

Billey-Postnikov posets

Yibo Gao

Joint work with: Christian Gaetz (UCB)

Beijing International Center for Mathematical Research

January 21, 2026

Background on the Bruhat order

- Let S_n be the symmetric group of permutations.
- We write a permutation in its **one-line** notation. For example, $w = 3412$ means $w(1) = 3$, $w(2) = 4$, $w(3) = 1$, $w(4) = 2$.
- The (strong) **Bruhat order** is generated by

$$w \leq wt_{ij} \text{ if } w(i) < w(j)$$

where $t_{ij} = (i\ j)$ swaps i and j .

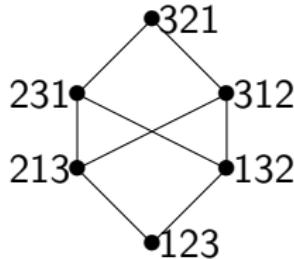


Figure: The Bruhat order on S_3

Background on the Bruhat order

- The symmetric group S_n has the following presentation:

$$S_n = \left\langle s_1, \dots, s_{n-1} \mid \begin{array}{ll} s_i^2 = 1 & \text{for } i = 1, \dots, n-1, \\ s_i s_j = s_j s_i & \text{for } |i - j| \geq 2, \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} & \text{for } i = 1, \dots, n-2, \end{array} \right\rangle$$

where $s_i = (i \ i+1)$ is called a **simple transposition**.

- The **Coxeter length** of $w \in S_n$ is the smallest $\ell = \ell(w)$ such that $w = s_{i_1} \cdots s_{i_\ell}$ is a product of ℓ simple transpositions.
- Such an expression is called a **reduced word**.
- It is a classical fact that $\ell(w) = |\text{Inv}(w)|$, where

$$\text{Inv}(w) := \{(i, j) \mid i < j, w(i) > w(j)\}.$$

- The **reflections** are $T = \{t_{ij} := (i \ j) \mid i < j\}$.
- The **Bruhat order** is generated by

$$w < wt_{ij} \text{ if } \ell(w) < \ell(wt_{ij}).$$

Background on the Bruhat order

- Hilbert's fifteenth problem
- counting problems of projective geometry
- study cohomology theories
- The flag variety is

$$\begin{aligned}\mathrm{Fl}(\mathbb{C}^n) &= \{\emptyset = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V_n = \mathbb{C}^n \mid \dim V_i = i\} \\ &= \mathrm{GL}(\mathbb{C}^n)/B\end{aligned}$$

where B is the Borel subgroup of upper triangular matrices.

$$\left[\begin{array}{cccc|c} | & & | & & | \\ v_1 & v_2 & \cdots & v_n & \\ | & | & & & | \end{array} \right] \text{ where } V_i = \mathrm{span}(v_1, \dots, v_i).$$

Background on the Bruhat order

- The flag variety admits a **Bruhat decomposition**

$$\mathrm{Fl}(\mathbb{C}^n) = \bigsqcup_{w \in S_n} \Omega_w$$

into **open Schubert cells**.

- The **Schubert variety** is $X_w := \overline{\Omega_w}$, also written as

$$X_w(E_\bullet) = \{F_\bullet \mid \dim(F_i \cap F_j) \geq \mathrm{rk}(w)[i, j] \text{ for all } 1 \leq i, j \leq n\}.$$

- $X_u \subset X_w$ if and only if $u \leq w$ in the Bruhat order.
- The **Schubert classes** $\sigma_w := [X_w]$'s form a linear basis of

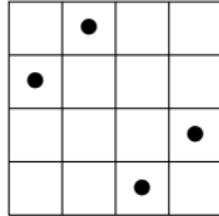
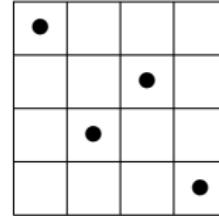
$$H^*(\mathrm{Fl}(\mathbb{C}^n), \mathbb{Z}) \simeq \mathbb{Z}[x_1, \dots, x_n]/\mathrm{Sym}^+.$$

Smooth permutations

Theorem (Lakshmibai-Sandhya 1990, Carrell 1994)

The followings are equivalent for $w \in S_n$:

- ① the Schubert variety X_w is smooth;
- ② the interval $[\text{id}, w]$ in the Bruhat order is rank-symmetric;
- ③ w avoids 3412 and 4231;
- ④ The undirected Bruhat graph $\Gamma(w)$ is regular.



Definition

A permutation $w \in S_n$ **avoids** a pattern $\pi \in S_k$ if there does not exist $1 \leq a_1 < \dots < a_k \leq n$ such that $w(a_i) < w(a_j)$ if and only if $\pi(i) < \pi(j)$.

Root systems and Weyl groups

- Let Φ be a finite crystallographic root system.
- Let $\Delta \subset \Phi^+$ be the set of **simple roots** in a choice of **positive roots**.
- For $\alpha \in \Phi$, write s_α for the **reflection** across α .
- The **Weyl group** $W = W(\Phi)$ is generated by $\{s_\alpha \mid \alpha \in \Phi\}$, or equivalently, by $\{s_\alpha \mid \alpha \in \Delta\}$.
- For $w \in W$, its **Coxeter length** is the smallest $\ell = \ell(w)$ such that $w = s_{i_1} \cdots s_{i_\ell}$ is a product of ℓ simple reflections.
- For $w \in W$, its **(right) inversion set** is

$$\text{Inv}(w) := \{\alpha \in \Phi^+ \mid w\alpha \in \Phi^-\}.$$

- It is a classical fact that $\ell(w) = |\text{Inv}(w)|$.
- The **Bruhat order** is generated by

$$w < ws_\alpha \text{ if } \ell(w) < \ell(ws_\alpha) \text{ for } \alpha \in \Phi^+.$$

Root systems and Weyl groups

- Let G be a complex reductive group and B a Borel subgroup. Then G/B is the generalized **flag variety**.
- Similar to type A , we have a **Bruhat decomposition**

$$G/B = \bigsqcup_{w \in W} BwB/B$$

where $W = N_G(T)/T$ is the Weyl group.

- The **Schubert cell** is $BwB/B \simeq \mathbb{C}^{\ell(w)}$ and the **Schubert variety** is $X_w := \overline{BwB/B}$.
- $X_u \subset X_w$ if and only if $u \leq w$ in the Bruhat order.

Parabolic decompositions

- For $w \in W$, its **descents** are

$$D_R(w) = \{\alpha \in \Delta \mid w\alpha \in \Phi^-\}, \quad D_L(w) = \{\alpha \in \Delta \mid w^{-1}\alpha \in \Phi^-\}.$$

- For $w \in W$, its **support** is

$$\text{Supp}(w) := \{\alpha \in \Delta \mid s_\alpha \leq w\}.$$

- For $w \in W$ and $J \subset \Delta$, there is a length-additive factorization $w = w^J w_J$ such that $\text{Supp}(w_J) \subset J$ and $D_R(w^J) \subset \Delta \setminus J$, called the **parabolic decompositions**.
- w^J is the minimal coset representative of w in $W/W(J)$.

Example of a parabolic decomposition

Let $w = 892367541$ and $J = \{1, 2, 4, 5, 6\}$, then

$$w^J = 289|3567|4|1, \quad w_J = 231|4675|8|9.$$

Parabolic decompositions

- Parabolic subgroups $P_J \supset B$ are indexed by $J \subset \Delta$.
- The **partial flag variety** G/P_J has a **Bruhat decomposition**

$$G/P_J = \bigsqcup_{w \in W^J} BwP_J/P_J.$$

- The (parabolic) Schubert variety is $X_{w^J}^J = \overline{Bw^JP_J/P_J}$.
- There is a natural projection $\pi_J : G/B \rightarrow G/P_J$.
- The image of $X_w \subset G/B$ under π_J is $X_{w^J}^J \subset G/P_J$.

Definition (Billey-Postnikov 2005)

The parabolic decomposition $w = w^J w_J$ is a **Billey-Postnikov decomposition** if and only if $\pi_J : X_w \rightarrow X_{w^J}^J$ is a fiber bundle.

- Motivation: inductively study (rational) smoothness.

Billey-Postnikov decompositions

- This theory is further developed by Richmond-Slofstra.
- See the chapter “Coxeter groups and Billey–Postnikov decompositions” by Oh-Richmond in *Handbook of Combinatorial Algebraic Geometry*, for a nice survey.

Theorem (Richmond-Slofstra 2016)

The followings are equivalent for $w \in W$ and $J \subset S$:

- ① $\text{Supp}(w^J) \cap J \subset D_L(w_J)$;
- ② the multiplication $([\text{id}, w^J] \cap W^J) \times [\text{id}, w_J] \rightarrow [\text{id}, w]$ is a bijection;
- ③ the Poincaré polynomials satisfy $P_w(q) = P_{w^J}^J(q)P_{w_J}(q)$;
- ④ w_J is the maximum element of $W_J \cap [\text{id}, w]$;
- ⑤ $\pi_J : X_w \rightarrow X_{w^J}^J$ is a fiber bundle, in which case the fiber is X_{w_J} .

In this case, we say w is BP at J . Write $J \in \text{BP}(w)$.

Billey-Postnikov decompositions

Non-example: $w = 312 = s_2 s_1$, $J = \{2\}$

- $w^J = 312 = s_2 s_1$ and $w_J = 123 = \text{id}$.
- $\text{Supp}(w^J) \cap J \not\subseteq D_L(w_J)$
- $[\text{id}, w^J]^J = \{123, 213, 312\}$, $[\text{id}, w_J] = \{\text{id}\}$, while $[\text{id}, w] = \{123, 213, 132, 312\}$.
- The \times map $[\text{id}, w^J]^J \times [\text{id}, w_J] \rightarrow [\text{id}, w]$ is a strict injection.
- The maximum element of $W_J \cap [\text{id}, w] = 132$.
- The maximum element of $W_J \cap [\text{id}, w]$ is not $w_J = 123$.
- The projection π_J forgets F_2 .

$$X_w(E_\bullet) = \{F_\bullet = (F_1 \subset F_2 \subset \mathbb{C}^3) \mid E_1 \subset F_2\} \subset G/B.$$

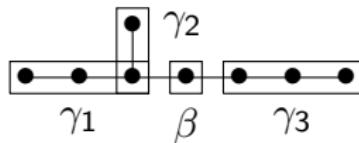
$$X_{w^J}^J(E_\bullet) = \{F_\bullet = (F_1 \subset \mathbb{C}^3) \mid E_1 \subset F_2 \text{ for some } F_2 \supset F_1\} = G/P_J.$$

- The fiber at $(E_1 \subset \mathbb{C}^3)$ is \mathbb{P}^1 , but the fiber at any other points is a single point. So it's not a fiber bundle.

Pattern characterization of BP decompositions

Definition (Gaetz-G. 2025)

$(\beta, c_1\gamma_1, \dots, c_k\gamma_k)$ forms a **J -star** pattern if $\beta \in \Phi_J^+$, $c_1, \dots, c_k \in \mathbb{Z}_{>0}$, $\gamma_1, \dots, \gamma_k \in \Phi^+ \setminus \Phi_J^+$ such that $\beta + \sum_{i \in I} c_i \gamma_i \in \Phi^+$ for all $I \subset [k]$. We say that $w \in W$ **contains the J -star** $(\beta, c_1\gamma_1, \dots, c_k\gamma_k)$ if $\beta \notin \text{Inv}(w)$ and $\beta + \sum_{i=1}^k c_i \gamma_i \in \text{Inv}(w)$.



Note that in finite crystallographic types, the multiset $\{c_1, \dots, c_k\}$ can only be $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 1\}$, $\{1, 2\}$, $\{1, 1, 1\}$,

Theorem (Gaetz-G. 2025)

w is BP at J if and only if w does not contain any J -stars.

Pattern characterization of BP decompositions

Corollary (Gaetz-G. 2025)

Let $w \in S_n$ and $J = \{a-1, \dots, b\} \subset S$ be connected. Then w is BP at J if and only if w avoids 231, 312 and 3142.

Example of pattern condition for BP decompositions in S_n

- The permutation $w = 623\underline{147}589$ contains 3142 with $J = \{3, 4, 5\}$. Thus w is not BP at J .
- The permutation 3142 contains the J -star with $J = \{2\}$, $\beta = \alpha_2$, $\gamma_1 = \alpha_1$, $\gamma_2 = \alpha_3$, as $\beta = e_2 - e_3 \notin \text{Inv}(w)$ and $\beta_1 + \gamma_1 + \gamma_2 = e_1 - e_4 \in \text{Inv}(w)$.

Our result immediately recovers one of the main theorems of Alland-Richmond 2018 which says the restriction of $\text{Fl}(n) \rightarrow \text{Gr}(k, n)$ to X_w is a fiber bundle if and only if w avoids 23|1 and 3|12.

Billey-Postnikov posets

We work in the generality of finite crystallographic types.

Theorem (Gaetz-G. 2025)

If w is BP at both J and K , then w is BP at $J \cup K$ and $J \cap K$.

By the fundamental theorem of finite distributive lattices, this says that there exists a poset $\text{bp}(w)$ on Δ , which we call the **Billey-Postnikov poset**, such that $\text{BP}(w)$ is the lattice of order ideals of $\text{bp}(w)$.

Examples

- $w = 3412$, $J \in \{\emptyset, \{2\}, \{1, 2, 3\}\}$ so $\text{bp}(w) = \begin{array}{c} \bullet 1, 3 \\ \bullet 2 \end{array}$.
- $w = 4231$, $J \in \{\emptyset, \{1\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ so $\text{bp}(w) = \begin{array}{c} \bullet 2 \\ \bullet 1 \quad \bullet 3 \end{array}$.

Billey-Postnikov posets

Theorem (Gaetz-G. 2025)

If w is BP at both J and K , then w is BP at $J \cup K$ and $J \cap K$.

Question

Is there a geometric proof?

$$\begin{array}{ccc} X_{w^{J \cap K}}^{J \cap K} & \longrightarrow & X_{w^J}^J \\ \downarrow & & \downarrow \\ X_{w^K}^K & \longrightarrow & X_{w^{J \cup K}}^{J \cup K} \end{array}$$

This is not a pushforward or pullback diagram.

Conjecture (Gaetz-G. 2025)

The above is true in any Coxeter groups.

It holds for finite crystallographic types and rank 3 Coxeter groups.

Billey-Postnikov posets: properties

Proposition (Gaetz-G. 2025)

In the poset $\text{bp}(w)$, each element is covered by at most l elements, where l is the number of leaves in the Dynkin diagram.

Conjecture

If $i < j$ in $\text{bp}(w)$, then there is exactly one path from i to j in the Hasse diagram of $\text{bp}(w)$.

Proposition (Gaetz-G. 2025)

For $w \in S_n$, there is a polynomial time algorithm to construct $\text{bp}(w)$.

Theorem (Alland-Richmond 2018)

For $w \in S_n$, $\text{bp}(w)$ is indexed by singletons if and only if w avoids 3412, 52341 and 635241 (in particular containing all smooth permutations).

Applications: a “canonical” bijection

Theorem (Lakshmibai-Sandhya 1990, Carrell 1994)

X_w is rationally smooth if and only if $[\text{id}, w]$ is rank-symmetric.

In finite simply-laced types, smooth = rationally smooth.

As combinatorialists, we seek **bijections** for equinumerous sets.

Write $[\text{id}, w]_k := \{u \leq w \mid \ell(u) = k\}$.

Theorem (Gaetz-G. 2025)

Fix X_w (rationally) smooth in a finite simply-laced Weyl group W . Then the matrix (c_{uv}^w) with rows indexed by $u \in [\text{id}, w]_k$ and columns indexed by $v \in [\text{id}, w]_{\ell(w)-k}$ is upper triangular with 1's on the diagonal.

Here, $\sigma_u \sigma_v = \sum_w c_{uv}^w \sigma_w$, $\sigma_w = [X_{w_0 w}] \in H^*(G/B)$.

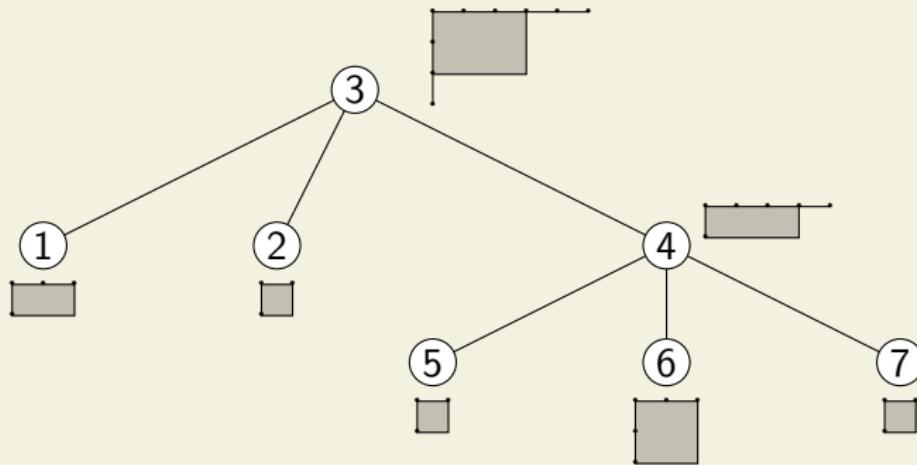
Corollary (Gaetz-G. 2025)

There is a **canonical** bijection between $[\text{id}, w]_k$ and $[\text{id}, w]_{\ell(w)-k}$.

Applications: a “canonical” bijection

Example of the bijection

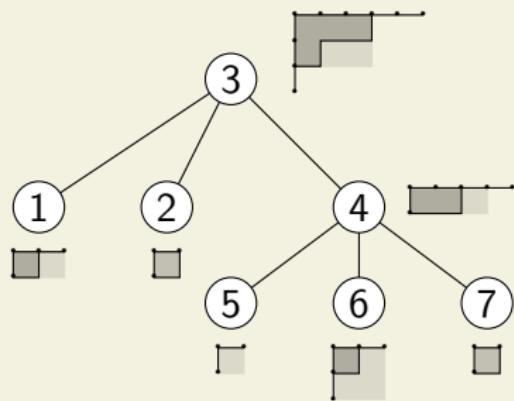
- Let $w = 65178432 \in S_8$ be smooth, and let $\text{bp}(w)$ be as shown.
- w is BP at $J = S \setminus \{3\}$, with $w^J = 15623478$. Decorate this data at node 3. Then continue downwards for $w_J = 321|78654$.
- Each node in $\text{bp}(w)$ is decorated with a rectangle.



Applications: a “canonical” bijection

Example of the bijection

- For each $u \leq w$, u^J is a partition shape inside w^J , where $J = S \setminus \{3\}$.
- Its image v under this bijection should have v^J being the complement shape of u^J inside the rectangle w^J .
- Continue downwards to the parabolic subgroups.



Remarks on the bijection

- This “canonical nature” fails in non-simply-laced types.

Let $w = s_2 s_3 s_1 s_2 s_1 s_3 s_2 s_4 s_3$ in F_4 , which is smooth. The matrix of structure constants in G/P_J for $J = \{1, 2, 4\}$ contains

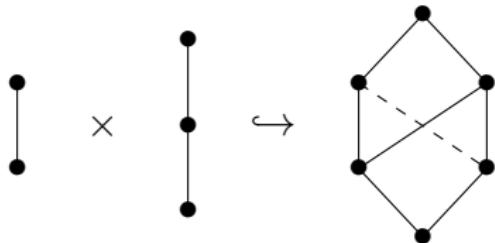
$u \setminus v$	$s_2 s_3 s_1 s_2 s_3$	$s_3 s_4 s_1 s_2 s_3$	$s_2 s_3 s_4 s_2 s_3$
$s_4 s_1 s_2 s_3$	1	1	1
$s_3 s_1 s_2 s_3$	1	1	0
$s_3 s_4 s_2 s_3$	0	1	1

- Gasharov 1998 showed that for smooth $w \in S_n$, $[\text{id}, w]$ admits a **Lehmer code**. One can artificially construct (many, but likely bad) bijections between $[\text{id}, w]_k$ and $[\text{id}, w]_{\ell(w)-k}$.

Applications: Lehmer codes

Definition

A poset P admits a **Lehmer code** if there exists an order-preserving bijection $L : C_{a_1} \times \cdots \times C_{a_k} \rightarrow P$ for some $a_1, \dots, a_k \in \mathbb{Z}_{>0}$.



- The map L is almost never an order isomorphism.
- The usual **Lehmer code** on the symmetric group is given by

$$L(w)_i = \#\{j > i \mid w(j) < w(i)\}.$$

For example, $L(635241) = (5, 2, 3, 1, 1)$.

Applications: Lehmer codes

Theorem (Carrell-Peterson 1994)

The followings are equivalent for any w in any Coxeter group:

- the Kazhdan-Lusztig polynomial $P_{\text{id},w}(q) = 1$;
- $[\text{id}, w]$ is rank-symmetric in the Bruhat order.

We call such elements **rationally smooth**.

- If $[\text{id}, w]$ admits a Lehmer code, then w is rationally smooth.
- Gasharov 1998: for $w \in S_n$ smooth, $[\text{id}, w]$ admits a Lehmer code.
- Billey-Fan-Losonczy 1999: conjecture that $[\text{id}, w]$ admits a Lehmer code for any rationally smooth w in finite Weyl groups.
- Billey 1999: affirmative answer in type A and B .
- Bolognini-Sentinelli 2025: affirmative answer for $[\text{id}, w_0]$ in type D_n and H_3 .
- Bishop–Milićević–Thomas 2025: $[\text{id}, w_0]$ does not have a Lehmer code in F_4 , H_4 and E_6 ; more computations.
- Sentinelli-Zatti 2025: no Lehmer code for $[\text{id}, w_0(F_4)]$.

Applications: Lehmer codes

Theorem (Gaetz-G. 2025)

- In types A_n , B_n , D_n , $I_2(m)$, H_3 , every rationally smooth elements admit a Lehmer code.
- In types H_4 , F_4 , a rationally smooth element w admits a Lehmer code if and only if $w \neq w_0$.
- The proof heavily relies on Billey-Postnikov decompositions.
- Other Coxeter groups? e.g. affine type A .

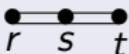
Grassmannian BP decompositions in infinite types

Conjecture (Richmond-Slofstra 2016; Oh-Richmond 2024)

Let W be any Coxeter group and $w \in W$ be rationally smooth. Then w is BP at some $J = S \setminus \{\alpha\}$, i.e. has a Grassmannian BP decomposition.

- This is a fundamental step in many previous results.

Theorem (Gaetz-G. 2025)

This fails for $w = srstrsr$ in affine type \widetilde{C}_2 . 

- This conjecture might still be true if we allow either w or w^{-1} to have a Grassmannian BP decomposition.

Implicit applications: self-dual permutations

- A poset P is **self-dual** if it admits an order-reversing involution.
- A permutation w is **self-dual** if $[\text{id}, w]$ is self-dual.
- This is a strictly stronger condition than smoothness.

Theorem (Gaetz-G. 2020)

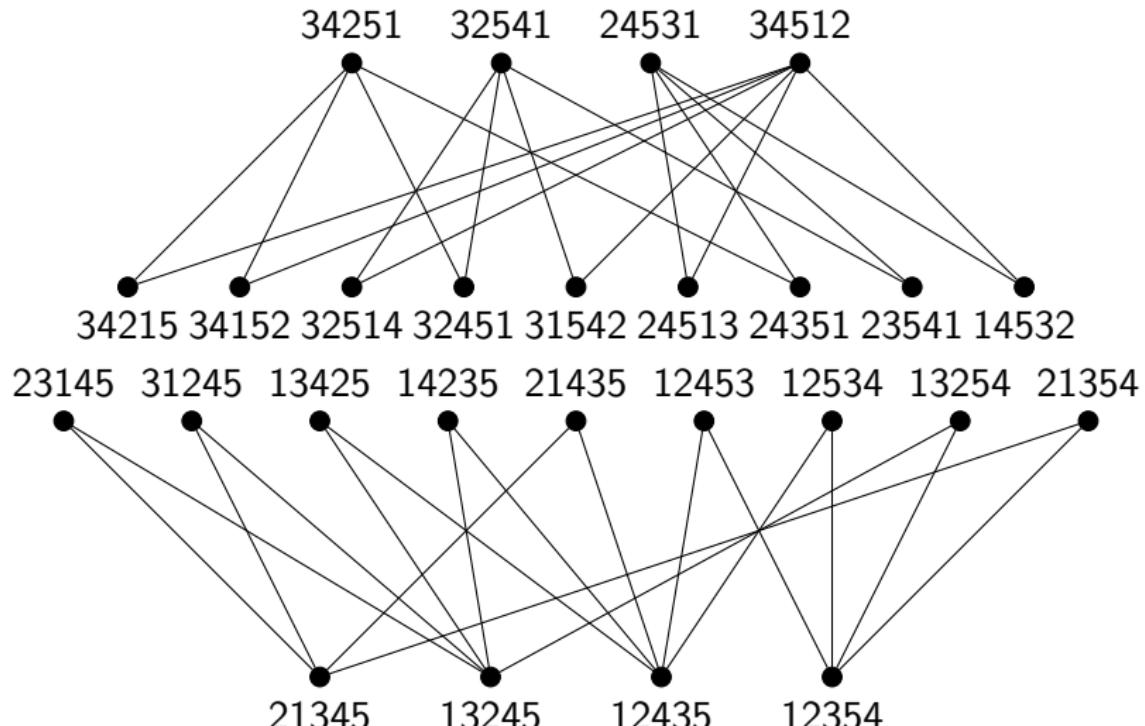
The followings are equivalent for $w \in S_n$:

- ① w is self-dual;
- ② the bipartite graphs Γ_w and Γ^w are isomorphic;
- ③ w avoids the smooth patterns 3412 and 4231 as well as 34521, 45321, 54123, and 54312;
- ④ w is polished.

- Question: what about other types?

Example of Γ_w and Γ^w for $w = 34521$

Let Γ_w and Γ^w be the bipartite graphs on $[\text{id}, w]_1 \sqcup [\text{id}, w]_2$ and $[\text{id}, w]_{\ell-1} \sqcup [\text{id}, w]_{\ell-2}$ respectively with edges given by cover relations.



Implicit applications: self-dual permutations

Definition (Gaetz-G. 2020)

Let W be any Coxeter group. We say that $w \in W$ is **polished** if there exist pairwise disjoint subsets $S_1, \dots, S_k \subseteq S$ such that each S_i is a connected subset of the Dynkin diagram and coverings $S_i = J_i \cup J'_i$ for $i = 1, \dots, k$ with $J_i \cap J'_i$ totally disconnected so that

$$w = \prod_{i=1}^k w_0(J_i) w_0(J_i \cap J'_i) w_0(J'_i)$$

where the product is taken from left to right as $i = 1, 2, \dots, k$.

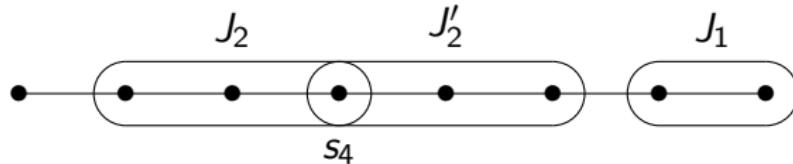
This is adding restrictions to the iterated BP decomposition of w (or w^{-1}).

Example of polished elements

The following element with $k = 2$, $J_1 = \{s_7, s_8\}$, $J'_1 = \emptyset$, $J_2 = \{s_2, s_3, s_4\}$, $J'_2 = \{s_4, s_5, s_6\}$, and multiplication in the order of

$$\begin{aligned} w &= w_0(J_1)w_0(J_2)w_0(J_2 \cap J'_2)w_0(J'_2) \\ &= 123456987 \cdot 154326789 \cdot 123546789 \cdot 123765489 \\ &= 154963287 \end{aligned}$$

is a polished element.



A top-heaviness result

The Bruhat interval $[\text{id}, w]$ is top-heavy.

Theorem (Björner-Ekedahl 2009)

For $w \in S_n$, $\#[\text{id}, w]_k \leq \#[\text{id}, w]_{\ell(w)-k}$ for $k \leq \ell(w)/2$.

Let $\text{udeg}_w(u)$ and $\text{ddeg}_w(u)$ denote the up-degree and down-degree of u inside the interval $[\text{id}, w]$.

Theorem (Gaetz-G. 2020)

Let $w \in S_n$ be smooth, then

$$\max_{u \in [\text{id}, w]_1} \text{udeg}_w(u) \leq \max_{u \in [\text{id}, w]_{\ell-1}} \text{ddeg}_w(u),$$

with equality if and only if $[\text{id}, w]$ is self-dual.

Implicit applications: automorphisms of $\Gamma(w)$

Definition

The **undirected Bruhat graph** Γ has vertex set S_n and edges $w \sim wt$ for reflections T . Let $\Gamma(u, v)$ be its restriction to a Bruhat interval $[u, v]$.



Theorem (Lakshmibai-Sandhya 1990, Carrell 1994)

A permutation $w \in S_n$ is smooth if and only if the undirected Bruhat graph $\Gamma(\text{id}, w) =: \Gamma(w)$ is regular.

Implicit applications: automorphisms of $\Gamma(w)$

- The **directed Bruhat graph** has no interesting automorphisms: Waterhouse 1989 showed that $\text{Aut}(W, \leq)$ is generated by automorphisms of the Dynkin diagram and the group inversion map.
- The undirected Bruhat graph has many more automorphisms.

Question

Can we describe $\text{Aut}(\Gamma(u, v))$, or $\text{Aut}(\Gamma(w))$?

We can write down some automorphisms $\varphi \in \text{Aut}(\Gamma(w))$:

- multiplication on the left by s_i , where $i \in D_L(w)$;
- multiplication on the right by s_i , where $i \in D_R(w)$;
- **middle multiplication.**

Implicit applications: automorphisms of $\Gamma(w)$

Proposition (Gaetz-G. 2022)

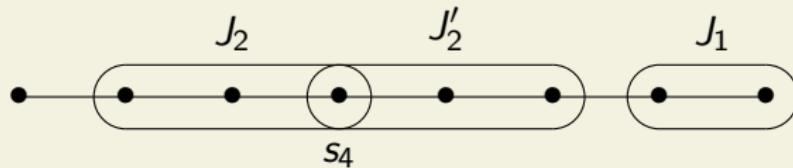
Suppose $w = w^J w_J$ is a Billey-Postnikov decomposition, and $\text{Supp}(w^J) \cap \text{Supp}(w_J) = \{s\} \subset J$, then the middle multiplication map

$$\phi : x \mapsto x^J s x_J$$

is an automorphism of the Bruhat graph $\Gamma(w)$.

Recall polished elements

$$w = w_0(J_1)w_0(J_2)w_0(J_2 \cap J'_2)w_0(J'_2).$$



The identity orbit under $\text{Aut}(\Gamma(w))$

Conjecture (Gaetz-G. 2022)

Let $w \in S_n$ and $\mathcal{O} = \{\varphi(\text{id}) \mid \varphi \in \text{Aut}(\Gamma(w))\}$ be the orbit of the identity under graph automorphisms of $\Gamma(w)$. Then

$$\mathcal{O} = [\text{id}, v], \text{ for some } v \leq w.$$

- We have a conjectural formula for v .
- Equivalently, we conjecture that the identity orbit \mathcal{O} is “essentially” generated by middle multiplications.
- We cannot prove \mathcal{O} is downwards closed, or it has a maximum.
- Not true in other types.

Vertex-transitive permutations

Definition (Gaetz-G. 2022)

A permutation $w \in S_n$ is **vertex-transitive** if $\text{Aut}(\Gamma(w))$ acts transitively on the vertex set $[\text{id}, w]$.

- This is a strictly stronger condition than smoothness:
if w is vertex-transitive, every vertex in $\Gamma(w)$ has the same degree.

Theorem (Gaetz-G. 2022)

A permutation w is vertex-transitive if and only if it avoids the smooth patterns 3412 and 4231, as well as 34521 and 54123.

- $\{\text{vertex-transitive patterns}\} \subsetneq \{\text{self-dual patterns}\}!$
- This is a special case of the identity orbit conjecture.

Thanks

Thank you for listening!