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1. The symmetric group

Definition 1.1. A permutation is a bijection from [n] := {1, 2, . . . , n} to [n].

We typically write a permutation via one-line notation. For example, w = 3142 means
w(1) = 3, w(2) = 1, w(3) = 4 and w(4) = 2.

Definition 1.2. The symmetric group Sn is the group of all permutations on [n] with the
group operation being composition of maps. Let si = (i i+1) be the permutation that swaps
i and i+ 1, called a simple transposition or a simple generator, for i = 1, . . . , n− 1.

It is clear that {s1, . . . , sn−1} generates Sn.

Definition 1.3. The length of a permutation w is defined to be the smallest ℓ such that
w = si1si2 · · · siℓ for some simple generators si1 , . . . , siℓ . Denote the length by ℓ(w).

For example, the permutation 3142 has length 3 as 3142 = s2s1s3.

Definition 1.4. The (right) weak Bruhat order is a partial order defined on Sn such that
w ⋖R wsi if ℓ(w) < ℓ(wsi) for some i. The left weak Bruhat order is defined by w ⋖L siw if
ℓ(w) < ℓ(siw).

•123
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•132

•312

Figure 1. The (right) weak and strong order on S3.

Now define the transpositions T to be all the conjugates of {s1, . . . , sn−1}. In other words,
T = {(i j) | 1 ≤ i < j ≤ n} contains all the 2-cycles. Write tij := (i j).

Definition 1.5. It is clear that both weak and strong Bruhat orders are graded by length.
It is a standard fact (you may use freely) that ℓ(w) = |I(w)|, where

I(w) = {(i, j) | i < j, w(i) > w(j)}
is the inversion set of the permutation w.
The (strong) Bruhat order is defined by w < wtij if ℓ(w) < ℓ(wtij).

Write a Bruhat interval as [u, v] := {w ∈ Sn|u ≤ w ≤ v}. Similarly define [u, v]L and [u, v]R
in the weak orders. The intervals [id, v] starting from the identity element id = 123 · · ·n are
also called lower intervals.

In a partially ordered set (poset) P , we say that x is covered by z, or z covers x, denoted
x ⋖ z, if there does not exist an element y ∈ P such that x < y < z. A poset P is ranked
if it has a decomposition P = P0 ⊔ P1 ⊔ · · · ⊔ Pr into disjoint union such that if x ∈ Pi and
x⋖ y, then y ∈ Pi+1. For example, the strong and weak Bruhat orders are ranked. A graded
/ ranked poset P = P0 ⊔ · · · ⊔ Pr is called rank-symmetric if |Pi| = |Pr−i| for i = 0, 1, . . . , r.

Definition 1.6. We say that a permutation w contains a pattern u if a subsequence of w
has the same relative order as u. For example, w = 4736215 contains the pattern 312 at the
underlined positions. We say that w avoids u if w does not contain u.
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(1)

6 pt

Show that the number of permutations in Sn that avoid π ∈ S3 is a fixed number
that does not depend on the pattern π ∈ S3. You can either provide a closed formula
for this number, of provide a generating function.

(2)

6 pt

Show that w ≤L u in the left weak Bruhat order if and only if their inversion sets
satisfy I(w) ⊂ I(u).

(3)

10 pt

Show that if w avoids 3142 and 2413, then the weak (left or right) Bruhat intervals
[id, w]L and [id, w]R are rank-symmetric. For example, if w = 3142, then there are
two elements 1342, 3124 covered by w, but only one element 1324 covering id = 1234
in the right weak Bruhat interval [id, 3142].

(4)

10 pt

The condition in the above question is not necessary. Find a family of permutations
w that contain either 3142 or 2413 such that [id, w]R is rank-symmetric.

(5)

8 pt

For a permutation w ∈ Sn, write w[i, j] = #{k | k ≤ i, w(k) ≤ j} for all i, j ∈ [n].
This is called the rank-matrix associated with w. See Figure 2 for an example. Show

•
•

•
•

•
•

0 1 1 1 1 1
0 1 2 2 2 2
0 1 2 2 2 3
0 1 2 2 3 4
1 2 3 3 4 5
1 2 3 4 5 6

Figure 2. A rank matrix for permutation w = 236514

that x ≤ y in the (strong) Bruhat order if and only if x[i, j] ≥ y[i, j] for all i, j ∈ [n].
(6)

8 pt

Fix a reduced word for some w = si1 · · · siℓ . Show that if u ≤ w in the (strong)
Bruhat order, then there exists a subword of i1, . . . , iℓ which is a reduced word for
u. This is called the subword property. For example, fix 3241 = s1s2s3s1. Then
3214 = 321 < 3241 and we can choose s1s2s1 = 321 as a subword for 321. Is it true
that for any reduced word u = sj1 · · · sjk and w ≥ u, there is a reduced word for w
that contains j1, . . . , jk as a subword?

(7)

10 pt

Show that the (strong) Bruhat interval [id, w] is rank-symmetric if and only if w
avoids 3412 and 4231. For example, if w = 3412, then there are four elements 1432,
2413, 3142, 3214 covered by w, but only three elements 2134, 1324, 1243 covering id,
so [id, 3412] is not rank-symmetric.

(8)

10 pt

Show that the (strong) Bruhat interval [id, w] is isomorphic to a boolean lattice, i.e.
all subsets of some [m] = {1, 2, . . . ,m} ordered by inclusion, if and only if w avoids
321 and 3412.

(9)

10 pt

A permutation w is called k-Grassmanian if its descent set is contained in {k}. For
example, 2356147 is 4-Grassmanian. The Lehmer code L(w) of a permutation w is
the sequence [L(w)1, · · · , L(w)n] where L(w)i = #{j > i : w(j) < w(i)}.
(a) Use Lehmer code to give a bijection between the set of all k-Grassmanian

permutation in Sn, and the set of all partitions that fit inside the k×(n−k) rectangle.
Denote this bijection λ(w).
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(b) Show that for a k-Grassmanian permutation w, the set of reduced words of w
are in bijection with the set of standard Young tableaux of λ(w). (See section 2 for
definition of SYT).

2. Symmetric functions

Definition 2.1. Let S∞ =
⋃

n≥1 Sn be the infinite symmetric group that consists of bijections
w : Z>0 → Z>0 with all but finitely many fixed points.

Definition 2.2. A permutation w ∈ S∞ acts on the polynoial ring Z[x1, x2, . . .] and the ring
of formal power series Z[[x1, x2, . . .]] by wf(x1, x2, . . .) = f(xw(1), xw(2), . . .). A formal power
series f is a symmetric function if wf = f for all w ∈ S∞. Denote the ring of symmetric
function as Λ =

⊕
d≥0 Λ

d where Λd is the degree d component.

Definition 2.3. A composition of n is a list I = (i1, . . . , il) of positive integers with sum n,
denoted I ⊨ n. The length of I is the number l, denoted ℓ(I). A partition of n is a
composition λ = (λ1, . . . , λl) of n such that λ1 ≥ · · · ≥ λl, denoted λ ⊢ n. The Young
diagram of λ is the array arranged in left-justified rows of squares in which Row i from top
to bottom consists of λi boxes. The conjugate of a partition λ is the the partition whose
Young diagram is obtained by exchanging the rows of columns of λ, denoted λ′.

For two partitions λ ⊢ n and µ ⊢ n, we say that λ dominates µ, denoted λ ⊵ µ, if
λ1 + · · · + λi ≥ µ1 + · · · + µi for all i. We say that µ is contained in λ, denoted µ ⊆ λ, if
ℓ(µ) ≤ ℓ(λ) and µi ≤ λi for all i ≤ ℓ(µ). For µ ⊆ λ, the skew shape λ/µ is the shape obtained
from the Young diagram of λ by removing the Young diagram of µ. When µ is empty, the
skew shape λ/µ is the partition λ.

We do not distinguish a partition with its Young diagram. Sometimes we may also allow
some parts to be 0 or treat λ with infinite length by appending 0’s. Try to understand it in
context. We are interested in basis of Λn. Let λ ⊢ n.

Definition 2.4. Define the following monomial symmetric functions {mλ}’s, elementary
symmetric functions {eλ}’s, complete homogeneous symmetric functions {hλ}’s, power sum
symmetric functions {pλ}’s as follows:

mλ =
∑
α

xα1
1 xα2

2 · · · where α = (α1, α2, . . .) = wλ for some w ∈ S∞,

eλ =eλ1 · · · eλk
where em =

∑
i1<i2<···<im

xi1xi2 · · ·xim ,

hλ =hλ1 · · ·hλk
where hm =

∑
i1≤i2≤···≤im

xi1xi2 · · ·xim ,

pλ =pλ1 · · · pλk
where pm = xm

1 + xm
2 + · · · .

It should be clear that {mλ |λ ⊢ n} form a basis of Λn, and the fact that {eλ |λ ⊢ n} form
a basis of Λn is called the fundamental theorem of symmetric functions.

Definition 2.5. A semistandard Young tableau (SSYT) of shape λ/µ and type α is a filling
of the boxes of the shape λ/µ using αi copies of i for i = 1, 2, . . . such that each row is
weakly increasing and each column is strictly increasing from top to bottom. Also write
wt(T ) = xα := xα1

1 xα2
2 as the weight of an SSYT T .
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Further, define a standard Young tableaux of shape λ ⊢ n to be a SSYT that uses each of
the numbers 1 to n exactly once.
Denote the set of SSYTs with shape λ by SSYT(λ/µ), and the set of SSYTs with

shape λ and content α by SSYT(λ/µ, α). The Kostka number Kλ/µ, α is the cardinality
of SSYT(λ/µ, α).

Definition 2.6. The Schur function is sλ/µ =
∑

T∈SSYT(λ/mu) wt(T ).

Example 2.7. The following is an SSYT of shape (4, 4, 3, 1) and weight x2
1x

2
2x

3
3x5x6x7x10x12.

1 1 2 5

2 3 3 10

3 6 7

12

A horizontal strip (resp. vertical strip) is a skew shape in which there is only one cell in
each column (resp. row).

Theorem 2.8 (Pieri’s rule). We have

sλek =
∑
µ

sµ,

where the sum runs over all partitions µ such that µ/λ is a vertical strip of length k.

(1)

2 pt

What is the number of compositions of n? What is the number of partitions of n?
You can either give a closed formula or provide a generating function.

(2)

4 pt

Let λ, µ ⊢ n. Show that if ℓ(λ) + ℓ(µ) ≥ n+ 1, then λ′ ⊵ µ and µ′ ⊵ λ.

(3)

5 pt

Write the formal power series
∏∞

i=1(1 + xi + x2
i ) in elementary symmetric functions.

(4)

5 pt

Show that sλ is always a symmetric function. Hint: the infinite symmetric group is
generated by simple transpositions si = (i i+1) so it suffices to find an involution on
the set of semistandard Young tableaux.

(5)

5 pt

Show that {sλ |λ ⊢ n} form a basis of Λn by showing that there exists a semistandard
Young tableau of shape λ and type µ ⊢ n if and only if λ ⊵ µ, and that there exists
a unique semistandard Young tableau of shape λ and type λ.

(6)

8 pt

Consider the basis bλ =
∑

µ⊴λ,|µ|=|λ| mµ of Λ. Is each Schur function sλ expanded
nonnegatively into this basis?

(7)

6 pt

Show Girard-Newton’s formula:∑
i ̸=n

(−1)n−i−1eipn−i = nen.

Hint: A combinatorial proof is based on some combinatorial interpretation of ei
and pn−i in terms of special Young tableaux.
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Definition 2.9. Let G be a simple graph. A coloring of the vertices κ : V (G) → Z≥1 is
proper if κ(a) ̸= κ(b) for adjacent vertices a and b. The chromatic symmetric function is
XG(x1, x2, . . .) :=

∑
κ proper

∏
v∈V (G) xκ(v). This is clearly symmetric.

For a composition I ⊨ n, there is a unique partition ρ(I) ⊢ n which consists of the parts
of I by reordering. Write eI := eρ(I).

(1)

10 pt

Let Pn be the path graph on n vertices, that is, its vertices can be labeled v1, . . . , vn
where vi is connected with vi+1 for i ∈ [n− 1]. Show that XPn =

∑
I⊨nwIeI where

wI = i1(i2 − 1)(i3 − 1) · · · (ik − 1) if I = (i1, . . . , ik).

(2)

10 pt

Let Cn be the cycle graph on n vertices, that is, its vertices can be labeled v1, . . . , vn
where vi is connected with vi+1 for i = 1, . . . , n and vn+1 := v1. Show that XCn =∑

I⊨n(i1 − 1)wIeI .

3. Coxeter groups

Definition 3.1. A Coxeter system (W,S) is a group W (possibly infinite!) and a finite set
S ⊂ W of generators of W , for which W admits a presentation (“Coxeter presentation”) of
a very particular form. Namely, there must be a matrix (mst)s,t∈S satisfying mss = 1 for

each s ∈ S, and mst = mts ∈ {2, 3, . . .} ∪ {∞} for s ̸= t ∈ S, such that

W = ⟨s ∈ S|(st)mst = id for any s, t ∈ S with mst < ∞⟩ .
When mst = ∞, there is no corresponding relation between s and t. The elements of S are
often called simple reflections and the rank of the Coxeter system (W,S) is defined as |S|.

Definition 3.2. For each w ∈ W , one can write w = s1 · · · sk for some s1, . . . , sk ∈ S. The
sequence (s1, . . . , sk) is called an expression or a word for w. We use a notational shorthand
w to denote the sequence (s1, . . . , sk), when the product s1 · · · sk is equal to w. That is, the
notation w indicates both an element w ∈ W and a particular choice of expression for w. The
length of w, denoted by ℓ(w), is the minimal k for which w admits an expression (s1, . . . , sk).
Any expression for w with this minimal length ℓ(w) is called a reduced expression.

The following theorem is crucial in the theory of Coxeter groups.

Theorem 3.3 (Exchange Condition). Let w = (s1, s2, . . . , sk) be a reduced expression for w,
and t ∈ S. If ℓ(wt) < ℓ(w) then there exists i such that 1 ≤ i ≤ k and wt = s1s2 · · · ŝi · · · sk.

Let (si1 , . . . , sik) and (sj1 , . . . , sjk) be two arbitrary expressions of the same length. If we
can apply a sequence of braid relations to obtain (sj1 , . . . , sjk) from (si1 , . . . , sik) we say that
they are related by braid relations. The following is a beautiful theorem.

Theorem 3.4 (Matsumoto’s Theorem). Any two reduced expressions for w ∈ W are related
by braid relations.

(1)

5 pt

Give a realization of the dihedral group D2n (the symmetric group of the regular
n-gon) as a Coxeter system.

(2)

5 pt

Find (and prove!) a Coxeter presentations of 3 generators for the dihedral group D12

(the symmetric group of the regular hexagon), which has 12 elements.
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(3)

5 pt

Show that any Coxeter group W admits a sign representation: an action of W on R
where each simple reflection acts by −1. Deduce that ℓ(ws) ̸= ℓ(w), for any w ∈ W
and s ∈ S.

(4)

5 pt

Using the exchange condition to show that for w ∈ W , the set {s ∈ S | ℓ(ws) < ℓ(w)}
is equal to the set {s ∈ S | w admits a reduced expression ending in s}, which is
called the right descent set.

(5)

10 pt

Using the exchange condition and Matsumoto’s theorem to show that the word prob-
lem in a Coxeter group is solvable, that is, there is an algorithm to determine whether
two words in the generators represent the same element.

4. Combinatorial Hodge theory

We assume some basic knowledge of sl2-representations in this section.

Definition 4.1. Fix a finite-dimensional graded real vector space

H =
⊕
i∈Z

H i

and a symmetric non-degenerate graded bilinear form

⟨−,−⟩ : H ×H −→ R.

By “graded” we mean that ⟨H i, Hj⟩ = 0 if i ̸= −j. It is immediate that ⟨−,−⟩ induces
an isomorphism between H−i and (H i)

∗
. We say that the graded vector space H satisfies

Poincaré duality. Thus, if bi = dim (H i) (the i-th “Betti number” of H), then bi = b−i for
all i ∈ Z. Our convention is such that the mirror of Poincare duality is in degree zero.

Definition 4.2. We say a degree two linear map

L : H i −→ H i+2

is a Lefschetz operator if ⟨La, b⟩ = ⟨a, Lb⟩ for all a, b ∈ H. If L is a Lefschetz operator, then
it is said to satisfies hard Lefschetz if for all i ≥ 0,

Li : H−i −→ H i

is an isomorphism.

Definition 4.3. Let L be a Lefschetz operator. For each i ≥ 0, define the Lefschetz form
on H−i with respect to L as

(a, b)−i
L =

〈
a, Lib

〉
for a, b ∈ H−i.

We will use the notation Hmin to denote the nonzero graded component of H of minimal
degree, which is well defined as long as H ̸= 0.

Definition 4.4. For all i ≥ 0 set

P−i
L = ker

(
Li+1

)
∩H−i,
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which is called a primitive subspace. AssumeHodd = 0 orHeven = 0 and that L is a Lefschetz
operator satisfying hard Lefschetz. We say that (H, ⟨−,−⟩, L) satisfies the Hodge–Riemann
bilinear relations if the restriction of the Lefschetz form to the primitive subspace

(−,−)min+2i
L

∣∣
Pmin+2i
L

is (−1)i-definite.

(1)

5 pt

Show that a degree two operator L on H satisfies hard Lefschetz if and only if there
is an action of sl2(R) = ⟨e, f, h⟩ on H with e acting as L and h ·v = iv for all v ∈ H i.
Moreover, show that this sl2(R)-action is unique.

(2)

5 pt

If L satisfies hard Lefschetz, show that the betti numbers satisfy

· · · ≤ b−4 ≤ b−2 ≤ b0 ≥ b2 ≥ b4 ≥ · · · , · · · ≤ b−3 ≤ b−1 = b1 ≥ b3 ≥ · · · .
(3)

5 pt

Assume Hodd = 0. Find a formula for the signature of the Lefschetz form in degree
zero in terms of the betti numbers of H.

(4)

5 pt

Suppose that (H, ⟨−,−⟩, L) satisfies Hodge-Riemann and K is an L-invariant graded
subspace of H satisfying Poincaré duality. Show that

(K, ⟨−,−⟩K , L|K)
satisfies Hodge–Riemann (up to a sign). In particular, the restriction of the Lefschetz
form from H−i to K−i is non-degenerate, for each i ≥ 0.

(5)

10 pt

This exercise will explore H∗(Gr(2, 4),R), the cohomology of the Grassmannian of
2-planes in C4, using a combinatorial model. Let P (2, 4) denote the set of Young
diagrams which fit inside a 2× 2 rectangle. The degree of a partition will be −4 plus
twice the number of boxes; for example the partition (2, 1) has degree +2. Two Young
diagrams are complementary if one can be rotated 180 degrees in order to fill the full
2× 2 rectangle with the other: for example (2, 1) and (1, 0) are complementary. Let
H be the graded vector space with basis {vλ}λ∈P (2,4). Place a symmetric bilinear

pairing on H, where ⟨vλ, vµ⟩ = 1 if λ and µ are complementary, and is equal to zero
otherwise. Place an operator L : H i → H i+2 on this space, where Lvλ =

∑
µ vµ is

the sum over the Young diagrams µ ∈ P (2, 4) obtained from λ by adding one box.
Prove that L is a Lefschetz operator satisfying hard Lefschetz and the Hodge–

Riemann bilinear relations. (Hint: Compute a basis for each primitive subspace.)

5. Plücker relations and Gröbner bases

Let R = C[x1, . . . , xn] be the polynomial ring of n variables over C.

Definition 5.1. A term order < is a total order on the monomials of R such that it is

• multiplicative: xb :=
∏n

i=1 x
bi
i < xc if and only if xa+b < xa+c;

• artinian: 1 < xa.

Given a polynomial f =
∑

a cax
a, the leading term in<(f) = cax

a if xa is the largest under
< among monomials appearing in f with non-zero coefficient.

Definition 5.2. Fix a term order <, the initial ideal of an ideal I ⊂ R is

in<(I) := ⟨in<(f) : f ∈ I⟩.
8



Suppose I = ⟨f1, . . . fm⟩. Then {f1, . . . , fm} is said to be a Gröbner basis if

in<(I) = ⟨in<(fi) : i ∈ [m]⟩.
AGröbner basis {f1, . . . , fm} is reduced if each in<(fi) has coefficient 1 and the only monomial
appearing anywhere in {f1, . . . , fm} that is divisible by in<(fi) is in<(fi) itself.

(1)

5 pt

If in<(I) = ⟨in<(fi) : i ∈ [m]⟩, then I = ⟨f1, . . . fm⟩.

(2)

5 pt

Every ideal I ⊂ R has a finite Gröbner basis for every term order.

(3)

5 pt

For every term order <, there is a unique reduced Gröbner basis.

Definition 5.3. For a term order < and an ideal I ⊂ R, define the standard monomials of
R/I to be the monomials that are not in the initial ideal in<(I).

(1)

5 pt

Show that the set of standard monomials is a C-vector space basis of R/I.

(2)

5 pt

Find a characterization of all monomial orders on C[x1, x2]. Generalize your result
to R = C[x1, . . . , xn].

The two most frequently used monomial orders are the purely lexicographical order “<lex”
and the reverse lexicographical order “<rlex”. These are defined as follows. We assume that
an order is given on the variables, say, x1 > x2 > · · · > xn. We then put xα <lex x

β if there
exists i ∈ [n], such that αj = βj for all j < i, and αi < βi. In contrast to “<lex”, the reverse
lexicographic order “<revlex” is a linear extension of the natural grading on R. We define
xα <revlex x

β if
∑

i αi <
∑

i βi or if
∑

i αi =
∑

i βi and there exists i ∈ [n] such that αj = βj

for all j > i and αi > βi.
Let R = C[x1,1, . . . , xk,n] be the ring of polynomial functions on Matk×n the space of k×n

matrices (we assume k ≤ n throughout this section).

Definition 5.4. For a = {a1 < · · · < ak} ∈
(
[n]
k

)
a k-element subset of [n], denote [a] the

determinant of the k × k submatrix of Matk×n with column index set a. We extend the
notation of [a] to all sequences

a = (a1, . . . , ak) ∈ [n]k

where we use the convention that for any permutation σ ∈ Sn,

(1) [aσ(1), aσ(2), . . . , aσ(k)] = (−1)ℓ(σ) · [a1, . . . , ak].
In particular, this implies that [a] = 0 if ai = aj for some i ̸= j ∈ [n].

Let S ⊆ R be the subalgebra generated by the set {[a] : a ∈
(
[n]
k

)
}. Then S can be

presented as a quotient of polynomial ring C[[a] : a ∈
(
[n]
k

)
]/J where J is generated by the

following straightening relations:
9



Definition 5.5. Let s ∈ [k], α ∈
(
[n]
s−1

)
, β ∈

(
[n]
k+1

)
and γ ∈

(
[n]
k−s

)
where elements in α, β, γ

are in increasing order. The straightening relation attached to α, β, γ is∑
I∈([k+1]

s )

(−1)sgn(I)[α1, . . . , αs−1, βi′1
, . . . , βi′k−s+1

] · [βi1 , . . . , βis , γ1, . . . , γk−s]

where I = {i1 < · · · < is} ⊂ [k + 1], {i′1 < · · · < i′k−s+1} := [k + 1] \ I, and sgn(I) :=∑s
j=1 ij −

(
s+1
2

)
.

Consider the ordering on the variables [a] with a = {a1 < · · · < ak} given by [a] < [b] if
there exists i ∈ [k] such that aj = bj for all j < i and ai < bi.

(1)

10 pt

For a SSYT T of shape (dk) with entries in [n], define [T ] :=
∏d

i=1[Ti] ∈ C[[a]],
where Ti ∈

(
[n]
k

)
is the set of entries in the i-th column of T . Show that every

degree d homogeneous polynomial in C[[a]] can be written as C-linear combinations
of {[T ] : T ∈ SSYT(dk)}.

(2)

10 pt

Show that the straightening relations form a Gröbner basis of J with respect to the
term order “<revlex” and describe the initial ideal.

6. Ehrhart Theory

Definition 6.1. A convex d-polytope is the convex hull of finitely many points in Rd. These
points are called the vertices of P . When all of the vertices of P have integer coordinates,
we call it a lattice polytope.

Definition 6.2. Let P be the convex hull of v⃗1, . . . , v⃗m ∈ Rd. For any linear function
a(x) = a1x1 + · · · + adxd on Rd, let h = max(a(v1), . . . , a(vm)). The supporting hyperplane
of P at a is Ha,P = {x ∈ Rd | a(x) = h}. The supporting face of P at a is Fa,P := P ∩Ha,P .
The set of faces of P is the set of nonempty supporting faces of P for all possible a. The
facets of P are exactly the faces of dimension d− 1.

Let t ∈ R. The t-dilate of P is tP := {t · p | p ∈ P}, where the point t · p is obtained from
the point p by multiplying all the coordinates of p by the real number t.

Definition 6.3. The Ehrhart function (in the variable t) of a d-polytope P is LP (t) =
|(tP ) ∩ Zd|, that is, the number of lattice points (integer vectors) in the t-dilate of P .

Theorem 6.4. The Ehrhart function LP (t) of a lattice polytope P is a polynomial in t.

(1)

2 pt

Compute the Ehrhart polynomial of the hypercube, which is the convex hull of all
binary vectors in Rd. A binary vector has coordinate either 0 or 1.

(2)

2 pt

Compute the Ehrhart polynomial of the standard d-simplex, which is the convex hull
of d+ 1 standard unit vectors.

(3)

3 pt

Let P ◦ be the relative interior of P , which is P with all boundaries/facets removed.
Show by inclusion-exclusion that |tP ◦ ∩ Zd| is also a polynomial in t.
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(4)

3 pt

Compute the Ehrhart polynomial of the relative interior of the standard d-simplex,
and show that it satisfies the Ehrhart–Macdonald reciprocity: LP (−t) = (−1)dLP ◦(t).

A d-simplex is the convex hull of d + 1 affinely independent points. A d-simplex is uni-
modular if it is lattice isomorphic to the standard d-simplex. (Two polytopes P,Q are lattice
isomorphic, denoted P ≈ Q, if there exists an affine isomorphism A such that A|Zn is a
bijection onto Zn and AP = Q.)

Definition 6.5. A polytopal complex is a finite collection C of polytopes in some Rd with
the following two properties: If P ∈ C and F is a face of P , then F ∈ C; and if P,Q ∈ C
then F = P ∩Q ∈ C and F is common face of both P and Q. The polytopes in C are also
called faces. A (geometric) simplicial complex is a polytopal complex in which all faces are
simplices. An abstract simplicial complex is a set ∆ of subsets of a finite set V , such that ∆ is
closed under taking subsets. A subdivision of a polytopal complex C is a polytopal complex
C ′ such that ∪C = ∪C ′ and every face of C ′ is contained in a face of C. A triangulation is
a subdivision in which all faces are simplicies. A unimodular triangulation is a triangulation
in which all simplices are unimodular.

Definition 6.6. Let ∆ be an abstract simplicial complex on the ground set [n]. Let k be
some field. The Stanley–Reisner ring of ∆ is the quotient k[∆] := k[x1, . . . , xn]/I∆ where I∆
is the Stanley–Reisner ideal, generated by the monomials corresponding to non-faces of ∆

I∆ = ⟨xi1 · · ·xir | {i1, . . . , ir} /∈ ∆}.
When P is a polytope, we use k[P ] to denote the Stanley–Reisner ring of the polytopal
complex associated with P .

Definition 6.7. Let R = k[x1, . . . , xn]/I =
⊕

t≥0Rt be a polynomial ring, where Rt is the
k-vector space spanned by all the monomials xα1

1 · · ·xαn
n with α1 + · · ·+ αn = t. The Hilbert

function/polynomial of R is HR(t) := dimk Rt.

(1)

3 pt

Let P be a d-polytope, and let fi be the number of i-dimensional faces in P , for
0 ≤ i ≤ d. Show that the Hilbert polynomial of k[P ] is equal to

∑d
i=0 fi

(
t−1
i

)
.

(2)

5 pt

Let ∆ be a unimodular triangulation of a d-polytope P . Prove that the Ehrhart
polynomial of P equals the Hilbert function of the Stanley–Reisner ring of ∆, i.e.,

LP (t) = Hk[∆](t).

(3)

2 pt

If P,Q are both d-polytopes, show that LP∪Q = LP + LQ − LP∩Q. If P ≈ Q, show
that LP = LQ.

(4)

5 pt

Prove that the Ehrhart function is a polynomial, and prove the Ehrhart–Macdonald
reciprocity for any lattice polytope.

7. q-analogues

We say f(q) is a q-analogue (or a q-deformation) of A if limq→1 f(q) = A. Some classical
examples of q-analogues include:

(1) The q-integer [n]q := 1 + q + q2 + · · ·+ qn−1 is a q-analogue of n ∈ N.
(2) The q-factorial [n]q! := [1]q[2]q · · · [n]q is a q-analogue of n!.
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(3) The q-binomial coefficient
(
n
k

)
q
= [n]q !

[k]q ![n−k]q !
is a q-analogue of

(
n
k

)
.

(4) The Hecke algebra of a Weyl group W is a q-analogue of the group algebra of W .
(5) The flag variety over a finite field GLn(Fq)/B is a q-analogue of Sn.

Most q-analogues often come with nice enumerative and geometric properties. If a number
a count the cardinality of the set A and f(q) is a q-analogue of a, then f(q) is often the
generating function of some natural statistic on A. Moreover, there often exist an algebraic
variety X such that the q analogue f(q) of a count the size of X(Fq). They sometime also
appear as Hilbert series of some representations.

(1)

3 pt

Let Rk,n denote the set of Young diagrams that fit inside the k × (n− k) rectangle.
Note that #Rk,n =

(
n
k

)
. Find a statistic st : Rk,n → N on Rk,n such that(

n

k

)
q

=
∑

a∈Rk,n

qst(a).

(2)

3 pt

Recall that n! = #Sn. Find a statistic st : Sn → N on Sn such that

[n]q! =
∑
w∈Sn

qst(w).

(3)

5 pt

The (complete) flag variety FL(F ) over a field F is defined to be

FLn(F ) := {V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ F n| dimVi = i}.
Show that |FLn(Fq)| = [n]q!.

(4)

5 pt

A special case of the flag variety is the Grassmanian, defined as follows.

Grk(F
n) = {V ⊂ F n | dim(V ) = k}.

Show that |Grk(Fn
q )| =

(
n
k

)
q
.
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