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ABSTRACT

Nuclei segmentation in Hematoxylin and Eosin (H&E)
stained images plays a crucial role in cancer diagnosis and
pathological evaluation, enabling pathologists to identify
abnormal cells and assess their morphology and distribu-
tion. While current automated nuclei segmentation methods
predominantly employ convolutional neural networks and
attention mechanisms, the potential of element-wise multi-
plication has been largely unexplored. This paper introduces
U-Star, a novel asymmetric segmentation network based on
the star block that leverages element-wise multiplication.
U-Star adopts the classic encoder-decoder architecture and
innovatively implements star-connection as an alternative
to traditional skip-connections. In experiments on an H&E
stained image dataset, U-Star achieved superior performance
with a Dice coefficient of 0.8783, accuracy of 0.9089, and
IoU of 0.7929, significantly outperforming baseline mod-
els. Extensive ablation studies validate the effectiveness
of the star-connection and demonstrate the advantages of
our proposed framework. Beyond advancing the applica-
tion of element-wise multiplication techniques, U-Star shows
promising potential for broader applications in medical image
segmentation.

Index Terms— element-wise multiplication, nuclei seg-
mentation, tokenized MLP

1. INTRODUCTION

Hematoxylin and Eosin (H&E) staining remains the gold
standard technique in pathological diagnostics, as it effec-
tively enhances the contrast between nuclei and cytoplasm,
enabling pathologists to identify and analyze diverse cell
types and tissue structures. However, automated analysis of
H&E stained images presents several technical challenges
[1]. The heterogeneous morphology of nuclei, varying stain-
ing intensities, and frequent nuclear overlaps due to inconsis-

tent tissue section thickness all contribute to the complexity
of accurate image segmentation.

In recent years, neural network technology has made sig-
nificant progress in the field of computer vision, particularly
demonstrating great potential in medical image processing
applications. These advanced technologies have opened up
new possibilities for solving the problem of nucleus segmen-
tation. The creation of AlexNet [2] represents a major break-
through in deep learning within the field of computer vision
and has directly promoted the widespread application of deep
convolutional networks. VGG [3] and GoogLeNet [4] sig-
nificantly improved network performance and efficiency by
promoting the optimization and innovation of convolutional
neural network structures. The residual learning introduced
by ResNet [5] effectively tackled the challenges of training
difficulty as network depth increased. In the field of medical
image analysis, U-Net [6] marks a milestone, specifically de-
signed for medical image segmentation; its unique symmet-
rical structure and skip connections significantly improved
the capability of image processing. Transformer [7] employs
Self-Attention that breaks through the limitations of tradi-
tional sequence processing models, performing excellently
not only in text processing but also in visual tasks. Swin
Transformer [8], through its hierarchical structure and sliding
window mechanism, effectively reduces computation while
maintaining the ability to capture global information, further
extending the application of Transformers in the visual field.

Recently, researchers have increasingly focused on a
computational method distinct from convolution and atten-
tion mechanisms: element-wise multiplication. FocalNet [9],
HorNet [10], and VAN [11] analyzed why element-wise mul-
tiplication is effective based on intuition and assumptions,
while Xu Ma et al. [12] referred to it as the “star operation”,
demonstrating its ability to map inputs to high-dimensional
nonlinear feature spaces and introduced the concept valida-
tion network, StarNet.

The core of StarNet, star block, is a lightweight mod-



Fig. 1: Illustration of U-Star, an asymmetric U-shaped network based on element-wise multiplication. U-Star extracts features
of the input image layer by layer through its decoder and achieves local interaction effects similar to a Swin Transformer block
in a lightweight manner. Ultimately, through the layer-by-layer output of the decoder block, U-Star produces precise image
segmentation results.

ule based on element-wise multiplication that exhibits excep-
tional performance. However, StarNet is mainly suitable for
image classification since it primarily uses the star block for
feature extraction and lacks an integrated decoding structure;
also, a fully symmetric encoder-decoder structure is inappro-
priate. Because element-wise multiplication extracts hidden
features by increasing the number of blocks, excessive stack-
ing raises computational complexity and can lead to issues
like overfitting or the curse of dimensionality. Therefore, dif-
ferent numbers of star blocks are required at various encod-
ing and decoding stages to ensure optimal performance, ex-
plaining why U-Star adopts a non-strictly symmetric architec-
ture. “Symmetry” is reflected in the same size of feature maps
in the encoding and decoding stages, while “non-strict sym-
metry” is shown in the asymmetric connections of the star-
connection and the different numbers of star blocks used by
the encoder and decoder.

The bottleneck connects the encoder and decoder, en-
abling the model to learn deep feature representations. Swin-
Unet [13] uses two Swin Transformer Blocks to optimize
window locality, but this approach increases the number of
parameters, which may hinder model convergence. Thus,
we employ the lightweight token MLP [14] introduced by
U-Next [15], which not only significantly reduces model
parameters but also efficiently utilizes locality.

Our key contributions include:

1. Development of U-Star, a novel network architecture in-
corporating star blocks and star-connections for H&E
stained nuclei segmentation, achieving robust perfor-
mance without extensive hyperparameter tuning.

2. Introduction of an asymmetric network design that op-
timizes computational efficiency and feature extraction
by strategically varying the distribution of star blocks
between encoder and decoder stages, offering a more ef-
fective alternative to conventional symmetric U-shaped
architectures.

3. Implementation of a lightweight token MLP bottleneck
that efficiently connects the encoder and decoder while
maintaining local feature contexts.

4. Comprehensive experimental validation of the proposed
architecture through ablation studies and comparative
analyses, providing empirical evidence for the effective-
ness of each architectural component.

2. METHODS

2.1. Overall Framework

The overall architecture of the U-Star proposed in this study is
shown in the figure 1. U-Star utilizes a non-rigidly symmet-
ric encoder-decoder architecture, where the bottleneck sec-
tion links the encoder and decoder. The encoder is primarily



responsible for feature extraction, while the decoder is tasked
with mapping these features back to their original size to pro-
duce segmentation results. In this architecture, ConvBN con-
sists of a convolution layer and a batch normalization layer,
while DoubleConv is made up of two ConvBNs, with each
ConvBN output connected to a ReLU activation function.

Fig. 2: Illustration of Star-Connection. Star-Connection first
uses upsampling to make the features from the decoder match
the dimensions of the features from the encoder, then inde-
pendently passes them through a star block, and finally con-
catenates them together.

2.2. Encoder and Decoder

In the encoder, the input image first passes through the In-
Conv module, which projects the feature dimensions to the in-
teger C. The In-Conv module consists of a DoubleConv block.
The features then pass through three encoding blocks, each
containing a ConvBN and multiple star blocks, which reduce
the feature resolution by a factor of two. ConvBN, responsi-
ble for downsampling, is configured with a 3× 3 convolution
kernel, padding of 2, and dilation of 1 in the batch normaliza-
tion layer. Notably, in the encoder, the star blocks are stacked
multiple times, utilizing their element-wise multiplication ca-
pability to map inputs to a high-dimensional nonlinear feature
space, for more effective feature extraction.

In the decoder, features first pass through four decoding
blocks, each consisting of a star block and a DoubleConv.
Each decoding block aims to restore features, doubling their
resolution. Before passing through DoubleConv, features un-
dergo a star-connection with other features in the encoder. Fi-
nally, the output is processed through a 1 × 1 single convo-
lution layer (Out-Conv) to complete segmentation or classi-
fication tasks. During the decoding phase, only a single star
block is used to reduce disturbances caused by multiple stack-
ings. Additionally, the decoding phase requires the fusion of
feature maps from different layers (star-connection), where
excessive stacking might reduce the robustness of the model.

2.3. Star Block

The structure of the star block is also shown in the figure 1.
Specifically, a DWconv sized 7 × 7, with padding of 3 and
stride of 1, is used to extract features, thereby preserving the
size of the feature map. Utilizing DWconv substantially low-
ers parameter count and computational cost, thereby boosting
computational efficiency. After processing with batch nor-
malization, mapping is performed using two fully connected
layers (FC). Once mapping is complete, one feature is acti-
vated using the ReLU6 function and then engaged in element-
wise multiplication with another feature. Ultimately, features
are extracted using batch normalization followed by another
DWconv.

2.4. Star-Connection

We have adopted a novel feature fusion method called star-
connection. The primary difference between star-connection
and skip-connection is that the star block is used to map fea-
tures during the connection process. As shown in the figure
2, xe are features from the encoder with dimensions W

t ×
H
t × tC; xd are features from the decoder with dimensions
W
t × H

2t × 2tC. First, xd is upsampled to the dimensions of
W
t × H

t × tC and passed through a star block for process-
ing. Simultaneously, xe is also processed through another
star block. Then, these two processed features are concate-
nated to form features of dimensions W

t × H
t × 2tC, com-

pleting the star-connection. Experimental results show that
star-connection performs better than skip-connection.

2.5. Bottleneck

The bottleneck part consists of patch embedding and tok-
enized MLP. Patch embedding is used for tokenizing features,
and the subsequent tokens are processed by the tokenized
MLP to achieve window locality in the network.

Patch embedding is implemented with a convolution ker-
nel of size 3, stride 2, and padding 1. Subsequently, these
tokens are input into the tokenized MLP block. The structure
of the tokenized MLP block is shown in the diagram, with
the shifted mlp as its core. Specifically, the shifted mlp splits
features into m chunks along the channel, and each chunk is
rolled by different units in height or width, mapped through
an MLP to enhance feature locality.

3. EXPERIMENTS

3.1. Datasets

The Histology Image Dataset [15] used in this study is a com-
posite of the publicly available MoNuSeg dataset [16] and
another private dataset [17]. This dataset contains 462 H&E
stained images, each with a resolution of 512 × 512 pixels.



Fig. 3: Segmentation results using different models. The segmentation results include four baseline models and three sets of
ablation studies. Our model is the closest to the label.

Models DICE(%) Acc(%) IoU(%) ErCnt(%)
U-Net 80.14 86.91 69.15 13.09

U-Net++ 85.57 89.31 76.06 10.69
U-Next 82.04 87.52 71.33 12.48

Swin-Unet 70.57 81.52 57.99 18.48
U-StarE1 85.81 89.63 76.15 10.37
U-StarE2 79.07 83.43 68.04 16.56
U-StarE3 82.97 86.98 73.01 13.02
U-Star 87.83 90.89 79.29 9.11

Table 1: Performance metrics for different models

The labels are binarized and converted to black and white im-
ages to facilitate segmentation experiments. The dataset is
divided in the ratio of training set: validation set: test set =
0.8 : 0.1 : 0.1.

3.2. Implementation

In the U-Star implementation, the first convolutional layer in
the DoubleConv block alters the number of channels, whereas
the second one maintains it; the stack counts n1, n2, and n3

for the star blocks are respectively set at 3, 3, and 5. We com-
pared U-Net [6], U-Net++ [18], U-Next [14], and Swin-Unet
[13] as baselines, and designed three additional architectures
to enrich the experiment.

U-StarE1, Compared to U-Star, simplifies by replacing
the star-connection with a regular skip-connection. U-StarE2
retains the star-connection but adds additional star blocks in
each decoding block. U-StarE3 combines skip-connections
with multiple star blocks stacked in the decoding blocks. All
models are trained using the Adam optimizer [19] with a
training duration set for 50 epochs. The loss function is a
weighted combination of cross-entropy loss and DICE loss,
with weights of 0.4 and 0.6. We selected the model with the
best DICE coefficient on the validation set for testing.

4. RESULTS AND DISCUSSION

As demonstrated in Table 1 and Figure 3, U-Star consistently
achieves superior performance across all evaluation metrics
compared to baseline models.

To validate our architectural choices, we conducted com-
prehensive ablation studies. U-StarE1, which replaces star-

connections with traditional skip-connections, shows perfor-
mance degradation across all metrics: a 2.02% decrease in
DICE score, 1.26% decrease in accuracy, and 3.14% decrease
in IoU score. These results substantiate the effectiveness of
our proposed star-connection mechanism in facilitating fea-
ture integration between encoder and decoder paths.

In U-StarE2, we investigated the impact of increasing star
blocks in the decoder while maintaining star-connections.
The observed significant performance deterioration indicates
that star blocks are more effectively utilized in the encoder
path, where feature extraction is paramount, rather than in the
decoder path.

U-StarE3 combines traditional skip-connections with
multiple star blocks in the decoder. While it slightly outper-
forms U-StarE2, possibly due to skip-connections mitigating
the adverse effects of stacked star blocks in the decoder, its
performance remains notably inferior to U-Star. The seg-
mentation results visually confirm the presence of artifacts,
suggesting that the combination of these modifications dis-
rupts the network’s feature reconstruction capability.

These ablation studies conclusively demonstrate that the
optimal architecture comprises star-connections and a single
star block in each decoder stage, as implemented in our final
U-Star design. This configuration achieves the best balance
between feature extraction, information flow, and computa-
tional efficiency.

5. CONCLUSION

In this paper, we present U-Star, a novel segmentation net-
work architecture that leverages the power of star blocks
for H&E stained image segmentation. Our work makes two
significant architectural innovations: the implementation of
an asymmetric design that challenges traditional U-shaped
paradigms, and the introduction of star-connections for en-
hanced feature integration. Comprehensive ablation studies
demonstrate that this design achieves superior segmentation
performance while maintaining computational efficiency,
without requiring complex parameter tuning. The success
of U-Star not only advances the application of element-wise
multiplication in medical image analysis but also opens new
possibilities for its utilization in broader computer vision
tasks. Future work could explore the adaptation of U-Star to
other medical imaging modalities and investigate its potential
in various segmentation applications beyond pathology.
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