Deodhar decomposition

Reading seminar on RICHARDSON VARIETIES, PROJECTED RICHARDSON VARIETIES AND POSITROID VARIETIES

Previously

Definitions and Notations from previous talks

- Identifying the complete flag variety $\mathscr{F}\ell_n$ with GL_n/B_+ , the Schubert cells are $\mathring{X}_v=(B_-vB_+)/B_+$
- $w[k] \in {n \choose k}$ is the action of a permutation w on the subset $\{1,...,k\}$
- The open Bott-Samelson variety $\mathrm{BS}^\circ(i_1,...,i_a)$ consists of sequences of flags such that $F^{j-1} \overset{s_{i_j}}{\to} F^j$, meaning that they differ only at the i_j -th space.
- The open Richardson variety $R_u^w = \overset{\circ}{X}_u \cap \overset{\circ}{X}^w$

Distinguished subwords

- Let $s_{i_1} \cdots s_{i_a}$ be a word in the simple generators. We take and skip on the digits to form a subword, which is called *distinguished* if we always take the next digit if it reduces the *length* of the partial product.
- e.g. $s_3s_2s_1s_3s_2$, the second s_3 is forced because it reduces the length of the partial product.
- We represent them in the alphabet $\{s_{i_1}, \ldots, s_{i_a}, \bullet\}$
- e.g. s_3 • s_3s_2

Deodhar decomposition

- Given a sequence of flags (F^0,\ldots,F^a) in $\mathrm{BS}^\circ(i_1,\ldots,i_a)$. Let v_j be the permutation such that $F^j\in \mathring{X}_{v^j}$. If $v^{j-1}=v^j$ for some $1< j\leq a$ then $\ell(v^{j-1}s_{i_j})>\ell(v^j)$; otherwise, $v^j=v^{j-1}s_{i_j}$.
- In other words, elements of the open Bott-Samelson variety correspond to distinguished subwords of $s_{i_1} \cdots s_{i_a}$, and the v^j 's are partial products. We call each piece a *Deodhar piece*, denoted by $\mathcal{D}(x)$ or $\mathcal{D}(v^0, \dots, v^a)$, where x is a distinguished subword of $s_{i_1} \cdots s_{i_a}$
- Relation with open Richardson: when $s_{i_1} \cdots s_{i_a}$ is a reduced word for w, the disjoint union of the Deodhar pieces of the subword which multiplies to u is R_u^w

Example 3.10. Let n=3. The Bott-Samelson variety BS(1,2,1) is the set of sequences of flags of the form

$$\operatorname{Span}(e_1) \subset \operatorname{Span}(e_1, e_2)$$
 $L_1 \subset \operatorname{Span}(e_1, e_2)$
 $L_1 \subset P_1$
 $L_2 \subset P_1.$

The open subvariety BS°(1,2,1) imposes that Span(e_1) $\neq L_1 \neq L_2$ and Span(e_1, e_2) $\neq P_1$. We observe that L_1 can be recovered from the flag (L_2, P_1) by $L_1 = P_1 \cap \text{Span}(e_1, e_2)$.

We can coordinatize BS°(1,2,1) by \mathbb{A}^3 by sending (t_1,t_2,t_3) to

$$Span(e_1)$$
 $\subset Span(e_1, e_2)$
 $Span(t_1e_1 + e_2)$ $\subset Span(e_1, e_2)$
 $Span(t_1e_1 + e_2)$ $\subset Span(t_1e_1 + e_2, t_2e_1 + e_3)$
 $Span((t_1t_3 + t_2)e_1 + t_3e_2 + e_3)$ $\subset Span(t_1e_1 + e_2, t_2e_1 + e_3)$.

We rewrite this in terms of matrices; our chain of flags is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} B_{+}, \quad \begin{bmatrix} t_{1} & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} B_{+}, \quad \begin{bmatrix} t_{1} & t_{2} & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} B_{+}, \quad \begin{bmatrix} t_{1}t_{3} + t_{2} & t_{1} & 1 \\ t_{3} & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} B_{+}.$$

In the following section, we will often want to use coset representatives for $GL_2/B_+(2)$ other than $\begin{bmatrix} t & 1 \\ 1 & 0 \end{bmatrix}$. We therefore adopt the more general convention: For a word $(s_{i_1}, s_{i_2}, \ldots, s_{i_a})$ and a sequence of elements (h_1, h_2, \ldots, h_a) in GL_2 not lying in $B_+(2)$, let $\mu_{i_1 i_2 \ldots i_a}(h_1, h_2, \ldots, h_a)$ be the sequence of flags

$$\mu_{i_1 i_2 \dots i_a}(h_1, h_2, \dots, h_a) := (B_+, \rho_{i_1}(h_1)B_+, \rho_{i_1}(h_1)\rho_{i_2}(h_2)B_+, \dots, \rho_{i_1}(h_1)\rho_{i_2}(h_2)\cdots\rho_{i_a}(h_a)B_+)$$

in BS° (i_1, i_2, \ldots, i_a) . We close by remarking on some other choices we could use for h_i :

Example 4.4. Take n=3; let u=e and $w=w_0$; we use the word (s_1,s_2,s_1) for w. There are two subwords of (s_1,s_2,s_1) with product e, namely $(\bullet,\bullet,\bullet)$ and (s_1,\bullet,s_1) , and both are distinguished. So $\mathring{R}_e^{w_0}$ is the union of two Deodhar pieces: $\mathcal{D}(\bullet,\bullet,\bullet)=\mathcal{D}_{\text{seq}}(e,e,e,e)$ and $\mathcal{D}(s_1,\bullet,s_1)=\mathcal{D}_{\text{seq}}(e,s_1,s_1,e)$.

We describe points of BS°(1,2,1) using two lines, L_1 , L_2 , and a plane P_1 , as in Example 3.10. The Richardson $\mathring{R}_e^{w_0}$ is the open subvariety of BS°(1,2,1) where L_2 is transverse to Span(e_2 , e_3) and P_1 is transverse to Span(e_3). In the coordinates of Example 3.10, the open Richardson $\mathring{R}_e^{w_0}$ is the open locus $t_2(t_1t_3+t_2) \neq 0$.

The piece $\mathcal{D}_{\text{seq}}(e, e, e, e)$ is the piece where L_1 is transverse to $\text{Span}(e_2, e_3)$; the piece $\mathcal{D}_{\text{seq}}(e, s_1, s_1, e)$ is the piece where $L_1 \subset \text{Span}(e_2, e_3)$. We reinterpret this condition in terms of the flag (L_2, P_1) and in terms of the coordinates (t_1, t_2, t_3) . Since $L_1 = P_1 \cap \text{Span}(e_1, e_2)$, the first piece is the piece where $P_1 \cap \text{Span}(e_1, e_2)$ is transverse to $\text{Span}(e_2, e_3)$; equivalently, the first piece is the piece where $\text{Span}(e_2) \not\subset P_1$ and the second piece is the piece where $\text{Span}(e_2) \subset P_1$. In terms of the (t_1, t_2, t_3) coordinates, these pieces are $t_1 \neq 0$ and $t_1 = 0$.

The topology of a Deodhar piece is simple

- Let $m_=, m_\downarrow, m_\uparrow$ be the number of times that our partial products v^j stay put, go down in length, or go up. Then $\mathscr{D}(v^0, ..., v^a) \cong \mathbb{G}_m^{m_=} \times \mathbb{A}^{m_\downarrow}$
- We fix everything in a sequence of flags except for the i-th one, i.e. V_i , this is a \mathbb{P}^1 ; there is exactly one point W in this \mathbb{P}^1 that increases the length
- If we stay put, we must avoid both V_i, W
- If we go up, we just choose ${\it W}$
- If we go down, then $V_i={\it W}$, and we only need to avoid ${\it V}_i$

Applications

Kazhdan-Lusztig R-polynomials

- The number of \mathbb{F}_q points in the open Richardson variety R_u^w form a polynomial, called the *Kazhdan-Lusztig R-polynomial*, because the number of \mathbb{F}_q points in \mathbb{A} , \mathbb{G}_m do, and the open Richardson is a disjoint union of Deodhar pieces
- $\dim(R_u^w) = m_+ + 2m_{\downarrow} = \ell(w) \ell(u)$
- The R-polynomials are palindromic up to a sign twist
- Deodhar torus: there must exits a maximal one that is Zariski dense with $m_{\perp}=0$; distinguished sequences like this are called positive

$$ho_i\left(\left[egin{array}{ccc} a&b \ c&d \end{array}
ight]
ight)=\left[egin{array}{cccc} 1 & & & & & \ & \ddots & & & \ & & 1 & & \ & & c&d & & \ & & & 1 & & \ & & & \ddots & \ & & & & 1 \end{array}
ight]$$

4.2. Matrix product formulas for Deodhar pieces. We now turn to the problem of parametrizing the Deodhar pieces. Our primary source is Marsh and Rietsch [MarshRietsch04]. We recall the notation $\rho_i: \operatorname{GL}_2 \to \operatorname{GL}_n$ from Section 3.2. Define:

$$\dot{s}_i = \rho_i\left(\left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right]\right) \qquad \dot{z}_i(t) = \rho_i\left(\left[\begin{smallmatrix} t & 1 \\ -1 & 0 \end{smallmatrix}\right]\right) \qquad \ddot{z}_i(t) = \rho_i\left(\left[\begin{smallmatrix} t & -1 \\ 1 & 0 \end{smallmatrix}\right]\right) \qquad y_i(t) = \rho_i\left(\left[\begin{smallmatrix} 1 & 0 \\ t & 1 \end{smallmatrix}\right]\right).$$

Proposition 3.8. Let $(s_{i_1}, s_{i_2}, \ldots, s_{i_a})$ be any word in the simple generators of S_n . Map \mathbb{A}^a to $\mathcal{F}\ell_n^{a+1}$ by

$$(t_1, t_2, \dots, t_a) \mapsto (B_+, z_{i_1}(t_1)B_+, z_{i_1}(t_1)z_{i_2}(t_2)B_+, \dots, z_{i_1}(t_1)z_{i_2}(t_2)\cdots z_{i_a}(t_a)B_+).$$

This is an isomorphism $\mathbb{A}^a \to \mathrm{BS}^\circ(i_1, i_2, \dots, i_a)$.

$$h_j = egin{cases} y_{i_j}(t_j) & j \in J_= \ \dot{s}_{i_j} & j \in J_{\uparrow} \ \dot{z}_{i_j}(u_j) & j \in J_{\downarrow} \end{cases}.$$

Recall the map $\mu_{i_1 i_2 \cdots i_a}$ from $(GL_2 - B_+(2))^a$ to $BS^{\circ}(i_1, i_2, \dots, i_a)$ introduced in Section 3.2. We will write g^k for the partial product $h_1 h_2 \cdots h_k$, so the image of $\mu_{i_1 \cdots i_a}$ is $(B_+, g^1 B_+, \dots, g^a B_+)$.

Theorem 4.12. With the above notation, the map sending $(t_1, t_2, ..., t_a)$ to $(B_+, g^1B_+, ..., g^aB_+)$ in $BS^{\circ}(i_1, i_2, ..., i_a)$ is an isomorphism from $\mathbb{G}_m^{m_{=}} \times \mathbb{A}^{m_{\downarrow}}$ to the Deodhar piece $\mathcal{D}_{seq}(v^0, v^1, ..., v^a)$.

Example 4.13. In $\mathcal{F}\ell_3$, consider the word (s_1, s_2, s_1) from Example 3.10. There are two distinguished subexpressions ending in e: (e, e, e, e) and (e, s_1, s_1, e) ; they correspond to $(J_=, J_{\uparrow}, J_{\downarrow}) = (\{1, 2, 3\}, \emptyset, \emptyset)$ and $(\{2\}, \{1\}, \{3\})$ respectively. Since (s_1, s_2, s_1) is reduced, the projection of BS°(1, 2, 1) onto the last flag $\mathcal{F}\ell_3$ is an isomorphism with its image, so we focus on describing the final flag F^3 .

The corresponding matrix products are

$$\begin{bmatrix} 1 & 0 & 0 \\ t_1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t_2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ t_3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ t_1 + t_3 & 1 & 0 \\ t_2 t_3 & t_2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t_2 & 1 \end{bmatrix} \begin{bmatrix} u_3 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ u_3 & 1 & 0 \\ -t_2 & 0 & 1 \end{bmatrix}$$

with $t_1, t_2, t_3 \in \mathbb{G}_m$ and $u_3 \in \mathbb{A}^1$. These two pieces disjointly cover the open Richardson R_{123}^{321} , which is $\Delta_1 \Delta_{12} \Delta_3 \Delta_{23} \neq 0$. The first piece is the open set $\Delta_{13} \neq 0$, and the second piece is the closed set $\Delta_{13} = 0$. The reader is invited to compute these minors and see that they are zero or nonzero as appropriate.

Example 4.14. We give an example with a nonreduced word. We work in $\mathcal{F}\ell_2$ with the word $(s_1, s_1, s_1, s_1, s_1)$. Then a distinguished sequence is a sequence of six e's and s_1 's which starts with e and has no consecutive pair of s_1 's. As a concrete example, we will take the sequence (e, e, e, s_1, e, s_1) , corresponding to the subword $(\bullet, \bullet, s_1, s_1, s_1)$. The matrices ϕ_j are

$$\begin{bmatrix} 1 & 0 \\ t_1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ t_2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} u_4 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad t_1 \in \mathbb{G}_m, \ u_3 \in \mathbb{A}^1$$

The successive partial products g^j are

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ t_1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ t_1 + t_2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & -t_1 - t_2 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ t_1 + t_2 + u_4 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & -t_1 - t_2 - u_4 \end{bmatrix}.$$

A flag in $\mathcal{F}\ell_2$ is simply a point on the projective line \mathbb{P}^1 ; the sequence of flags (F^0, F^1, \ldots, F^5) in this case is

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ t_1 \end{bmatrix}, \begin{bmatrix} 1 \\ t_1 + t_2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ t_1 + t_2 + u_4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Note that consecutive elements of this sequence are always distinct points of \mathbb{P}^1 ; this is the Bott-Samelson condition. Note also that F^0 , F^1 , F^2 and F^4 are in the Schubert cell $\mathring{X}_e = \{\Delta_1 \neq 0\}$ where as F^3 and F^5 are in the Schubert cell $\mathring{X}_{s_1} = \{\Delta_1 = 0\}$; this is the additional Deodhar condition.

The matrices follow suit of the distinguished sequence

$$g^j \in B_v^j$$

- Convenient notation: Let v be a permutation, whose matrix representative has a 1 at every (v(k), k) and zero elsewhere. Let \dot{v} be signed such that every "left-justified" minor is nonnegative. We have $(v\dot{s}_i) = \dot{v}\dot{s}_i$. (N_ seems to be the signed version of B_, but I am not sure.)
- If v(i) < v(i+1), then $\dot{v}y_i(t)\dot{v}^{-1} \in N_-$
- If v(i) > v(i+1), then $\dot{v}(\dot{z}_i(u)\dot{s}_i)\dot{v}^{-1} \in N_-$

Parametrizations of flag varieties

[Marsh, Rietsch]

0	-1	0	1	0	0	0	1	0
1	0	0	0	1	0	-1	0	0
0	0	1	0	Т	1	0	0	1

$$u \mapsto g\dot{z}_i(u)B_+$$
 is an isomorphism of \mathbb{A}^1 to

the space of flags
$$gB_+$$
 $\stackrel{S_i}{\rightarrow} F$.

$$t\mapsto gy_i(t)B_+$$
 is an isomorphism of \mathbb{G}_m onto the

complement of
$$g\dot{s}_iB_+$$

The A¹ bundle argument from before

Checking
$$g^jB_+ \in (B_-v^jB_+)/B_+$$

Inverting the isomorphism $\mathbb{G}_m^{m=} \times \mathbb{A}^{m_{\downarrow}} \longrightarrow \mathcal{D}(v^0, v^1, \dots, v^a)$ is quite complex; see [MarshRietsch04] for the general formula. We will describe the result for the Deodhar torus in the case where $(s_{i_1}, \dots, s_{i_a})$ is reduced (which is the case which is relevant to Richardsons). We first set up some auxilliary functions, called **chamber minors**.

Let (v^0, v^1, \ldots, v^a) be the positive sequence for u; it will also be convenient to put $w^j = s_{i_1} s_{i_2} \cdots s_{i_j}$. Because $(s_{i_1}, \ldots, s_{i_a})$ is reduced, at any point (F^0, \ldots, F^a) of $BS^{\circ}(i_1, \ldots, i_a)$, the flag F^j is in \mathring{X}^{w^j} . By the definition of the Deodhar piece, if (F^0, \ldots, F^a) is in $\mathcal{D}_{seq}(v^0, \ldots, v^a)$, then $F^j \in \mathring{X}_{v^j}$. So, combining these, $F^j \in \mathring{R}^{w^j}_{v^j}$. This means that the k-th subspace, F^j_k , is in the Grasmmannian Richardson variety $\mathring{R}^{w^j[k]}_{v^j[k]}$. In particular, the Plücker coordinates $\Delta_{v^j[k]}(F^j_k)$ and $\Delta_{w^j[k]}(F^j_k)$ are nonzero. We define the ratio

$$\Phi_k^j = rac{\Delta_{v^j[k]}(F_k^j)}{\Delta_{w^j[k]}(F_k^j)}$$

to be the (j, k)-chamber minor. Since this is a ratio of two Plücker coordinates, it is a well defined invariant of the subspace F_k^j . We can visualize the chamber minors as written in the chambers of the wiring diagram;

Chamber indexing

Why are they called "chamber minors"?

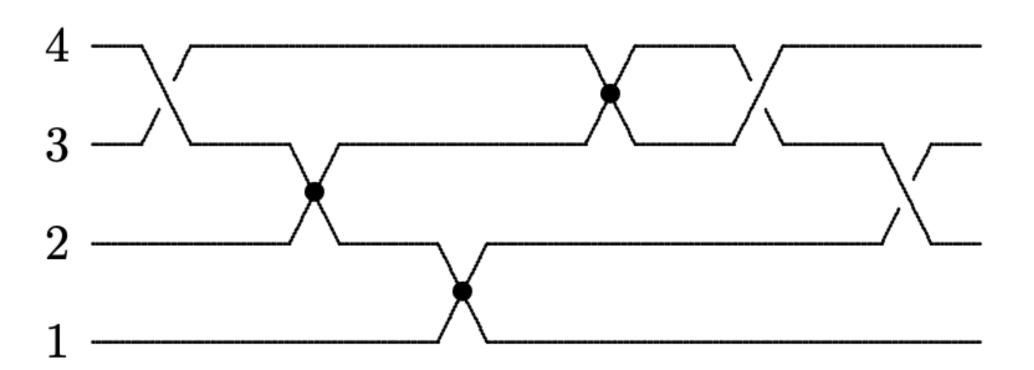


FIGURE 1. Ansatz arrangement (unlabeled) for $\underline{s_3s_2s_1s_3s_2}$. Note that $g = \dot{s}_3y_2(t_2)y_1(t_3)x_3(m_4)\dot{s}_3^{-1}\dot{s}_2$.

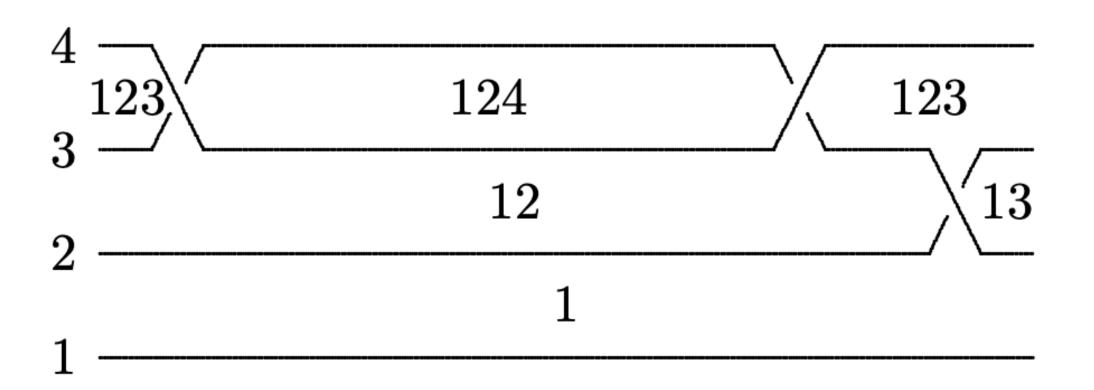


FIGURE 4. Upper arrangement for $\underline{s_3s_2s_1s_3s_2}$. Note that $g = \dot{s}_3y_2(t_2)y_1(t_3)x_3(m_4)\dot{s}_3^{-1}\dot{s}_2$.

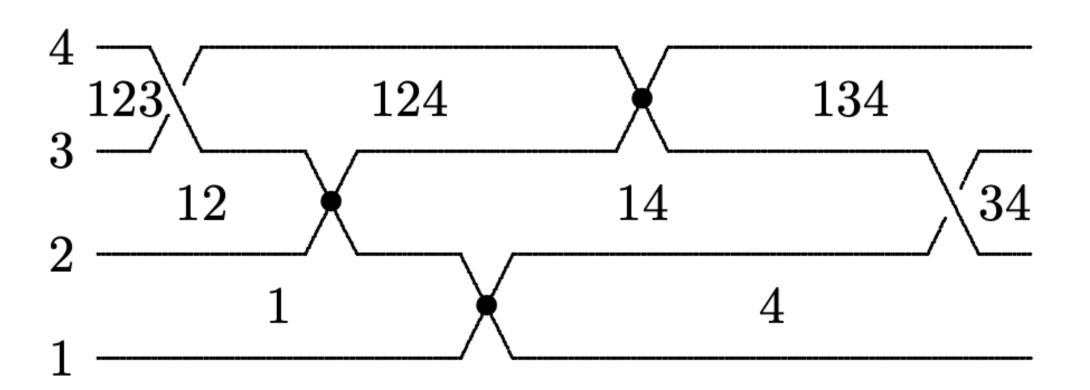


FIGURE 5. Lower arrangement for $\underline{s_3}\underline{s_2}\underline{s_1}\underline{s_3}\underline{s_2}$. Note that $g = \dot{s_3}y_2(t_2)y_1(t_3)x_3(m_4)\dot{s_3}^{-1}\dot{s_2}$.

R. J. MARSH AND K. RIETSCH

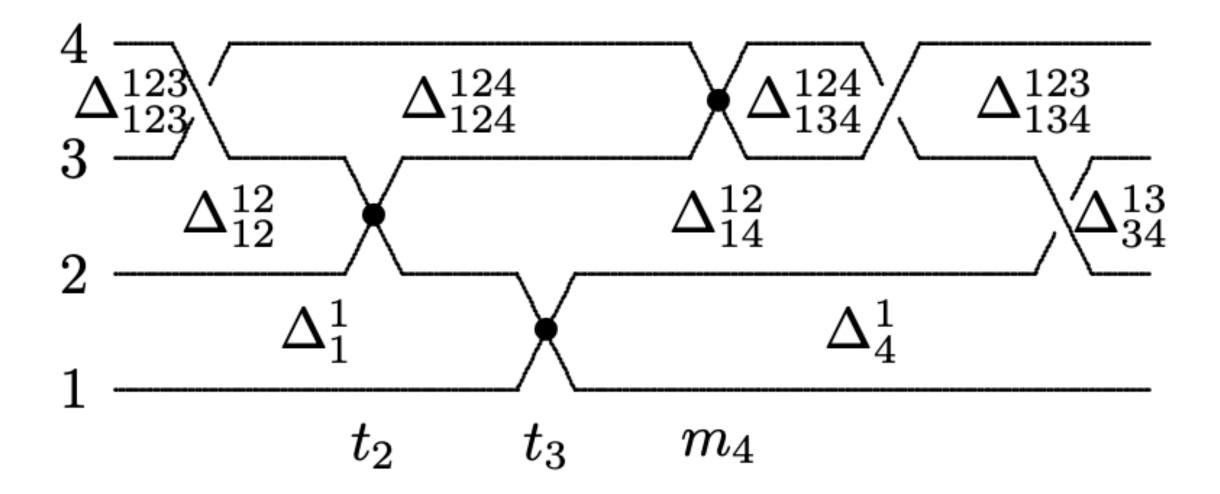


FIGURE 6. Ansatz arrangement for $\underline{s_3s_2s_1s_3s_2}$. Note that $g = \dot{s}_3y_2(t_2)y_1(t_3)x_3(m_4)\dot{s}_3^{-1}\dot{s}_2$.

convenience. The ansatz arrangement can then be used to compute the coefficients t_k and m_k as follows. Suppose $k \in J_{\mathbf{v}}^- \cup J_{\mathbf{v}}^\circ$. Let A_k , B_k , C_k and D_k be the minors labelling the chambers surrounding the singular point in the ansatz arrangement corresponding to k, with A_k and D_k above and below it, and B_k and C_k on the same horizontal level (see Figure 7). It is easy to check that Theorem 7.1 implies that, for $k \in J_{\mathbf{v}}^\circ$,

 $t_k = \frac{A_k(z)D_k(z)}{B_k(z)C_k(z)},$

and, for $k \in J_{\mathbf{v}}^-$,

$$r_k = \frac{B_k(z)C_k(z)}{A_k(z)D_k(z)}.$$

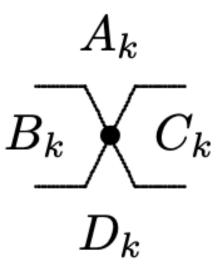


FIGURE 7. Chambers surrounding the singular point corresponding to $k \in J_{\mathbf{v}}^- \cup J_{\mathbf{v}}^\circ$.

Theorem 7.1. (Generalized Chamber Ansatz)

Let $B = z\dot{w} \cdot B^+ \in \mathcal{R}_{v,w}$, where $z \in U^+$, $v, w \in W$ and $v \leq w$. Let $\mathbf{w} = (w_{(0)}, w_{(1)}, \dots, w_{(n)})$ be a reduced expression for w with factors $(s_{i_1}, s_{i_2}, \dots, s_{i_n})$. Then B lies in a Deodhar component $\mathcal{R}_{\mathbf{v},\mathbf{w}}$, where $\mathbf{v} = (v_{(0)}, v_{(1)}, \dots, v_{(n)})$ is a distinguished subexpression for v in \mathbf{w} . By Proposition 5.2, there is $g \in G_{\mathbf{v},\mathbf{w}}$ such that $B = g \cdot B^+$. By Definition 5.1 we can write $g = g_1 g_2 \cdots g_n \in U^- \dot{v} \cap B^- \dot{w} B^+$, where

$$g_k = \begin{cases} y_{i_k}(t_k) & k \in J_{\mathbf{v}}^{\circ}, \\ \dot{s}_{i_k} & k \in J_{\mathbf{v}}^{+}, \\ x_{i_k}(m_k) \dot{s}_{i_k}^{-1} & k \in J_{\mathbf{v}}^{-}. \end{cases}$$

For each k, let $g_{(k)} = g_1g_2 \cdots g_k$ denote the partial product. Then the following hold.

(1) For $k \in J_{\mathbf{v}}^{\circ}$, we have:

$$t_k = rac{\prod_{j
eq i_k} \Delta^{v_{(k)} \omega_j}_{w_{(k)} \omega_j}(z)^{-a_{j,i_k}}}{\Delta^{v_{(k)} \omega_{i_k}}_{w_{(k)} \omega_{i_k}}(z) \Delta^{v_{(k-1)} \omega_{i_k}}_{w_{(k-1)} \omega_{i_k}}(z)}$$

(2) For $k \in J_{\mathbf{v}}^-$, we have:

$$m_k = \frac{\Delta_{w_{(k)}\omega_{i_k}}^{v_{(k-1)}\omega_{i_k}}(z)\Delta_{w_{(k-1)}\omega_{i_k}}^{v_{(k-1)}\omega_{i_k}}(z)}{\prod_{j\neq i_k}\Delta_{w_{(k)}\omega_j}^{v_{(k)}\omega_j}(z)^{-a_{j,i_k}}} - \Delta_{s_{i_k}\omega_{i_k}}^{v_{(k-1)}\omega_{i_k}}(g_{(k-1)}).$$

Theorem 4.16. With the above notation, let $j \in J_{=}$, so that $v^{j-1} = v^{j}$, and set $k = i_{j}$. Then

$$t_k = \frac{\Phi_{k+1}^j \Phi_{k-1}^j}{\Phi_k^{j-1} \Phi_k^j}.$$

We remark that $F_{k\pm 1}^{j-1} = F_{k\pm 1}^{j}$, so we could switch the superscripts in the numerator to j-1 without effecting the formula. Visually, these are the minors for the four chambers surrounding the j-th crossing of the wiring diagram.

Not a stratification!

The closure of a Deodhar piece is not a union of Deodhar pieces

It is easier to give a counterexample in an open Bott-Samelson variety, without the assumption that $(s_{i_1}, s_{i_2}, \ldots, s_{i_a})$ is reduced. Let x be a word in $\{1, 2, \ldots, n-1\}$ and let a and b be distinct distinguished subwords of x. Then aa^R and bb^R will be distinguished subwords of xx^R (for the identity). Suppose that

- (1) $\overline{\mathcal{D}(a)} \supset \mathcal{D}(b)$ in BS°(x) but
- (2) $\dim \mathcal{D}(aa^R) \leq \dim \mathcal{D}(bb^R)$ in $BS^{\circ}(xx^R)$.

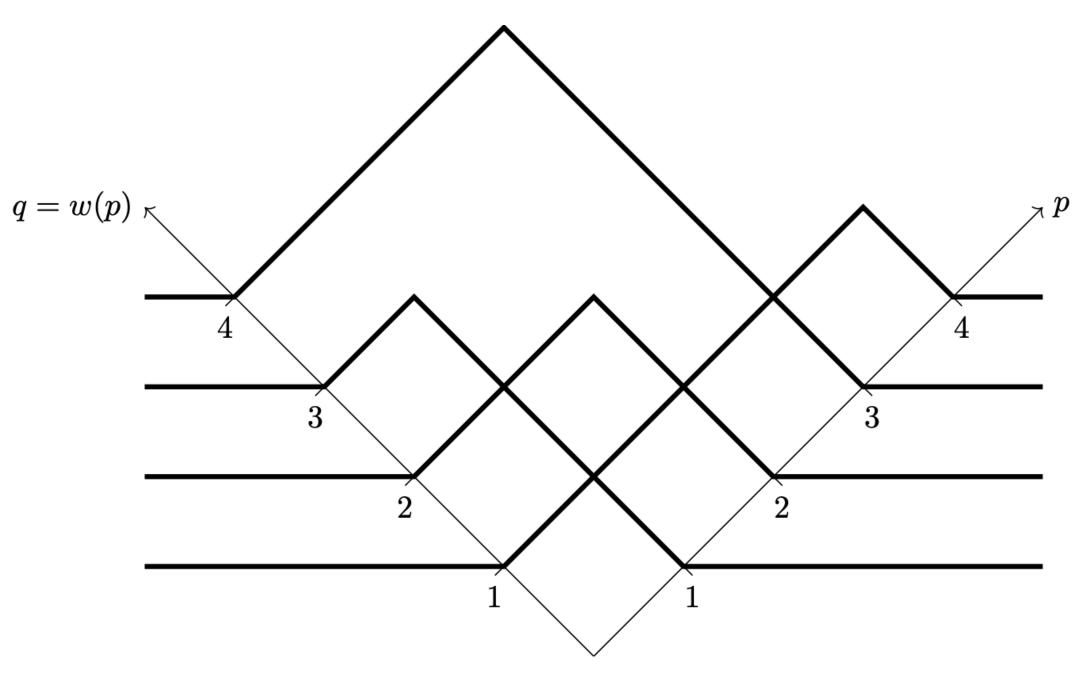
A concrete example is $x=(1,2,1), a=(1,\bullet,1), b=(1,2,\bullet)$. To check the first condition, we describe points of $\mathrm{BS}^\circ(1,2,1)$ using two lines, L_1, L_2 , and a plane P_1 , as in Example 3.10. Then $\mathcal{D}(1,\bullet,1)$ is the subvariety where $L_1=\mathrm{Span}(e_2)$ and $P_1\neq\mathrm{Span}(e_2,e_3)$, and that $\mathcal{D}(1,2,\bullet)$ is the subvariety where $L_1=\mathrm{Span}(e_2), P_1=\mathrm{Span}(e_2,e_3)$ and $L_2\neq e_3$. It is easy to see from this description that $\overline{\mathcal{D}(1,\bullet,1)}$ contains $\mathcal{D}(1,2,\bullet)$. (Concretely, $\overline{\mathcal{D}(1,\bullet,1)}$ is the locus where $L_1=\mathrm{Span}(e_2)$.) To check the second condition, note that $\mathcal{D}(1,\bullet,1,1\bullet,1)\cong\mathcal{D}(1,2,\bullet,\bullet,2,1)\cong\mathbb{G}_m^2\times\mathbb{G}_a^2$.

Proposition 4.19. For x, a and b as above, we have $\overline{\mathcal{D}(aa^R)} \cap \mathcal{D}(bb^R) \neq \emptyset$, but $\overline{\mathcal{D}(aa^R)} \not\supseteq \mathcal{D}(bb^R)$. Thus, the Deodhar pieces do not form a stratification of $BS^{\circ}(xx^R)$.

Proposition 4.20. For x, a and b as above, we have $\overline{\mathcal{D}(a \bullet \bullet a^R)} \cap \mathcal{D}(b \bullet \bullet b^R) \neq \emptyset$, but $\overline{\mathcal{D}(a \bullet \bullet a^R)} \not\supseteq \mathcal{D}(b \bullet \bullet b^R)$. Thus, the Deodhar pieces do not form a stratification of $BS^{\circ}(xs_1s_nx^R)$.

Examples

That are explicit!



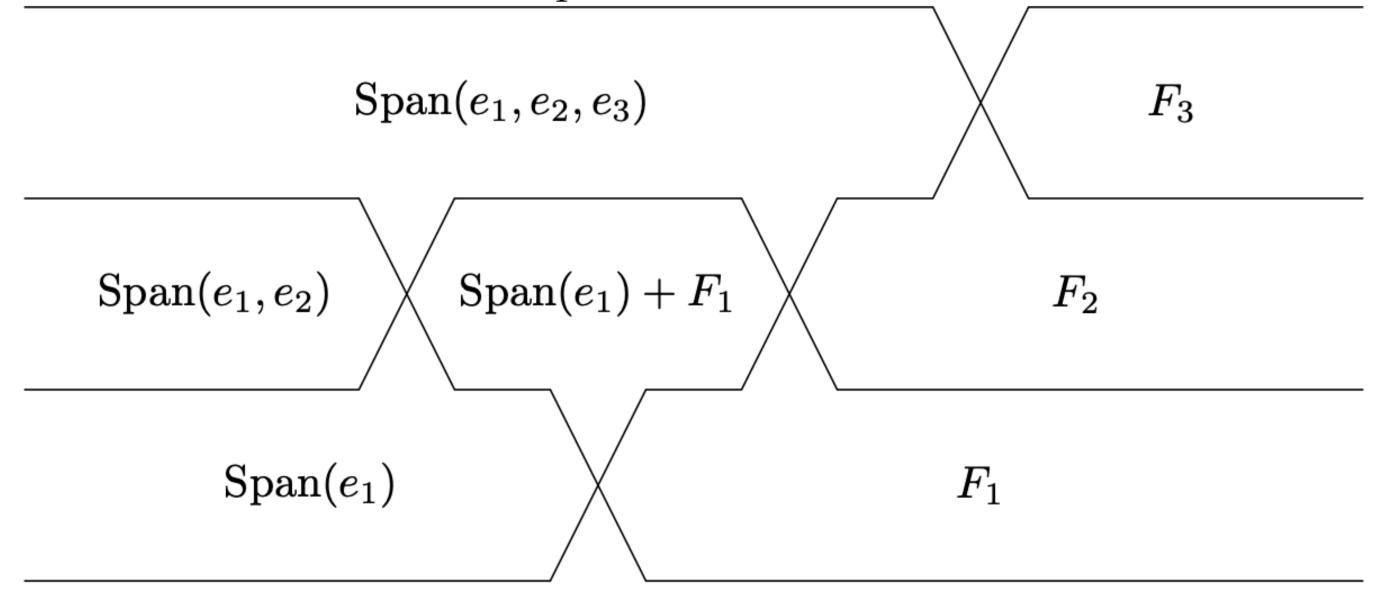
There might be some Le-diagram business under the rug?

Let C be a chamber of the unipeak diagram and consider the geometric construction of the unipeak word above. The top of C consists of two line segments, one with slope 1 and one with slope -1. Let the line segment with slope 1 come from the wire σ_i and let the line segment with slope -1 come from wire σ_j ; we have $i \leq j$. We will say that (i, j) is the **roof** of C.

Let $(s_{i_1}, s_{i_2}, \ldots, s_{i_a})$ be the unipeak word for w and let $(F_1, F_2, \ldots, F_{n-1})$ be a flag in \mathring{X}^w . Since $(s_{i_1}, s_{i_2}, \ldots, s_{i_a})$ is reduced, there is a unique chain of flags (F^0, F^1, \ldots, F^a) in $BS^{\circ}(i_1, i_2, \ldots, i_a)$ ending with $F^a = (F_1, F_2, \ldots, F_{n-1})$, and thus a unique labeling of the chambers by subspaces.

Proposition 4.24. In the above notation, the subspace in chamber C is $Span(e_1, e_2, ..., e_{i-1}) + F_{w^{-1}(j)-1}$.

Example 4.25. We take the chambers of Example 3.3 and fill them as described here:



We give the analogous formula for univalley wiring diagrams. If C is a chamber of a univalley wiring diagram then there are two wires running along the bottom of C; let σ_i be the decreasing wire and let σ_j be the increasing wire. Then the subspace in C is $\operatorname{Span}(e_1, e_2, \ldots, e_i) \cap F_{w(j)}$.

Using this, we can give an explicit description of the Deodhar strata for a unipeak wiring diagram.

Proposition 4.26. Let w be a permutation, let $(s_{i_1}, s_{i_2}, \ldots, s_{i_n})$ be the unipeak wiring diagram for w and let F be a flag in \mathring{X}^w . Then the knowledge of which Deodhar piece F is in is equivalent to the knowledge, for all $i \leq i'$ and all j, of dim $(\operatorname{Span}(e_1, e_2, \ldots, e_{i-1}, e_{i'+1}, e_{i'+1}, \ldots, e_n) + F_j)$. If we let $F = gB_+$ then, equivalently, the knowledge of which Deodhar piece F is in is equivalent to the knowledge, for all $i \leq i'$ and all j, of the rank of the submatrix of g in rows $\{i, i+1, \ldots, i'\}$ and columns $\{1, 2, \ldots, j\}$.