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Previously

Definitions and Notations from previous talks

- |dentifying the complete flag variety # ¢, with GL,/B_, the Schubert cells are
X, = (B_vB,)/B,

]

.W[k]€<k

) is the action of a permutation w on the subset {1,....,k}

e The open Bott—Same/son variety BS°(i,, ..., 1,) consists of sequences of flags

such that F/=! 3 F/, meaning that they differ only at the i i-th space.

» The open Richardson variety RZ)’ = Xu n XY



Distinguished subwords

- Lets; ---s; be a word in the simple generators. We take and skip on the

digits to form a subword, which is called distinguished if we always take the
next digit if it reduces the length of the partial product.

¢ €.0. 535,51839,, the second s; is forced because it reduces the length of the
partial product.

» We represent them in the alphabet {s;, ..., s, ,* }

° e.g. S3 ® o S3S2



Deodhar decomposition

. Given a sequence of flags (FO L FY)inBS°(iy, ..., 1). Let v; be the

permutation such that F/ e XVJ If wW~! =/ for some 1 < j < a then

ACL) ) > £(V/); otherwise, v/ = /s S

In other words, elements of the open Bott-Samelson variety correspond to
distinguished subwords of s; ---s; , and the v/’s are partial products. We call

each piece a Deodhar piece, denoted by D(x) or D(VY, ..., v%), where x is a
distinguished subword ot s; ---s;

la

Relation with open Richardson: when S; *"S; IS a reduced word for w, the

disjoint union of the Deodhar pieces of the subword which multiplies to u is RW



Example 3.10. Let n = 3. The Bott-Samelson variety BS(1, 2, 1) is the set of sequences of flags of the form
Span(e;) C Span(ei,e2)

L C Span(el, 62)
L C P
Lo C P.

The open subvariety BS®(1,2, 1) imposes that Span(e;) # L1 # Lo and Span(e, ez) # P;. We observe that
Ly can be recovered from the flag (Lo, P;) by L; = P; N Span(eq, e3).
We can coordinatize BS°(1,2,1) by A3 by sending (¢1,t2,t3) to

Span(eq) C Span(ey,ez)
Span(tie; + e3) C Span(ep,es)
Span(tie; + e3) C Span(tie; + ez, tae; + e3)
Span((tits +t2)e; +tsea +e3) C  Span(tie; + eo, tae + €3).
We rewrite this in terms of matrices; our chain of flags is
1 0 0 t1 1 O t1 to 1 tits +to t1 1
0 1 0[By, [1 O O|By, |1 0 O| By, t3 1 0| B..
0 0 1 0 0 1 0 1 0 1 0 0

In the following section, we will often want to use coset representatives for GLo/B(2) other than [{]].
We therefore adopt the more general convention: For a word (s;,,S;,,-..,S;,) and a sequence of elements
(h1, ha, ..., hy) in GLg not lying in B, (2), let wi,i,...i. (h1,h2,...,hs) be the sequence of flags

Wiyiy..ia(R1,ho, ... ha) == (By, ps, (R1) By, pi; (h1)piy (h2) By, . . ., piy (h1) iy (h2) - - pi, (ha) By)
in BS®(41,1%2,...,%,). We close by remarking on some other choices we could use for h;:

Example 4.4. Take n = 3; let u = e and w = wy; we use the word (s1, s2, 1) for w. There are two subwords
of (s1, 82,81) with product e, namely (e,e, ) and (s1, e, 1), and both are distinguished. So }023’0 is the union
of two Deodhar pieces: D(e,0,0) = Deq(e, €, €,e) and D(s1,e,51) = Dgeqle, s1, 51, €).

We describe points of BS®°(1,2,1) using two lines, L;, Lo, and a plane P;, as in Example 3.10. The
Richardson R*° is the open subvariety of BS°(1,2,1) where L, is transverse to Span(es,e3) and P is

transverse to Span(es). In the coordinates of Example 3.10, the open Richardson 1023’0 is the open locus
tg(tltg -} tg) 75 0.

The piece Dgeql€, €, €,€) is the piece where L, is transverse to Span(es,es); the piece Dgeq(e, 51, 51,€) is
the piece where L1 C Span(esg, e3). We reinterpret this condition in terms of the flag (L2, P;) and in terms of
the coordinates (t1,t2,t3). Since L1 = P; N Span(eq, e3), the first piece is the piece where P; N Span(eq, e3)
is transverse to Span(es, e3); equivalently, the first piece is the piece where Span(es) ¢ P; and the second
piece is the piece where Span(ez) C P;. In terms of the (¢1,%2,t3) coordinates, these pieces are t; # 0 and
t1 =0.



The topology of a Deodhar piece Is simple

« Letm_,m, m, be the number of times that our partial products v stay put,
go down in length, or go up. Then VY, ..., v%) = (=X A"™

 We fix everything in a sequence of flags except for the i-th one, i.e. V, this is
a P!: there is exactly one point Win this | I that increases the length

» If we stay put, we must avoid both V,, W

* |f we go up, we just choose W

» If we go down, then V; = W, and we only need to avoid V;



Applications

Kazhdan-Lusztig R-polynomials

« The number of I]:q points in the open Richardson variety R'" form a polynomial,
called the Kazhdan-Lusztig R-polynomial, because the number of [Fq points in
A, (3,  do, and the open Richardson is a disjoint union of Deodhar pieces

o dim(R))) = m_+2m; =7C(w) — ¢ (u)
 The R-polynomials are palindromic up to a sign twist

e Deodhar torus: there must exits a maximal one that Is Zariski dense with
m; = 0; distinguished sequences like this are called positive
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4.2. Matrix product formulas for Deodhar pieces. We now turn to the problem of parametrizing
the Deodhar pieces. Our primary source is Marsh and Rietsch [MarshRietsch04]. We recall the notation
p; : GLy — GL,, from Section 3.2. Define:

si=p([170)])  &®=p([50]) ZO=p(li0]) w@®=p(:7))

Proposition 3.8. Let (s;,, Si,,-..,8:, ) be any word in the simple generators of S,. Map A® to FL2T1 by

(tl, tg, I ,ta) —> (B+, Riq (tl)B+, i (tl)zz'2 (tQ)B_|_, v ey Ry (tl)zz-z (tz) T2, (ta)B+).

This is an isomorphism A* — BS®(i1,12,...,14).

h] — 823 .7 € Jy




Recall the map p;,;,...;., from (GLy — By (2))® to BS®(i1,42,...,1,) introduced in Section 3.2. We will write

g® for the partial product hihs - - - hi, so the image of p;,...;. is (By,g'B.,...,g%B).
Theorem 4.12. With the above notation, the map sending (ti,ts,...,tq) to (By,¢'B.,...,9%°B.) in
BS° (41,12, ...,1q) 18 an isomorphism from G™= x A™ to the Deodhar piece Dge,(v°, v, ..., v%).

Example 4.13. In F/3, consider the word (s1, s2,s1) from Example 3.10. There are two distinguished subex-
pressions ending in e: (e,e,e,e) and (e, s, s1,e); they correspond to (J=,Jy,J;) = ({1,2,3},0,0) and
({2}, {1}, {3}) respectively. Since (s1, s2,s1) is reduced, the projection of BS®(1,2,1) onto the last flag F/3
is an isomorphism with its image, so we focus on describing the final flag F.

The corresponding matrix products are

1 0 0ol [1 o0 Ol[]1 0 O 1 0
t1 1 0[]0 1 ol [ts 1 0] = |t1+t3 1
0 0 1) [0 ¢t 1] [0 O 1 totz b
0 —1 0|l[1 0 O]l[us 1 O 1 0 0
1 0 0/]0 1 off[-1 0 of = us 1 0
0 0 1[]|0 ¢t 1/ 0 O 1 —t2 0 1

with t1, ta, t3 € G,, and us € Al. These two pieces disjointly cover the open Richardson R
A1A12A3A53 # 0. The first piece is the open set A3 # 0, and the second piece is the closed set A3 = 0.
The reader is invited to compute these minors and see that they are zero or nonzero as appropriate.

321
1239

which 1is



Example 4.14. We give an example with a nonreduced word. We work in F¥5 with the word (s1, s1, s1, 1, S1).
Then a distinguished sequence is a sequence of six e’s and s;’s which starts with e and has no consecutive

pair of s;’s. As a concrete example, we will take the sequence (e, e, e, s1,¢€, s1), corresponding to the subword

(e,®,51,51,51). The matrices ¢; are

1 0] [1 o] [0 —=1] [us 1] [O -1 ’
to 17 |t 101 o] -1 07 |1 o0 © € Gm, us € A
The successive partial products ¢’ are
1 0] [1 O 1 0] [0 -1 1 T 1 o] [o —1 ‘
_O 1_ ’ _tl 1_ ’ _tl + 1o 1_ ’ _1 —t1 — tg_ ’ _tl + o + ug 1_ ’ _1 —t1 — to — Ug .
A flag in F/, is simply a point on the projective line P!; the sequence of flags (F°, F'1,..., F°) in this case is
1] [1 1 0 1 0
0_ ’ _tl_ ’ _tl -|—t2_ ’ _1_ ’ _tl +t2 -|—’U,4_ ’ _]. .

Note that consecutive elements of this sequence are always distinct points of P!; this is the Bott-Samelson
condition. Note also that F°, F!, F? and F* are in the Schubert cell X, = {A; # 0} where as F° and F”

are in the Schubert cell )2'31 = {A; = 0}; this is the additional Deodhar condition.



The matrices follow suit of the distinguished sequence
g/ € B_v/

 Convenient notation: Let v be a permutation, whose matrix representative has
a 1 at every (v(k), k) and zero elsewhere. Let v be signed such that every
“left-justified” minor is nonnegative. We have (vs;) = vs.. (N_ seems to be the

signed version of B_, but | am not sure.)
o 1 v(i) < v(i + 1), then vy ()~ € N_

o 1fv(i) > v(i + 1), then V(Z(u)$)v~! € N_



Parametrizations of flag varieties

[Marsh, Rietsch]

10 u — gz(u)B, is an isomorphism of Al to

0
3

0,0 1 O 1 0 O

0
1 0]-1 0 O 0O 1 0
T 170 0 1 -t 0 1

o =+ O
O O 4
o O =

5
the space of flags gB, — F.

t = gy/(?)B_ is an isomorphism of 5,  onto the

complement of g5:8

The A! bundle argument from before

o =+ O
- O O
o
o
o 4. O
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o
o
—
o
—
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Checking g/B., € (B_vaJr)/BJr




Inverting the isomorphism G”'= x A™ — D(v°,v!,...,v?%) is quite complex; see [MarshRietsch04] for

the general formula. We will describe the result for the Deodhar torus in the case where (s;,,...,s;, ) is

reduced (which is the case which is relevant to Richardsons). We first set up some auxilliary functions, called
chamber minors.

Let (v°,v',...,v%) be the positive sequence for u; it will also be convenient to put w’ = s;,5;, ;.
Because (si,,...,s; ) is reduced, at any point (F?,..., F*) of BS®(i1,...,4s), the flag F7 is in X*'. By the
definition of the Deodhar piece, if (FY,..., F%) is in Dgeq(vY,...,v?%), then F7 € X, ;. So, combining these,
FI e Rgf This means that the k-th subspace, F,Z, is in the Grasmmannian Richardson variety ég[zc]]. In
particular, the Pliicker coordinates A,; [k](F,z) and A, (F,g) are nonzero. We define the ratio

(I)j . Avﬂ[k](Flz)
. = .

to be the (7, k)-chamber minor. Since this is a ratio of two Pliicker coordinates, it is a well defined invariant
of the subspace F;. We can visualize the chamber minors as written in the chambers of the wiring diagram;



Chamber indexing

Why are they called “chamber minors”?

The main idea is to associate such an arrangement (which we call the ansatz arrangement) to the pair
v,w. For example, if w = (1, s3, S352, S35251, S3525153, S352515352), and v is the distinguished subexpres-
sion (1, s3, s3, 83,1, 89) for s in w, then the arrangement is as in Figure 1.

X XY
X
1 X

FIGURE 1. Ansatz arrangement (unlabeled) for s3s2515352. Note that g = s3ya2(t2)y1(t3)z3(ma)ss ~sa.

A
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/ \
123\ 124 123
g =7 \

4/
123\ 124 )( 134
5 27

FIGURE 5. Lower arrangement for s3sos15352. Note that g = $3y2(t2)y1(t3)z3(my)sés "So.
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FIGURE 6. Ansatz arrangement for s3s2s15382. Note that g = $3ya(te)y1(t3)x3(ma)éz so.



convenience. The ansatz arrangement can then be used to compute the coefficients tx and my as follows.
Suppose k € J, U J,. Let Ax, Bx, Cx and Dg be the minors labelling the chambers surrounding the
singular point in the ansatz arrangement corresponding to k, with Ax and Dy above and below it, and By

and C on the same horizontal level (see Figure 7). It is easy to check that Theorem 7.1 implies that, for
kecdg,

¢, — Ax(2)Di(2)
By (2)Cr(2)’
and, for k € J_,
. _ Bi(2)Ci(2)
" Ak(2) Di(2)

A
B, & Cy
Dy,

FIGURE 7. Chambers surrounding the singular point corresponding to k € J, U J_.



Theorem 7.1. (Generalized Chamber Ansatz)

Let B = 2w - BT € Ry, where z € UT, v,w € W and v < w. Let w = (w),w(),--.,Wxn)) be a
reduced expression for w with factors (s;,,Siy,---,8i,). Then B lies in a Deodhar component Ry v, where
v = (V(0), V(1)s- -+, VU(n)) 5 a distinguished subexzpression for v in w. By Proposition 5.2, there is g € Gy w
such that B = g - B™. By Definition 5.1 we can write g = g1g2--- g, € U0 N B~ wB™, where

Yix (tk) k € ']37
gk = Szk k € JJ—,

T;, (mk)é;cl ked,.

For each k, let gy = g192 - - - gk denote the partial product. Then the following hold.
(1) For k € J2, we have:

() W 4 .
Hj#ik Aw((kk))cjj (2) %9

() Wi V(k—1)W;
Av s, (2)Aui 1wl (2)

tr =

(2) For ke J;

v » we have:

A'v(k—l)wik (z)AU(k—l)wik (Z)

W(k) Wiy W(k—1)Wig U(k—1)Wip

T ' i) Wi ~1))-
Hj;ézk A’U(k)wy (Z)_a'j’ik: Si, Wi, (g(k 1))

W(k)Wj




—-—

Theorem 4.16. With the above notation, let j € J—, so that v?~! = v/, and set k = ;. Then
Prr1Pss

1k
& @

b =

We remark that FJ 1 = FJ 1, S0 we could switch the superscripts in the numerator to j — 1 without
effecting the formula. Vlsually, these are the minors for the four chambers surrounding the j-th crossing of
the wiring diagram.




Not a stratification!

The closure of a Deodhar piece is not a union of Deodhar pieces

It is easier to give a counterexample in an open Bott-Samelson variety, without the assumption that
(SiysSiny---58i,) is reduced. Let x be a word in {1,2,...,n — 1} and let a and b be distinct distinguished
subwords of z. Then aa® and bb"* will be distinguished subwords of zz‘* (for the identity). Suppose that

(1) D(a) D D(b) in BS®(z) but
(2) dimD(aa’) < dimD(bb?) in BS°(zz ).
A concrete example is x = (1,2,1), a = (1,e,1), b = (1,2,e). To check the first condition, we describe

points of BS°(1,2,1) using two lines, Li, Ly, and a plane P;, as in Example 3.10. Then D(1,e,1) is
the subvariety where L; = Span(ez) and P; # Span(ez,e3), and that D(1,2,e) is the subvariety where

Ly, = Span(ez), P1 = Span(ez, e3) and Lo # e3. It is easy to see from this description that D(1, e, 1) contains
D(1,2,e). (Concretely, D(1,e,1) is the locus where L; = Span(es).) To check the second condition, note
that D(1,e,1,1e,1) X D(1,2,0,0,2,1) = G2 x G2.

Proposition 4.19. For z, a and b as above, we have D(aa®) N D(bb?) # 0, but D(aa®) 2 D(bbY). Thus,
the Deodhar pieces do not form a stratification of BS®(zz™).

Proposition 4.20. For z, a and b as above, we have D(a o ea)ND(beeb™) £ 0, but D(a e ea’t) 2 D(beeb™).
Thus, the Deodhar pieces do not form a stratification of BS®(zsisp,z™).



Examples

That are explicit!

There might be some Le-diagram
business under the rug?
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Let C be a chamber of the unipeak diagram and consider the geometric construction of the unipeak word
above. The top of C consists of two line segments, one with slope 1 and one with slope —1. Let the line
segment with slope 1 come from the wire o; and let the line segment with slope —1 come from wire o ;; we
have ¢ < j. We will say that (¢, 7) is the roof of C.

Let (si,,Si,,...,s:..) be the unipeak word for w and let (Fy,F,...,F,_1) be a flag in X%. Since
(Si,58iys---,8; ) is reduced, there is a unique chain of flags (F° F!, ..., F%) in BS°(i1,42,...,%,) ending
with F'* = (Fy, F5, ..., F,_1), and thus a unique labeling of the chambers by subspaces.

Proposition 4.24. In the above notation, the subspace in chamber C is Span(ey,ea,...,€;—1) + Fy-1()—1.



Example 4.25. We take the chambers of Example 3.3 and fill them as described here:

Span(elv €2, 63) F3

Span(eq, es) Span(ey) + F; Fs

Span(e;) F

We give the analogous formula for univalley wiring diagrams. If C is a chamber of a univalley wiring
diagram then there are two wires running along the bottom of C; let o; be the decreasing wire and let o; be

the increasing wire. Then the subspace in C' is Span(ey, ez, ..., e;) N Fy(;).
Using this, we can give an explicit description of the Deodhar strata for a unipeak wiring diagram.

Proposition 4.26. Let w be a permutation, let (s;,, S;,,...,Si, ) be the unipeak wiring diagram for w and
let F' be a flag in X"™. Then the knowledge of which Deodhar piece F' is in is equivalent to the knowledge,
for all 1 < i’ and all 7, of dim (Spa,n(el,eg,...,ei_l,ei/+1,ei/+1,...,en) — Fj). If we let F = gB, then,
equivalently, the knowledge of which Deodhar piece F' is in is equivalent to the knowledge, for all 1 < i’ and
all 7, of the rank of the submatrixz of g in rows {i,1+ 1,...,7} and columns {1,2,...,5}.



