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R

Tr[PxxP,PxyP] € 5 -Z

Physics “proof”: Quantized to 10~° accuracy!

Maths: ( Coarse partition; K-theory ).

Measures delocalization of P.
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1D partitioned/odd coarse index (sketch)

e World’s most famous commutator:

[Position, Momentum| = /.
—_——

. d
71&:D

® Cayley transform U = exp(wix(D)).

(U, U]) = (UL U - 1) T
Mn_ ‘ My
Discrete shift S: e e "o [TeT e e
why??

Te(S* [Ny, S]) = Tx(S M. .S — M) &
——

finite rank
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|. Story-telling and Motivation
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Physics — Maths

e Hall, 1879: 2D sample M subject to 1 magnetic field.
Transverse response of charges to electric field in M:

oHan € R.

® Weyl, 1929: Gauge principle (in quantum mechanics).

¢ Landau, 1930: QM of magnetic Laplacian1 on R2: Spectrum
“quantizes” to a set of infinitely-degenerate Landau levels.

®h ®3p ®5h ®7h

e Schréodinger, 1932:
_IE__ Ve 8 Vi~ s o0 Just =

4

WiV = —(0% + 82) + 2ibxdy + b*x?
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Physics — Maths

e Early 80s surprise: QHE at low temperatures, large field,

I OHall € Z.

e 90s: Bellissard+: NCG, cyclic theory for NC-2-torus.
¢ Ludewig+Kubota+T, 2020s:

[PLandau] = [Dirac coarse index].

e Today: Coarse index «~ quantization of trace (thus oyay)-
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2020s: Amorphous phenomenon needs “coarse” index theory!

“Small-scale structure” irrelevant! QHE works on bumpy samples.

N. Mitchell et al, Nature
Phys. (2018)

Driving
amplitude

Kl

6/25



00s: Coarse geometry was anticipated (A. Kitaev)

q

Periodic table for logical insul s and super

Alexei Kitaev
Theorem: Any gapped local free-fermion Hamilto-
Anyons in an exactly solved model and beyond nian in R is equivalent to a texture.
(That is the key technical result, but I cannot ex-
plain it in any detail in such a short note.) Discrete

_ systems on a compact metric space L are classified
V(P) - h(A7 B, C) by the K-homology group K2(L).

def
— 2 , Z Z } ijl- ) . -
je€A keB leC 30. N. Higson, and J. Roe, Analytic K-homology, Oxford

University Press, New York, 2000.
31. A. Connes, Noncommutative geometry, Academic Press,
San Diego, 1994.

Alexei Kitaev *

In general, a quasidiagonal matrix is a lattice-indexed matrix A4 = (A4) with sufficiently
rapidly decaying off-diagonal elements. Technically, one requires that

Mpl Scli =K, «>d,

where ¢ and « are some constants, and d is the dimension of the space. Note that ““lattice™
is simply a way to impose coarse R? geometry at large distances. We may think about the
problem in these terms: matrices are operators acting in some Hilbert space, and lattice
points are basis vectors. But the choice of the basis need not be fixed. One may safely re-
place the basis vector corresponding to a given lattice point by a linear combination of
nearby points. One may also use some kind of coarse-graining, replacing the basis by a
decomposition into orthogonal subspaces corresponding to groups of points, or regions
in R,
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Coarse cohomology and geometry

M EM pI RS (‘,tmlermceCBug\rgw M‘.g Sciences

American Mathematical Society

Regional Conference Serles in Mathematics
Number 497 J——

Coarse Cohomology Index Theory,
and Index Theory Coarse Geometry, and
on Complete Topology of Manifolds

Riemannian Manifolds

John Roe

John Roe

p————

Finite propagation operators~~ Roe C*-algebras.
“Middle ground” needed. ..
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Coarse boundary of maths/physics

Maths: Properties of points—space. Coarse index
obstructions (e.g. no psc metrics as corollary).

Physics: Operators—wavefunctions. Coarse index counts
something ~~ large-scale spectral phenomena!

Dirac operators coupled to vector potentials
(elliptic operators/index theory/characteristic classes/anomalies/gauge fields)

M. F. ATivaH' anD I. M. SINGER?

Twisted Diracs exhibit coarse/higher index explicitly?!

Quantization involves gauge: (Planck)/(electron charge)?.

2For 7%, higher index is families index over moduli of BZ9 (“T-duality”).
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[I: Coarse cohomology
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(Integral) coarse cohomology of M

® g-cochains are maps ¢ : M9t1 — 7 with usual §-operator.
(heoh)=10heh-Heleoi+hohel
e Coarse 0-cochain = compactly-supported f.

® Generally, p = fo ® ... ® fq is coarse if:

q
ﬂ Pen(Supp(f;); R) is compact, VR > 0.
i=0

aﬁ
oX
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Coarse cohomology — partitions

® Antisymmetrized coarse complex — HX*(M).

¢ Partitions AL B LI C = M define non-trivial cohomology
classes!

Pen(A; R) N Pen(B; R) N Pen(C; R) compact ¥R > 0.

PAB,C = XA Q XB ® Xc + antisymm.

e Compare Schick-Zadeh multi-partitioned manifold index
theorem.

How does [pa g,c] interact with operators on M?
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Cobordism invariance

B A B A

cC=C'ubD c’ D
[eB,crup,Al;
[SDA,BUC',D],

= [SO ’]7 2
[paB.c] DAUB,c’h € HX*(M).

Y

[SDC',D U A,B]’
—

X
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Pairing coarse cochains with finite propagation operators

® Lg,...,Lq € Ban(M) locally trace class® and finite
propagation:

(fh®.. . @filo... Lg) = ’IT((ﬂ)L)...(quq)) < .
e Coboundary—Projection trivializes,
(6p; PY = (6p; P,...,P) =0, P =P?e B(M), qeven.
N——
g+1
® Partition-projection pairing:

(A, B, C; P):=([pas.cl P),
= Tr(XAPXBPXCP + antisymm).

30n L2(M); fL and Lf are trace class whenever f has compact support.
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Pairing is a commutator-trace

(A,B,C; P) = Tr(XAPXBPXCP + antisymm)
=...=Tr[PxaP, PxsP].

Commutator-trace equals to
“sum over loop-amplitudes”:

2 — >

anticlockwise v  clockwise v

P(asv6) P(v6: ve) P(Ve, Ya)
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Meaning of commutator trace — Kubo form

Cobordism invariance leads to another formulation:

ubo

K .
2<A,B,C;P>:TI'[PXXP,PXYID] = i'aHall(P)

Quantum response along 9Y when electric field applied along 9.X.

Experimentally: this trace is
* Finite for a large class of oco-dimensional P.
¢ Integer multiple of a universal constant.

e Stable against perturbations in M-geometry and/or P.

Rigorous explanation only known* for M = R? or M =T = 7?2,
Real sample curvature variation > 1072, ..

*Hyperbolic: CHMMM+T
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Triviality of pairing

The pairing is zero when

® P is finite rank/trace class.

® PxxP or PxyP is trace class (any X, Y).

® PxxPxyP is trace class. (Lidskii)

® P has finite propagation.

® P = P (need gauge-connection!)
Only “fully delocalized” part of P can contribute.
“Localized noisy states” filtered out — plateaux®
Need infinite propagation P to get “integer# 0”.
Roe C*-algebras not suitable for Tr(-) ...

®Exact rounding off was the surprise that led to Nobel prize.
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IIl: Fréchet algebra of rapid
decrease operators?

éPolynomial volume growth of M assumed.
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Fréchet spaces of rapid decrease operators

Definition: %(M) is space of bounded operators on L2(M) with
finite “decay seminorms” for all v > 0:

pu(L) == sup I xvLxw [|Ime(1 4+ d(V, W))" < oo
rad(V),rad(W)<1 Ht/—’
elements

For each Z C M, define A(M; Z) C #(M) as subspace with

pv,z(L) = sup IxvLxwllre (1+d(V, 2))" (14+d(W, Z))" < oo
rad(V),rad(W)<1
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Fréchet algebras of rapid decrease operators

e Automatically locally trace class: %g, (M) C Z(M).
HB(M; Z) not closed ideal in Z(M).
(Different topologies for different Z!)

Algebra property not obvious.

“Natural” seminorms are not submultiplicative.

Nevertheless, we establish that Z(M; Z) are m-convex
Fréchet algebras, so they have their own holomorphic
functional calculi.
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Two localization theorems

e If ZC M is compact, then

PB(M; Z) C {trace class}.

® If Zy,...,Z4 C M are poly-coarsely transverse,
ﬂPen cPen<ﬂz R( )), Vr>0,
i=0

with R at most polynomial in r, then

HM; Z) .. BM; Zg) = B(M; (q) z),
i=0

with continuous multiplication.
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IV: Proof of integrality



Back to main goal

For any P = P? ¢ %(M), and 0X,0Y poly-coarsely transverse,
write Px := PxxP and Py := PxyP. We want to prove:

Tr[Px,Py] € 5 Z

(Also want cobordism invariance, homotopy invariance, promote to
K-theory.)

Clearly: Px is X-localized, and Py is Y-localized.

What about [Px, Py]?
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Localization argument

® Py fails to remain a projection by an error near 9X:
Px — P% = PxxP(1 — xx) P € B(M;0X).
N—————
Ox-localized
® Holomorphic calculus leads to
e¥™iZ 1 =z(z - 1)f(2)
e?™Px 1 = Px(1 — Px) f(Px) € B(M; dX).
———— ——

B(M;OX)  B(M)*
e Similarly for Y,

e*Py _ 1€ B(M;0Y).
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Localization = Integrality

® Qur localization theorems now apply,

(ezm'PX ~1)- (627“'PY —1) e Z(M; 90X NAY) C trace class.
9X 5;’ compact

e Kitaev's conjecture: this trivializes the Fredholm determinant,
det (e2wiPX e27riPyef27TiPXef27riPy> —1

® By Pincus—Helton—-Howe (BCH formula), above is equivalent
to

exp (Tr[27i Px,2mi Py]) =1 = Tr[Px, Py| € 5-Z.
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Kitaev determinant formula '06; Proof: Elgart—Fraas (2023)

If S, T are invertible and
(S—1)(T-1), (T-1)(5-1), (S*™—1)(T-1), (T-1)(5"-1)
are trace class, then det(STS™!T71) = 1.
e Our work provides a big natural class of examples:
(e2™Px _ 1)(e?™Pv — 1) is trace class, etc.

for any RD projection P on L2(M), and any poly-coarsely
transverse axes 0X,0Y.

® Then Tr[Px, Py] is quantized!
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Interesting P come from physics!

® Need to couple Dirac/Schrédinger to large gauge field to
obtain non-trivial P.

® Basic example: Landau-level spectral projection P.
[PLandau] = [ker(Dp)] = coarse-ind(Dirac) # 0 € Ko(C*(M)).

e Coarse index obstructs existence of localized basis for
Range(P). (L+T, '22).

e Coarse-MV principle implies spectral-gap filling theorem’ for
the magnetic Laplacian restricted to any ~ half-space X.

Spec on M ° ° ° o
Spec on X e 3 o o

"Ludewig+Kubota+T, CMP '21, "22.
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Discussion

® Working with #(M) rather than C*-algebras is crucial for
quantized trace formula for P.

® For K-theory: Is (M) spectral in C*(M)?
Actually, suffices that [P] # 0 in Ko(C*(M)) (Baum—Connes).

* HX3,, different from standard one?

® Deliberately avoided cyclic cohomology: KO-torsion?
Extension to unknown operator space. ..

® Full coarse invariance?

® dim > 27
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