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ABSTRACT. In this paper, we summarize some results of the criterion
on the reversibility and irreversibility of stationary Markov processes, the
background of which is the equilibrium and nonequilibrum in the statisti-
cal mechanics. These results include the circulation number, the general
definition of the entropy production, Einstein formula, etc.

1. Introduction

Thermodynamic equilibrium (detailed balance) and nonequilibrium are well
known and of interest among physicists [Ha), [Hi], [NP], [Sch]. The mathematical
version of them is the symmetry (or reversibility) and nonsymmetry of stochastic
processes defined as follows.

Consider a stochastic process X = {X; : t &€ T} (where T = Z% or R")
with the state space (E,B), given on the probability space {1, 7, P}. Two
measures Pt [s,t] and P~ [s,t| can be introduced on #} as the distributions of
{X, :s<u<t}and {Xi_stu : 8 <u<t}, where

?;=0(Xu cs<u<t).
DEFINITION 1. X s called reversible, if for any t > s,
(1) Pts,t] = P~ [s,t].

when X is a homogeneous Markov process with transition probability {P(t,
z, A)} and initial distribution u, then X is reversible iff X is stationary and

(2) /A u(dz) P(t,z,B) = /B u(dz) P(t,z,A) VA, B€BandteT.

1980 Mathematics subject classifications (1985 Rewvision). 60J25, 60J65, 60J20, 82A05, 82A25,
60J60.
This paper is in final form and no version of it will be submitted for publication elsewhere.

©1991 American Mathematical Society
0271-4132/91 $1.00 + $.25 per page

255



256 MIN-PING QIAN, MIN QIAN AND GUANG-LU GONG

If X is a discrete Markov chain with transition probability (p;;) and initial
distribution {u;}, (2) is equivalent to

WiDij = KiDji for any states ¢ and j .

And when X is a diffusion process with transition probability density p(t, z,y)
and initial density u(z), (2) is equivalent to

w(@)p(t,z,y) = u(y)p(t,y.z) Vi,z.y.
If X satisfies a Stratonovich SDE in R™:
(3) dXt = O'(Xt) o d’lﬂt - b(Xg)dt

with a unique invariant measure p(z)dz, then for the stationary diffusion starting
from p(z)dz, (2) is equivalent to the condition that L is symmetric with respect
to u, i.e.,

[ Li@a@uta)iz = [ fe)La@u@)z.
for any f,g € C§°, where

1 d Io} 0
L= §§Eaij(mla—% +Xi:bi(x]E‘

As we have seen above, equilibrium means that the distribution of the process
does not change under time reversal. But this could not be true in many situa-
tions, especially for stochastic processes in live bodies, which are time sensitive.
Therefore, it is important to understand what will happen when the system is
in nonequilibrium and to understand the difference in path behavior between
reversible processes and irreversible processes. Can we give a quantity that mea-
sures how far a nonequilibrium process is from reversibility? In this paper, we
summarize some conclusions obtained in answering these question.

2. Circulations of Markov chains

Consider a countable state recurrent Markov chain with transition matrix
P = (p;;). Kolmogorov gave a criterion for the reversibility of a finite state
Markov chain [K]:

THEOREM 1. P is reversible with respect to its invariant measure p off for
any state cycle: 17 — 1 — +++ — 15 — 11,
DiyiaPigis * " " Pigiy = Piyis 1 Pisris—g " Pisiy
It is natural to consider the path behavior along cycles of a reversible Markov
chain. For a recurrent Markov chain, the path draws cycles one after another.
Record each cycle once it forms, and delete it to avoid confusion and double-
counting. Denote the number of times for each cycle R: 4y — i3 — -+ — 153 = 13

formed up to time T by Wr(w, R). We have the following theorem about the
path behavior along cycles of the Markov chain.
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THEOREM 2 [QQ2].
lim = Wr(w,R)=Jr a
— W = .8,
Tooo T T\W, R
where

JR = PirigPigia -+ Pivia N(G2|i1) N (G3]i1,92) - - - N(dsli1, 92, .. 1Te-1)

and N(ig|t1,%2,... ,%s—1) (K = 1,2,... ,8) are the taboo Green’s functions of
P starting from i back to iy without touching 11,92,... yik—1. Moreover the
product

(4) N(ig|i1)N(i3li1,22) - - - N(ts|t1, 02, - - ls—1)

is independent of the order of i1,12,... ,1s, and

Jrp=Jg-(R™: s = temg — -+ — 11 = 1s)
whenever
(5) PiyipPigis - Pigiy = PigiyPigiz ** " Piriy-
COROLLARY 1. A Markov chain X 1is reversible iff Jr = Jg- [or every
cycle R.

Remark. For the finite state Markov chains, the product in (4) is the ratio
D(leai:Qa =F N - 'J‘is—l)/D{?:S)y

where D(¢,) and D(71,%2,... ,4s—1) are the determinants of the matrices formed
by deleting the 7,—th row and column and 7, th, 7o-th,..., 7s_1-th rows and
columns form the matrix (8;; — pi;) respectively. This is the quantity expressed
by tree terminologies in graph theory (see [Hi], [QQQ3]).

For a stationary diffusion on a circle with stationary density p:

diL't = 0'(331) o th + b(l‘t) dt,
where
o(0) =o(2m), b(0)=b(27).

Denote the number of winding times up to time 7 of X clockwise and coun-
terclockwise by W4 (w) and W (w), respectively.

THEOREM 3. For the diffusion X on the unit circle, the following two limits
exist:

1 1
- + _ - B + pars = . it .
(6) J* = Jim mWitw), J7 = lim W),
and
1 , JT
(7) It - 07 = —za(@)p) +ba)p@), = =w(2n),
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where  b(a)
2 T
a(z) =0o(x)", w(z)=exp —d:z:)
@ =0, v =ew([ 22
COROLLARY 2. X is reversible iff J* = J~.
Remark. J* — J~ = —}a(z)p(z)’ + b(z)p(x) = v(z)p(z) where

o(z) = b(z) — %a(:c)_l Vlog p(z)

is nothing but Nelson’s current velocity [N], and J* — J~, introduced by Feller
(see [F1] [F2]), is the flux used very often in physics for the probability flowing
through point z. Also

J+
log 5= = log w(2m)
is the so-called force in physics, corresponding to the chemical potential for a
process in chemical reaction.

3. Entropy production

In physics, there are several quantities, called entropy productions, such as
[Sch]

(8) ep =Y (Wipiy — kipyi)log Fiis
3Pj5i
for Markov chains and
1 _ 1 _
(9) epd(z) = (3 Vlogp(z) — A7'5)T A(5Vlog p(z) — A7'D)

for diffusion processes, with A, b, p being its diffusion matrix, drift, and invariant
density, respectively. It is claimed that systems far from equilibrium have positive
entropy productions. The questions are: (1) What is the probabilistic meaning
for those quantities? (2) Are these different formulas for entropy productions
essentially the same thing? and (3) Is there a relationship between a system
having positive entropy production and its being far from equilibrium?

The answers for these questions are given in Theorems 4 and 5.

DEFINITION 2. The entropy produc'tion of a stochastic process X = {X; :
t €T} at time t 1s defined as

|
(10) ep(t) = 111’1}: T‘;h(P+[31t]1P_[31t])
where h(P*[s,t], P~ [s,t]) is the relative entropy.
dP*|s,t]

h(P* (s, t], P [s,t]) = / log P[] dP*(s,t],

if the limit (10) exists.

The following theorem tells that the entropy production defined above can be
regarded as a criterion to characterize how far a process is from being reversible
and that it coincides with the formulas in (8) and (9) given by physicists.
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THEOREM 4. For a Markov chain with transition matriz P = (p;;) and
distribution {u;} at time t,

ep(t) = Y _(1ipi; — p;pji) log ﬁ",p” -

3 Pji

For a diffusion processes X given by (3) in the introduction,
ep(t) = [(%Vlog p(z) —A~0)T A (%V log p(z) — A™'b) p(z) dz .

THEOREM b. For the Markov chain as in Theorem 4,
1 Jr
ep(z) = 5 ;(JR — Jp-)log 5

(see [QQ2]).
Theorem 5 says that reversibility of time is equivalent to the symmetry of the

path behavior along cycles.

THEOREM 6. The entropy production of the diffusion on the circle in The-
orem 5, can be expressed as [GQI]:

J+
ep=(J* —J7)log 5=
J
and
J¥* —J~ = —ap' + bp,
Jt 2 b(z)
5= = exp /; _*a(x) dz = w(2n).

Remark. Theorem 6 shows that the entropy production of a diffusion on the
unit circle is just the product of the ‘flux’ and ‘force’.

4. The winding numbers of diffusions

For diffusions, it is not clear what is Jg as for Markov chains, so in its place
we use the winding number.

Consider a stationary drifted Brownian motion in R™ with drift b(z). Take
any two of its components of X, say Xt(k) and Xéj). Let

Zt — (Xt(k) _ ﬂ'!) + '?:(Xt(j) _ ﬁ) — 61t+i6; ,

and define 6; as the winding angle around point (a, ) up to time ¢ of the (k, )
component of X.

THEOREM 7. Under some mild integrable conditions we have that [GQX]
1
lim =8, =c1¢+ o
t—oo ¢

in law, where ¢ 1s a Cauchy random variable, ¢; and co are two constants de-
pending on the drift b. Furthermore, if X is reversible, then co = 0 holds for
Y(z,7) and (a, B), and the converse is also true.
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5. Einstein formula

In this section, we state a formula of the stationary diffusion processes, which
is an extension of the Einstein formula of the Ornstein-Uleneck process (see (E],

[QGG], [QQS)).

THEOREM 8 (EINSTEIN FORMULA). Let X, be a stationary diffusion pro-
cess with bounded drift b(z) and diffusion matriz A(z) uniformly bounded from
below and above. Then

o0
E/ b(X:)TH(Xe) dt = E (tr A(X,)) ,
0
where b* () is the reverse drift:
1
b (z) = ~b(z) + 5 A(z)Vlog p(a),

and p(z) is the invariant density.
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