and {xl
r}Ll=1. For each feature level l, identical

position encodings posl are added to preserve spatial context:

x̃l
s = xl

s + posl,

x̃l
r = xl

r + posl.

The starting slice features act as the query Q, while the refer-
ence object features serve as the key K and the value V in the
cross-attention operation:

xl
f = CrossAttn(x̃l

s, x̃
l
r) = Softmax

(
Q ·KT

√
d

)
· V,

where Q = WQx̃
l
s, K = WK x̃l

r, and V = WV x̃
l
r, with WQ,

WK , and WV as learnable projection matrices, d scaling the
dot product for computational stability. This cross-attention
mechanism, applied at each feature level, effectively cap-
tures multi-scale fusion information, providing a comprehen-
sive representation suited for detecting small structures like
glomeruli. The fused features {xl

f}Ll=1 are subsequently pro-
cessed by the encoder-decoder component, based on a mod-
ified deformable DETR [11], to generate the final detection
box coordinates {bs,k}Kk=1 and confidence scores {cs,k}Kk=1.



2.2. 2D Mask Propagation

After obtaining the detection boxes {bs,k}Kk=1 and confidence
scores {cs,k}Kk=1 for the starting slice xs, 2D mask propaga-
tion generates segmentation for boxes with confidence scores
higher than a detection threshold t. Using the reference ob-
ject image xr and its mask mr, a fine-tuned PAM model (il-
lustrated in Fig. 1(c)) propagates mask information to each
detected box {bs,k}Kk=1. The output individual glomerulus
masks {ms,k}Kk=1 are then consolidated into their respective
positions to create the full mask ms for xs.

To mitigate erroneous mask propagation in false pos-
itive detections, we incorporate both positive samples of
glomeruli-to-glomeruli (both connected and non-connected)
and negative samples of glomeruli-to-background in the PAM
fine-tuning process. This approach ensures mask generation
for true glomeruli regions while producing zero-element
masks for non-glomeruli regions. By selectively propagating
the reference mask only to bounding boxes containing actual
glomeruli, this decoupled detection-segmentation approach
enhances pipeline robustness. It ensures that even with low
detection thresholds generating numerous false positives, the
2D mask propagation maintains accuracy by preventing mask
propagation to irrelevant areas.

2.3. 3D Mask Propagation

After obtaining the starting slice mask ms through 2D mask
propagation, we perform 3D mask propagation to achieve
full segmentation across the entire volume. In this stage, the
PAM model fine-tuned on 3D data extends the mask infor-
mation from the starting slice to its 2Z neighboring slices
along the z-axis. Using the starting slice xs and its mask ms
as propagation prompts, the model generates segmentation
results ms±Z for adjacent slices xs±Z through a bidirectional
propagation approach. This up-down propagation strategy
effectively compensates for false negatives from the 2D de-
tection stage, particularly for initially undetected glomeruli
instances. The approach ensures that even if a glomerulus is
missed in one slice, it can be recovered through propagation
from neighboring slices.

3. EXPERIMENTS

3.1. Datasets and Pre-processing

Our evaluation utilizes two datasets: a private microCT
dataset (26 volumes of size 512 × 512 × 500 and 1 vol-
ume of size 1024 × 1024 × 1000) and a public SRX dataset
(1 large-scale volume of size 3840× 3072× 256) [12]. Both
datasets are isotropic with an approximate resolution of 1µm
and annotated by experts. Data augmentation includes nor-
malization, random flipping, resizing, cropping, and contrast
adjustment based on the dynamic range of the foreground.

For the microCT dataset, 19 samples of 512× 512× 500
are randomly chosen for training, and the remaining sam-
ples are used for testing. For the training of 2D reference
detection and 2D mask propagation, slices are extracted from
the 3D volume along z-axis at intervals of 5. For each 2D
slice, one glomerulus is randomly selected as a reference
object. In mask propagation, glomeruli larger than 50 pix-
els are selected; each glomerulus gi generates positive pairs
{gi,mi, gj ,mj} by applying its mask mi to other glomeruli
gj within the same slice. Negative samples are formed by
applying mi to random 64 × 64 background regions, with
a 3:1 ratio of positive to negative samples. The 3D mask
propagation model follows PAM’s original configuration.

For the SRX dataset, we crop 30 2D images of size 512×
512 from the full-kidney volume, and use these slices with
bounding box annotations to fine-tune the detection model
pre-trained on the microCT dataset.

3.2. Implementation Details

Our 2D reference detection model employs ResNet-50 [13]
as the shared backbone, initialized with ImageNet [14] pre-
trained weights and trained for 200 epochs on the microCT
dataset. Other settings align with those in Deformable DETR.
The 2D and 3D mask propagation models, initialized with
PAM parameters, are fine-tuned for 30 and 3 epochs respec-
tively, using the AdamW optimizer (learning rate 1 × 10−3,
weight decay 1 × 10−4) with batch sizes of 512 and 128,
and the soft dice loss function. Given the localized nature of
glomerular structures, we systematically select starting slices
at fixed intervals (zinterval = 30) along the z-axis, correspond-
ing to the approximate average glomerulus radius. All start-
ing slices can use a shared reference object cropped from the
3D image, and the 3D mask propagation parameter Z is set
to 20. To improve efficiency, volumes are divided into over-
lapping 256 × 256 × 250 sub-volumes. Models are trained
on four NVIDIA A800-SXM4-80GB GPUs using PyTorch
1.13.1 [15], with inference on one such GPU.

For detection model evaluation, only boxes with Intersec-
tion over Union (IoU) ≥ 0.5 are counted as true positives.
Precision, recall, and their harmonic mean (F1 score) are cal-
culated at different detection thresholds. The mask propaga-
tion models are evaluated using the Dice Similarity Coeffi-
cient (DSC). 2D DSC is the average score across all reference
slices, while 3D DSC measures alignment between predic-
tions and ground truth for the complete 3D volume.

3.3. Results on microCT Dataset

Tab. 1 presents quantitative evaluation results for each RDMP
component, illustrating performance variations across differ-
ent detection thresholds t. As t increases, precision shows
steady improvement, reaching 0.9817 at t = 0.9, while recall
exhibits a corresponding decline. This pattern reflects the in-



Fig. 2. Visualization of inference result on SRX of size 3840 × 3072 × 256: 2D whole slide image (left), locally enlarged of
2D slice (middle), 3D visualization (right).

t Precision Recall F1 Score 2D DSC 3D DSC
0.1 0.7427 0.8475 0.7845 0.7051 0.9051
0.2 0.8663 0.8247 0.8402 0.6999 0.9077
0.3 0.9051 0.8154 0.8525 0.6990 0.9088
0.4 0.9284 0.8033 0.8560 0.6954 0.9096
0.5 0.9425 0.7900 0.8535 0.6902 0.9094
0.6 0.9507 0.7779 0.8497 0.6862 0.9089
0.7 0.9615 0.7615 0.8432 0.6811 0.9086
0.8 0.9714 0.7417 0.8339 0.6733 0.9093
0.9 0.9817 0.7078 0.8141 0.6556 0.9062

Table 1. Model performance under different detection thresh-
olds t. Bold indicates the best performance. Underline indi-
cates the second-best performance.

herent trade-off between maximizing true positives and mini-
mizing false positives. The F1 score, balancing precision and
recall, peaks at 0.8560 with t = 0.4, indicating optimal detec-
tion model performance. At this threshold, the 3D DSC score
also reaches its maximum of 0.9096, indicating how precise
detection enhances overall pipeline performance.

Our results demonstrate effective mitigation of both false
positives and false negatives introduced by the detection
model. The 2D DSC score peaks at t = 0.1 and gradually
declines as t increases, suggesting successful false positive
suppression through 2D mask propagation. Even with numer-
ous detected boxes, the method avoids erroneous propagation
in non-glomeruli regions. Meanwhile, the 3D DSC score re-
mains relatively stable across different values of t, reflecting
that 3D mask propagation compensates for false negatives
in prior stages. Missed glomeruli in individual slices can be
recovered through vertical propagation from adjacent slices,
ensuring volumetric segmentation continuity. This stability
highlights the pipeline’s robustness to detection results.

3.4. Generalize to Large-volume SRX dataset

For inference on the SRX volume with full horizontal cover-
age, 30 512×512 2D images with bounding box annotations,
as described in 3.1, are used to fine-tune the detection model
pre-trained on the microCT dataset. We directly apply the
microCT-trained 2D and 3D mask propagation models with-
out additional fine-tuning. This configuration achieves a 3D
DSC score of 0.8431 on the large-volume SRX dataset, with
results visualized in Fig. 2.

The results demonstrate successful detection and segmen-
tation of most glomeruli in the large, cross-modal volume,
despite limited fine-tuning data. This performance validates
the adaptability and efficiency of our pipeline in cross-modal
applications, establishing it as a resource-efficient solution for
comprehensive kidney analysis.

4. CONCLUSION

In this work, we propose a Reference Detection and Mask
Propagation (RDMP) pipeline for efficient 3D glomeruli
segmentation, including 2D reference detection, 2D mask
propagation, and 3D mask propagation. Experiments on
microCT and SRX datasets demonstrate that our pipeline
is robust to detection errors and achieves high segmenta-
tion accuracy while requiring minimal bounding box anno-
tations for fine-tuning. The success of RDMP in processing
high-resolution volumetric data, particularly its strong perfor-
mance on cross-modal datasets, establishes it as a promising
framework for analyzing large-scale repetitive structures in
biomedical imaging. This capability is especially valuable
for advancing quantitative analysis in kidney research and
broader biomedical applications where efficient processing of
massive microscopic structures is essential.
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