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Assumed background: Basic differential geometry, group theory, and analysis.

These are expanded notes for a set of introductory lectures on the differential geom-
etry of bundles (gauge theory) and quantum mechanics (and some classical mechanics).
The aim is to show that the two subjects are inextricable, already at the level of basic
mathematical and physical ideas. We will have no occasion to discuss the topology of
bundles, or Galilean/special/general relativity, or quantum field theory. So there are
no physics prerequisites beyond some curiosity about the natural world.

The content is not readily available from any single source, and details of some of
the individual mathematical topics can be found in the references below.

� Lee, J.M.: Introduction to smooth manifolds. Springer (2012)

� Hamilton, M.: Mathematical gauge theory. Springer (2017)

� Kobayashi, S., Nomizu, K.: Foundations of differential geometry Vol 1. Inter-
science, Wiley (1963)

� Abraham, R., Marsden, J.E.: Foundations of Mechanics: Second Edition. Addison-
Wesley (1978)

� Thirring, W.: Classical Mathematical Physics. Springer (2003)

� Arnold, V.I.: Mathematical Methods of Classical Mechanics. GTM 60, Springer
(1989)

Somewhat related are lecture notes for a quantum mechanics course with a similar
flavour, but focussed on functional analytic aspects:

http://faculty.bicmr.pku.edu.cn/~guochuanthiang/QT24.html

1 Manifolds and motion

Classically, motion of a point particle1 in a d-dimensional configuration space M is a
time-parametrized curve

γ : I →M, t 7→ γ(t),

1Or a finite collection of point particles.
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where I denotes some open interval of R. There are equations of motion (E.O.M.) for
predicting γ given some initial conditions. For example, Newton’s Laws of motion are
usually presented using calculus onM ∼= Rd, and involves something called acceleration.
More geometrical formulations are Lagrangian and Hamiltonian mechanics. Under mild
assumptions, all these formulations lead to the same γ.

1.1 Affine space manifold

We write Rd for the vector space of d-tuples of real numbers. It comes with a standard
topology (induced by the standard inner product).

Let A be the topological space underlying Rd. Any homeomorphism A → Rd is
called a chart, providing d coordinate functions for A. We shall also consider local
charts, which are homeomorphisms between some open subset U ⊆ A and some open
subset of Rd. When two charts φ, φ′, defined on U,U ′ respectively, have overlapping
domains, there is a change-of-coordinates homeomorphism

φ′ ◦ φ−1 : φ(U ∩ U ′)→ φ′(U ∩ U ′). (1)

Given a function f : A→ R, we would like to determine its its rate-of-change along
motions γ : I → A. At time t ∈ I, this would be

d(f ◦ γ)
ds

∣∣∣
s=t
, (2)

provided f ◦ γ : I → R is differentiable.

Pick some chart φ : A
∼=→ Rd. Then we can rewrite

f ◦ γ = (f ◦ φ−1︸ ︷︷ ︸
Rd→R

) ◦ (φ ◦ γ︸ ︷︷ ︸
I→Rd

),

and declare that f and γ are individually smooth if f ◦φ−1 and φ ◦ γ are smooth in the
usual sense of elementary calculus2. In this way, we can investigate rates-of-changes of
arbitrary smooth functions along arbitrary smooth paths, with respect to the choice of
coordinate chart φ. Unfortunately, this goes against a basic principle that meaningful
physical laws cannot depend on having to pick a particular choice of coordinates.

Thus we consider a maximal family of local charts, sufficient to cover all of A, such
that the change-of-coordinates maps, (1), are always smooth3. Such a family is called
a maximal smooth atlas, or a smooth structure, on A. Now we declare f and γ to be
smooth, if f ◦φ−1 and φ ◦ γ are smooth, for all choices of local chart φ in the maximal
atlas. Because smoothness is a local condition, once it holds with respect to a local
chart, it will automatically hold on all other charts, due to smoothness of (1). So a
smooth structure is a device for doing calculus without preference for any particular
chart.

Remark 1.1. On A, the standard smooth structure is obtained by starting with any
global chart φ : A → Rd, then admitting all possible mutually compatible local charts
into the maximal atlas. We then forget the initial choice.

One might worry that we did pick out a preferred initial global chart. As it turns
out, apart from the mysterious d = 4 case, there is a unique choice of smooth structure
on A up to diffeomorphism, namely the one described above.

2Partial derivatives of all orders exist for all the component functions.
3They map open subsets of Rd to open subsets of Rd, so we know what “smooth” means.
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1.2 General manifold and tangent vectors

The local charts on A allow us to pass to Rd, and invoke the well-developed multivariable
calculus of maps Rm → Rn. In fact, all the local features of differential and integral
calculus, differential equations on Rd, etc., make sense any topological space equipped
with local charts.

Definition 1.2. A topological d-manifold is a second-countable, Hausdorff topological
space M , such that each x ∈ M is contained in some open neighbourhood homeo-
morphic to some open subset of Rd. A smooth d-manifold is a topological d-manifold
equipped with a maximal smooth atlas4.

So, on a smooth manifold M , there is a consistent coordinate-independent concept
of smooth functions f : M → R and smooth curves γ : I → M . Given a smooth γ, we
have the rates-of-change of f along γ, Eq. (2), not just for a single f , but for the whole
algebra C∞(M) of smooth functions on M .

So γ determines the rate-of-change assignment,

γ̇(t) ≡ dγ

ds

∣∣∣
s=t

: C∞(M)→ R

f 7→ d(f ◦ γ)
ds

∣∣∣
s=t
, t ∈ I. (3)

Besides being a linear assignment, the key algebraic property of γ̇(t) is that it is a
derivation of C∞(M) at γ(t), i.e., a Leibniz rule holds at γ(t) ∈M :

γ̇(t)(f1 · f2) = f1(γ(t)) · γ̇(t)(f2) + γ̇(t)(f1) · f2(γ(t)), ∀ f1, f2 ∈ C∞(M).

Remark 1.3. If we write (3) in terms of a local coordinate chart φ = (q1, . . . , qd) : U →
Rd,

d(f ◦ γ)
ds

∣∣∣
s=t

=
d∑

i=1

∂(f ◦ φ−1)

∂qi

∣∣∣
φ◦γ(t)

d(φ ◦ γ)i

ds

∣∣∣
s=t
, (Chain rule),

we see that only the numerical velocity vector,

d(φ ◦ γ)
ds

∣∣∣
s=t
∈ Rd,

matters for the left-hand-side. So all curves γ possessing the same numerical velocity
vector determine the same derivation γ̇(t).

Definition 1.4. The tangent space toM at a point x ∈M , denoted TxM , is the vector
space of derivations of C∞(M) at x. For a smooth curve γ : I → M , the derivation
γ̇(t) ∈ Tγ(t)M is called its velocity at time t.

4Any homeomorphism from an open subset of M to an open subset of Rd is a local chart, providing
local coordinates for M . A smooth atlas is a collection of local charts, sufficient to cover M , such that
the change-of-coordinates maps are smooth.
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Partial derivatives. Let x ∈M , and let φ be a local chart with φ(x) = 0. Associated
to φ are the “coordinate axes” centred at x,

γi : t 7→ φ−1(0, . . . , 0, t︸︷︷︸
i-th

, 0, . . . , 0), i = 1, . . . , d.

These provide the “basic curves” through x, and indeed, a basis spanning TxM . In
more detail: the derivation

∂i|x := γ̇i(0) : f 7→
d(f ◦ γi)

dt

∣∣∣
t=0
, f ∈ C∞(M),

is called the i-th partial derivative operator at x. It outputs the rate-of-change of f as
the i-th coordinate is increased from 0. Any v ∈ TxM is a linear combination of these
∂i|x,

v =
d∑

i=1

vi∂i|x. (4)

(Exercise.) Thus, in view of Remark 1.3, any derivation v ∈ TxM is geometrically
realizable as the velocity of some curve through x,

v = γ̇(0), γ(t) = φ−1(tv1, . . . , tvd).

To summarize: The tangent space TxM comprises the velocities of curves passing
through x.

1.3 Tangent bundle

The tangent bundle of a manifold M is the collection of all its tangent spaces,

TM :=
⊔
x∈M

TxM,

equipped with the projection map π : TM → M taking TxM to x. Since elements of
TxM are velocities of curves, we also refer to TM as the velocity phase space.

Let φ be a chart over U ⊆ M . For each x ∈ U , we have the basis {∂i|x}i=1,...,d for
TxM (Eq. (4)). Thus, the chart induces an identification

Φ : TM |U ≡
⊔
x∈U

TxM
∼=−→ U × Rd

v =
d∑

i=1

vi∂i|π(v) 7→ (π(v); v1, . . . , vd), (5)

called a bundle chart. The product space U ×Rd, equipped with the projection map to
U , is called the trivial vector bundle over U . The bundle chart Φ respects the projection
maps to U , and is an example of a local trivialization of TM . We can further consider

(φ× idRd) ◦ Φ : TM |U
∼=→ U × Rd → Rd × Rd

v =
d∑

i=1

vi∂i|π(v) 7→ (φ(π(v)); v1, . . . , vd) = (q1, . . . , qd︸ ︷︷ ︸
q

, v1, . . . , vd︸ ︷︷ ︸
v

).

(6)
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We refer to q,v as position and velocity coordinates, respectively.
As an exercise, check that if φα, φβ are local charts over Uα, Uβ ⊆ M respectively,

then
Φα ◦ Φ−1

β : (x,v) 7→ (x; gαβ(x)(v)), x ∈ Uα ∩ Uβ, (7)

where gαβ : Uα ∩ Uβ → GL(d) is smooth. Indeed, if qjα and qiβ are the respective
position-coordinate functions, then

gαβ(x) =

(
∂qjα
∂qiβ

∣∣∣
φβ(x)

)
ji

(8)

is the Jacobian of the change-of-position-coordinates map φα ◦ φ−1
β , which depends

smoothly on x by assumption.
Thus the local charts φ of M provide local charts identifying the local tangent

bundles TM |U with open subsets of Rd ×Rd. Then TM itself is a smooth 2d-manifold
(fill in details yourself). Furthermore, TM is a smooth vector bundle over M .

Definition 1.5. A (smooth) vector bundle over a manifold M is a smooth manifold E
with a smooth surjective map π : E →M , such that

� Every x ∈ M lies in an open neighbourhood U ⊆ M such that E|U := π−1(U) is
trivializable, i.e., there exists a diffeomorphism, called a local trivialization,

Φ : E|U → U × Rn,

respecting the projections to U ;

� For any pair of local trivializations (Uα,Φα), (Uβ,Φ), we have

Φα ◦ Φ−1
β : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

(x; ξ) 7→ (x; gαβ(x) · ξ)

for some smooth transition functions gαβ : Uα ∩ Uβ → GL(n).

A section of a vector bundle E is a smooth map s :M → E such that π ◦ s = idM . The
space of sections of E is denoted Γ(E).

Some remarks:

� The availability of local trivializations is a defining property, but we do not select
any particular choice.

� Each fibre E|x = π−1{x} inherits a vector space structure, through its iden-
tification with Rn with respect to any local trivialization. So we can perform
scalar-multiplication pointwise,

Γ(E)× C∞(M)→ Γ(E)

(s, f) 7→ s · f.

� For TM , the bundle charts provide sufficient local trivializations making π : TM →M
a vector bundle. The transition functions are the Jacobians, Eq. (8). Other local
trivializations (not necessarily induced by local charts on M) are allowed as well,
as long as the transition functions remain smooth.

We write X(M) = Γ(TM).
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� Some vector bundles, e.g., TS2, do not admit any nowhere-vanishing global sec-
tion. Nevertheless, we can always find local frames for E — this means a collection
of local sections e1, . . . , en : U → E|U , such that {e1(x), . . . , en(x)} is a basis for
E|x for every x ∈ U . For example, using a local trivialization, we can map the
tautological frame for U × Rn to a local frame for E. Conversely, we can use a
local frame to construct a local trivialization. Thus E is globally trivializable,
E ∼= M × Rn iff it admits a global frame. If TM is globally trivializable, M is
said to be parallelizable.

� A function f ∈ C∞(M) is a section of the trivial5 bundle M ×R. The values of f
are well-defined numerical scalars, since they do not depend on choosing frames.
Contrast with a vector field, which is a section of a vector bundle: its “value”
at x ∈ M is merely an element of an abstract vector space TxM , and a frame is
needed to achieve TxM ∼= Rn.

1.4 Tangent vector fields and integral curves

Suppose a tangent vector field X ∈ X(M) is given. Then locally in space and time,
we can reconstruct a family of uniquely determined integral curves, whose velocities
precisely match the tangent vector assignment of X,

γ̇(t) = X|γ(t).

To do this, we use local charts to convert the integral curve condition into a set of
numerical ODEs with specified first derivatives. Then invoke uniqueness/existence
theorems.

We imagine points moving along these integral curves — this is called a local flow,
and can be thought of as a time-parametrized group of local diffeomorphisms, “gener-
ated by X”.

1.5 Comparing tangent vectors

Tangent spaces TxM at different x ∈ M are not canonically identified. Rather, they
are locally identifiable with the standard vector space Rd, after referring to a local
trivialization, TM |U ∼= U × Rd. A choice of local trivialization is called a local gauge.
With respect to a local gauge, a vector field X becomes locally described as a d-
component function X̌ : U → Rd. We could differentiate X̌ component-wise, but this
is a gauge-dependent procedure!

The problem of differentiating vector fields intrinsically, i.e., gauge-independently,
is an old one. In physics, one has differential equations for vector fields, tensors, etc.,
and demands that they make sense intrinsically. The key insight it that “intrinsic dif-
ferentiation” requires extra geometric data, and this kind of data has profound physical
meaning.

Parallelism of affine space. Why is it that, when working with affine spaceM = A,
we can speak unambiguously about rate-of-change of velocities6? The answer is that
we are implicitly using an extra affine space structure on A.

5Not just trivializable!
6Newton’s second law, F = ma, familiar from high school, is certainly very successful!
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More precisely, let V be the vector space underlying Rd, and (V,+) be the underlying
additive group. Note that V is a manifold such that + and − are smooth operations7,
so (V,+) is a Lie group. Unlike V , the underlying manifold A does not have a preferred
origin. But now we do not consider A just as a manifold, we remember that A has a
smooth free and transitive action of (V,+),

A× (V,+)→ A

(a, v) 7→ a+ v.

(Jargon: A is a smooth torsor over (V,+).) When equipped with this group action,
the manifold A is called affine space.

The action of (V,+) determines some special curves in A, which we now describe.
Consider 1-parameter subgroups of (V,+), i.e., smooth group homomorphisms

γ : (R,+)→ (V,+).

A little thought shows that such a γ must actually be a linear map. In other words,
the space of 1-parameter subgroups of (V,+) is identified with V itself,

v ∈ V ←→ γv : t 7→ tv.

Applying these γv to various starting points a ∈ A, we get the following curves

La,v : R→ A

t 7→ a+ γv(t) = a+ tv.

These La,v are what we informally call “straight lines”, and they are labelled by the
starting point a ∈ A and the direction vector v ∈ V . As an exercise, verify that

V → TaA

v 7→ L̇a,v(0) (9)

is a linear isomorphism. (Work with coordinates provided by a linear basis β : Rd → V .)
Altogether, we have a canonical trivialization of TA,

A× V
∼=←→ TA

(a, v)←→ L̇a,v(0).

This is the global parallelism of affine space, which allows velocities at distinct points
a, a′ ∈ A to be compared, and judged to be parallel or otherwise.

Remark 1.6. If you know about Lie groups, the manifold underlying a Lie group G
(understood as a G-torsor) is canonically parallelized in a similar way. The difference
is that the vector space V is replaced by the so-called Lie algebra g of G.

Remark 1.7. The curve La,v is “straight” in another sense — its velocity vector is always
v, so there is no acceleration. On a general manifold M , we need the extra data of a
“connection” in order to judge whether the velocity vectors at different points on a curve

7Exercise: make this precise.
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are changing. With respect to a connection, a “straight curve” with no acceleration is
called a geodesic.

One way to specify a connection is by putting a Riemannian metric on M , which
leads to the so-called Levi–Civita connection, and the distance-minimizing geodesics in
Riemannian geometry. For example, if we give V an inner product, then the underlying
A becomes a Riemannian manifold (usually called Euclidean space), and the Levi–Civita
connection coincides with the connection coming from the parallelism as an affine space.
So straight lines are also shortest paths.

1.6 Derivative of smooth maps between manifolds

A map f : M1 → M2 between manifolds is smooth if its local representations with
respect to (any) charts of M1 and M2 are smooth.

Definition 1.8. Let f : M1 → M2 be a smooth map. Its derivative at x ∈ X is the
map

df |x : TxM1 → Tf(x)M2

defined by

df |x(v)︸ ︷︷ ︸
derivation at f(x)

(g) := v(g ◦ f), v ∈ TxM1, g ∈ C∞(M2). (10)

Check the following:

� df |x(v) is indeed a derivation of C∞(M2) at f(x).

� df |x is linear map.

� The chain rule is satisfied: if M1
f→M2

g→M3, then d(g ◦ f)|x = dgf(x) ◦ df |x.

� d(idM)|x = idTxM .

� If f : M1 → M2 is a diffeomorphism, then df |x is a linear isomorphism whose
inverse is d(f−1)|f(x).

� Most importantly: If v ∈ TxM is the velocity of a curve γ through x, then df |x(v)
is the velocity of the curve f ◦ γ through f(x).

Example 1.9. Let f :M → R be a smooth function, which we regard as a smooth map
f : M → A. Here, A is the 1-dimensional affine space manifold underlying the vector
space R. SO we have

df |x : TxM → Tf(x)A

γ̇(0) 7→ d

dt

∣∣∣
t=0

(f ◦ γ).

Since A is an affine space manifold, we have Tf(x)A = R (see Eq (9)). The map
df |x : TxM → R is thus a linear functional, i.e.,

df |x ∈ (TxM)∗ =: T ∗
xM.

The above dual space, T ∗
xM , is called the cotangent space at x, and df |x is a cotangent

vector at x.
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Actually, the various df |x : TxM1 → Tf(x)M2 assemble into a single map,

df :=
⊔
x∈M

dfx : TM1 → TM2.

Using the bundle charts of TM1, TM2 induced by local charts onM1,M2, one can check
that df is a smooth map. Indeed, df is a vector bundle morphism, in the sense that the
diagram

TM1 TM2

M1 M2

df

π π

f

commutes.

1.7 Differential forms

The cotangent bundle of M is

T ∗M =
⊔
x∈M

T ∗
xM.

If
{

∂
∂qi
|x
}
i=1,...,d

is a basis for TxM induced by some local chart φ = (q1, . . . , qd), then

{dqi|x}i=1,...,d provides the dual basis for T ∗
xM . So, in the same way as TM , the cotan-

gent bundle T ∗M is also a vector bundle,

π : T ∗M →M.

A section of T ∗M is called a differential 1-form.

Example 1.10. Globalizing Example 1.9, for a smooth function f : M → R, we can
regard

df =
⊔
x∈M

df |x (11)

as a differential 1-form, called the gradient 1-form of the scalar function f . The space
of 1-forms is denoted

Ω1(M) := Γ(T ∗M).

For a map f : M1 → M2 of manifolds, the dual operation to the derivative map
df : TM1 → TM2 is the pullback of 1-forms,

f ∗ : Ω1(M2)→ Ω1(M1).

By definition, if η is a 1-form on M2, then f ∗η is the 1-form on M1 defined by the
formula

(f ∗η)|x(v) = η|f(x)
(
df |x(v)

)
, ∀ v ∈ TxM.

Generalizing the idea of 1-forms, we can consider smooth assignments of k-multilinear
maps

TxM × · · · × TxM︸ ︷︷ ︸
k times

→ R,
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which are totally antisymmetric in the k arguments; these are called differential k-
forms. The space of differential k-forms is denoted Ωk(M), and like 1-forms, they can
be pulled back under smooth maps.

For example, in terms of a local chart, 2-forms can be expanded in terms of the
antisymmetrized tensor product of coordinate 1-forms,

dqi ∧ dqj := dqi ⊗ dqj − dqj ⊗ dqi, 0 ≤ i < j ≤ d.

A 2-form ω ∈ Ω2(M) can be reduced to a 1-form by substituting a vector field X into
the first argument,

ιXω( · ) = ω(X, · ) ∈ Ω1(M).
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2 Classical mechanics in phase space

A path γ in M automatically determines a path of velocities, γ̇, in the velocity phase
space TM ,

t 7→ γ̇(t) ∈ Tγ(t)M.

Note that:

� Each velocity vector Tγ(t)M is “attached” to the position γ(t) ∈M . Velocities at
different positions are not a priori comparable.

� We do not consider arbitrary paths in TM , but focus on those of the form γ̇.

In Lagrangian mechanics, dynamics is specified by a Lagrangian function8 L : TM → R.
The equation of motion is a differential equation, stated in terms of L. This is given in
Eq. (31) later.

Rather than try to explain where L comes from, we will start with a reformulation
on the cotangent bundle T ∗M , called Hamiltonian mechanics.

Remark 2.1. In practice, the coordinates of a “point particle” are, for example, the
centre-of-mass of some rigid body. Some extra coordinates might be needed to account
for the rotational alignment of the body, so in total, M is some abstract “configuration
space” rather than literally a “position space”. In general, we could think of M as a
manifold described by “effective coordinates” which are sufficient to capture the relevant
aspects of classical motion of a physical system.

The empirical basis of classical mechanical laws (say, Newton’s laws) was celestial
body motion, falling balls, etc. It is tempting to think of a macroscopic object as
ultimately comprising a large collection of discrete “fundamental point particles” (or
even a continuum/field of such particles). Then, in principle, we could be more ambi-
tious and try to capture the full microscopic interactions and motions of the point-like
constituents.

However, this is a highly misguided idea, as we know since the discovery of quantum
mechanics in the 20th century. The successes of the idea of “point particle” had been
in the modelling of massive objects that we can typically see. This does not mean that
fundamental constituents of matter (whatever they “are”), are literally points moving
along well-defined observable9 paths γ.

At some scale, modelling of “small blobs” of matter by point particles fails. So,
although TM seems more intuitive than T ∗M , this bias is not that meaningful for
post-classical mechanics.

2.1 Hamiltonian mechanics

Let φ = (q1, . . . , qd) : U → Rd be a local chart over U ⊆ M . A cotangent vector
p ∈ T ∗M |U is labelled by the coordinates of the basepoint,

qi(p) = qi(π(p)), (abuse notation),

together with the coefficients in the expansion

p = pi(p)dq
i|π(p).

8One can also consider time-dependent Lagrangians, but we will not do so.
9And independent of whether an observation is actually made!
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So φ induces a bundle chart for T ∗M |U , and position-momentum coordinates

(q,p) = (qi, . . . , qd, p1, . . . , pd) : T
∗M |U → Rd × Rd. (12)

On T ∗M , there is a tautological10 1-form, given in position-momentum coordinates
by the formula

θ =
d∑

i=1

pidq
i ∈ Ω1(T ∗M). (13)

To clarify, dq1, . . . , dqd are regarded as 1-forms on T ∗M |U , not 1-forms on U . There are
also “vertical” coordinate 1-forms dpi on T

∗M |U , but these do not enter the definition of
θ. Importantly, (13) is actually independent of the choice of chart φ (exercise), so (13)
is well-defined on all of T ∗M , not just on a locally trivialized part T ∗M |U ∼= U × Rd.

Dynamics is specified by a smooth Hamiltonian function H : T ∗M → R. The
2-form

dθ =
d∑

i=1

dpi ∧ dqi ∈ Ω2(T ∗M) (14)

is non-degenerate11 everywhere, so H uniquely defines a Hamiltonian vector field XH ∈
X(T ∗M) via the condition

ιXH
dθ = −dH. (15)

Hamilton’s equation of motion is the integral curve equation

Ċ(t) = XH |C(t), (16)

for curves C : I → T ∗M . (Recall Section 1.4.) Once initial position-momentum data
(i.e., a point on T ∗M) is given, there is a unique integral curve C solving (16). Then
π ◦ C is the resulting motion on M .

In position-momentum coordinates, the Hamiltonian vector field is

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
, (Einstein summation convention)

and Hamilton’s equations, (16), are the following first-order ODEs in 2d variables,

q̇i(t) =
∂H

∂pi

∣∣∣
(q(t),p(t))

, ṗi(t) = −
∂H

∂qi

∣∣∣
(q(t),p(t))

, i = 1, . . . , d. (17)

Remark 2.2. Let t 7→ C(t) be an integral curve of XH . Then

d

dt
H(C(t)) = dH|C(t) · Ċ(t) (Chain rule)

= dH|C(t) ·XH |C(t) (Integral curve)

= −dθ(XH , XH)|C(t) (XH Definition, Eq. (15))

= 0. (Antisymmetry)

Thus, the value of H remains constant along C. In fact, the physical meaning of H is
total energy.

10Also “canonical”, “Liouville”, etc.
11Thus ω = −dθ gives a canonical symplectic form on T ∗M . Hamiltonian mechanics can be for-

mulated on general symplectic manifolds. We are only concerned with T ∗M , and the fact that the
symplectic form on T ∗M comes from a tautological 1-form θ will be important for the relation to
Lagrangian mechanics.
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2.2 Relating momentum and velocity

The Hamiltonian provides a fibre-preserving way to identify T ∗M with TM , as follows.
At each fixed position x ∈M , we have the fibrewise Hamiltonians

H(x) := H|T ∗
xM : T ∗

xM → R,

depending only on the momentum at fixed x. The derivative of H(x) at p ∈ T ∗
xM is the

linear map

dH(x)|p : Tp(T ∗
xM) ∼= T ∗

xM → R

p′ 7→ d

ds

∣∣∣
s=0

H(p+ sp′).

In other words, dH(x)|p is an element of (T ∗
xM)∗ = TxM , i.e., a velocity at x. Thus we

can convert momentum at x to velocity at x:

T ∗
xM → TxM

p 7→ dH(x)|p, x ∈M.

The above maps assemble globally into the fibre derivative,

FH : T ∗M → TM

p 7→ dH(π(p))|p.

Concretely, in terms of position-velocity coordinates (q,v) for TM and position-
momentum coordinates (q,p) for T ∗M ,

FH : (q,p) 7→ (q,v), v ≡ v(q,p) =

(
∂H

∂p1

∣∣∣
(q,p)

, . . . ,
∂H

∂pd

∣∣∣
(q,p)

)
. (18)

In most examples, FH : T ∗M → TM is a diffeomorphism, in which case, H is said
to be hyperregular. We shall always make this assumption. Thus FH faithfully swaps
momenta for velocities, while fixing the position q.

2.3 Hamiltonian to Lagrangian mechanics

If you know about the Lie derivative12, the Hamiltonian vector field XH can be equiv-
alently characterized by

LXH
θ = dιXH

θ + ιXH
dθ (Cartan′s formula for Lie derivative L)

= dιXH
θ − dH (Eq. (15))

= d
(
θ(HX)−H

)
. (19)

This prompts us to define the Lagrangian associated to H, as the function

LH :=
(
θ(XH)−H

)
◦ (FH)−1 : TM → R. (20)

12The Lie derivative LX along a vector field X refers to the notion of differentiating functions, vector
fields, forms, etc., by using the local diffeomorphic flow induced by X to pullback and compare such
quantities.
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The relationship is summarized by

“Hamiltonian + Lagrangian = θ(XH)”.

In coordinates,

LH(q,v) = pi
∂H

∂pi

∣∣∣
(q,p)
−H(q,p) = p · v −H(q,p), (21)

where on the right side, p is determined from v by inverting Eq. (18)13.

Remark 2.3. A function L : TM → R also has a fibre derivative FL, which swaps
velocities for momenta. In coordinates,

FL : TM → T ∗M

(q,v) 7→ (q,p), p =
( ∂L
∂v1

∣∣∣
(q,v)

, . . . ,
∂L

∂vd

∣∣∣
(q,v)

)
. (22)

In particular, the fibre derivative of L = LH is

FLH : (q,v)
(22)7→
(
q,
∂LH

∂v1
, . . . ,

∂LH

∂vd

)
(21)
=
(
q,
∂pk
∂v1

vk + p1 −
∂H

∂pk

∂pk
∂v1

, . . . ,
∂pk
∂vd

vk + pd −
∂H

∂pk

∂pk
∂vd

)
. (Chain rule)

If v is obtained from p via FH, Eq. (18), substituting into the above calculation gives

(q,p)
FH7→ (q,v)

FLH7→ (q,p),

verifying that
FLH = (FH)−1. (23)

For the rest of this subsection, we write L instead of LH for convenience. Let us use
(23) to work over TM instead of T ∗M , by defining

X̃L := (FH)∗XH = (FL)−1
∗ XH ∈ X(TM),

θ̃L := ((FH)−1)∗θ = (FL)∗θ ∈ Ω1(TM).

The vector field X̃L is called the Lagrangian vector field associated to L. Just as
XH ∈ X(T ∗M) is characterized by H via Eq. (19), X̃L ∈ X(TM) is characterized by L
via

LX̃L
θ̃L = dL. (24)

So the integral curves C̃ of X̃L correspond to the integral curves C of XH , by applying
FH to the latter. By construction, C and C̃ = FH◦C project down to the same motions
on M .

Eq. (24) is a geometrically concise statement of the E.O.M. in terms of a Lagrangian
function on TM . It is not very useful yet, so let us write it out in coordinates. To this
end, it is helpful to remember that L = LH is not an arbitrary function on TM , but is

13In other words, LH is the fibrewise Legendre transform of H, in the sense that L
(x)
H := LH |TxM is

the Legendre transform of H(x) := H|T∗
xM , for each basepoint x ∈M .
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obtained from some H by fibrewise derivative. This ensures that X̃L, thus its integral
curves C̃, has a certain structure. To be specific, let

C(t) ∼ (q(t),p(t))

be an integral curve of XH , thus q(t),p(t) satisfy Hamilton’s equations (Eq. (17)). So

C̃(t) = FH ◦ C(t) ∼
(
q1(t), . . . , qd(t),

∂H

∂p1

∣∣∣
(q(t),p(t))

, . . . ,
∂H

∂pd

∣∣∣
(q(t),p(t))

)
(17)
=
(
q1(t), . . . , qd(t), q̇1(t), . . . , q̇d(t)

)
is an integral curve of X̃L. We observe that the velocity coordinates v(t) of C̃ are just
the time-derivatives of its position coordinates q(t) (as we would like). Thus X̃L always
has the form

X̃L = vi
∂

∂qi
+ f i

L

∂

∂vi
, (25)

where fL = f 1
L, . . . , f

d
L are some (locally defined) functions of q,v implicitly defined by

L through Eq. (24). We learn that the integral curves C̃(t) ∼ (q(t),v(t)) of X̃L satisfy
the ODEs

q̇(t) = v(t) (26)

v̇(t) = fL(q(t),v(t)). (27)

In practice, Eq. (26)–(27) is not so useful, because the fL are only implicitly known.
What we want are E.O.M. formulated directly in terms of the Lagrangian L = LH ,
which we will now provide.

First, we check the formula (exercise)

θ̃L ≡ (FL)∗θ =
∂L

∂vi
dqi. (28)

Then Eq. (24) defining X̃L (thus the f i
L) is, in coordinates,

0 = LX̃L
θ̃L − dL = X̃L

( ∂L
∂vi

)
dqi +

∂L

∂vi
LX̃L

(dqi)− ∂L

∂qi
dqi − ∂L

∂vi
dvi

(25)
= vj

∂2L

∂qj∂vi
dqi + f j

L

∂2L

∂vj∂vi
dqi +

∂L

∂vi
d( ιX̃L

dqi︸ ︷︷ ︸
vi by Eq. (25)

)− ∂L

∂qi
dqi − ∂L

∂vi
dvi

= vj
∂2L

∂qj∂vi
dqi + f j

L

∂2L

∂vj∂vi︸ ︷︷ ︸
Hessian

dqi − ∂L

∂qi
dqi. (29)

Now substitute the E.O.M. (26)–(27) into (29), to conclude that

0 =
dqj

dt

∂2L

∂qj∂vi
+
dvj

dt

∂2L

∂vj∂vi
− ∂L

∂qi
(30)

=
d

dt

∂L

∂vi
− ∂L

∂qi
. (31)
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hold along the integral curves of X̃L. Eq. (31) are the Euler–Lagrange equations asso-
ciated to the Lagrangian L.

Conversely, consider curves in TM of the form

(q(t),v(t)) = (q(t), q̇(t)) (32)

which satisfy the Euler–Lagrange equations (31); equivalently, (30) hold. Comparison
of (30) with (29) shows that the integral curve condition v̇ = fL (Eq. (27)) is satisfied14.

To summarize, Eq. (31) can be considered as the E.O.M. in velocity phase space
TM , to be solved for curves of the form (32).

Remark 2.4. Given L : TM → R, the associated total energy function is

EL : TM → R
v 7→ FL(v) · v − L(v).

If L is hyperregular, meaning that FL : TM → T ∗M is a diffeomorphism, then we can
define the associated Hamiltonian function,

HL := EL ◦ (FL)−1 : T ∗M → R.

It may be checked that HL is hyperregular, and that

L = LHL
, H = HLH

.

Thus we can pass between the Lagrangian and Hamiltonian formulations.

2.4 Riemannian manifolds

So far, we have not said anything about forces, which is a prominent concept in Newton’s
laws of motion. For a free particle with inertial mass15 m > 0, Newton’s First Law
says that it undergoes “uniform motion in a straight line16”. If there is a nett force
experienced by the particle, the Second Law states that the motion is accelerated in
proportion to the force, with proportionality constant m.

As discussed in Remark 1.7, acceleration — the rate-of-change of velocity along a
curve — only makes sense with respect to a connection ∇ on the tangent bundle. Given
∇, the geodesic condition, i.e., zero acceleration condition, reads

∇γ̇(t)γ̇(t) = 0. (33)

Now, even if we work withM = A, where a canonical ∇ is available, quite often, we
have a constrained problem. This means that motion is confined to some submanifold
M ′ ⊆ A. This would mean that there are implicit forces conspiring to maintain the
motion within M ′. For example, the nett force has to be tangential to M ′. However, it

14To be more precise, under the hyperregularity assumption, the Hessian of LH is invertible every-
where (see §3.5-3.6 of Abraham–Marsden). So the functions f j

L satisfying (29) are unique.
15Mass is measured as a numerical multiple of, e.g., a “kilogram”. In 2019, the “kilogram” reference

itself was redefined in terms of Planck’s constant from quantum mechanics.
16Note the implicit geometric assumption that space is Euclidean. Furthermore, one has to be in an

“inertial frames”.
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is very cumbersome, if at all possible, to work with coordinates on A and write down
all these forces explicitly. This is one reason to adopt a formalism intrinsic to M ′, as
the Lagrangian/Hamiltonian does. However, in the intrinsic viewpoint, where would ∇
come from?

Let us consider the affine space A for simplicity. Although velocity is a tangent
vector, in practice, measurement devices give the speed,

||γ̇(t)|| = lim
∆t→0

|γ(t+∆t)− γ(t)|
|∆t|

∈ R, (34)

or at least some averaged speed with ∆t > 0 small. Implicit in Eq. (34) is the notion of
length of time, |∆t|, and spatial distance traversed. A measurement device is calibrated
against some reference yardstick

clock tick
, so it outputs a numerical multiple of a reference speed.

Today, the standard clock tick is given by some atomic clock (based on quantum
mechanics principles!). So a reference speed is obtained if we have a reference yard-
stick17. By requiring rotations to be isometries (circular planetary orbits), we may
conclude that the length function on A comes from an inner product on V , i.e., the
tangent spaces. When we remember this inner product structure on V = TaA, we are
treating A as a Riemannian manifold. This is what “Euclidean space” usually refers
to, and one writes EN for this Riemannian manifold.

Since the tangent spaces TaEN are inner product spaces, for any submanifold M ⊆
EN , we can orthogonally project the connection ∇(A) on TA = TEN down to the
subbundle TM ⊆ TEN . The result is precisely the Levi–Civita connection on TM ,

∇LC = ⊥ proj ◦ ∇(A) ◦ inclusion.

Intuitively, we perform parallel transport as though we were in the background EN ,
then retain only the component tangential to M .

Remark 2.5. Intrinsically, ∇LC is the unique torsion-free connection compatible with
the induced Riemannian metric on the submanifold M ⊆ EN .

2.4.1 Particle motion in a scalar potential

Subsequently, letM be a Riemannian manifold with Riemannian metric18 g, so we have
the squared-norm function

||v||2 = g(v, v), v ∈ TM.

Similarly, there is a norm/metric on the cotangent spaces,

||p||2 = g(p♯, p♯), p ∈ T ∗M.

Here, we recall that (·)♯ is the isomorphism between cotangent and tangent spaces,
induced by the metric g through the relation

g(p♯, v) = p(v).

17In relativistic mechanics, there is a reference speed-of-light, therefore there is automatically a
reference yardstick.

18A smooth assignment of inner products to the tangent spaces.
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We also write (·)♭ for the inverse isomorphism. The cotangent space metric satisfies

||v♭||2 = g((v♭)♯, (v♭)♯)) = g(v, v) = ||v||2, ∀v ∈ TM.

For a Riemannian manifold (M, g) and particle mass m > 0, the free particle La-
grangian and free particle Hamiltonian are

Lfree : TM → R Hfree : T
∗M → R

v 7→ 1

2
m||v||2, p 7→ 1

2m
||p||2.

Notice that

θ(XHfree
)(p) = pidq

i

(
∂Hfree

∂pj

∂

∂qj

)
= pidq

i

(
gjkpk
m

∂

∂qj

)
=

1

m
||p||2.

The fibre derivative of Hfree is

FHfree : TM → T ∗M

p 7→ 1

2m
d||p||2 = 1

m
p♯,

with inverse
FH−1

free : v 7→ mv♭. (35)

So the Lagrangian corresponding to Hfree is

LHfree
= (θ(XHfree

)−Hfree) ◦ FH−1
free : v 7→

1

m
||mv♭||2 − 1

2m
||mv♭||2 = 1

2
m||v||2,

which is exactly the free Lagrangian Lfree.
It is customary to call Hfree or Lfree = LHfree

the kinetic energy function, and denote
either by

T = Hfree = Lfree.

A more general Hamiltonian has the form

H = T + π∗V, (36)

where V ∈ C∞(M) is a scalar potential energy function depending only on position.
Because π∗V ≡ V ◦ π does not depend on fibre coordinates, it follows readily that we
still have

θ(XH) = θ(XHfree
) =

1

m
||p||2,

as well as FH = FHfree (Eq. (35)). Thus, for Riemannian geometry Hamiltonians
(Eq. (36)), the relationship between abstract momentum and velocity is the familiar

“momentum = mass× velocity”.

(Where one also uses the Riemannian metric to convert momentum cotangent vectors
to momentum tangent vectors.)

18



Finally, the Lagrangian corresponding to H is

LH = (θ(XH)−H) ◦ FH−1 =
(
θ(XHfree

)− (Hfree + V ◦ π)
)
◦ FH−1

free

= Lfree − V ◦ π ◦ FH−1
free

= T − π∗V.

Let us work out the Euler–Lagrange equation of motion for the Lagrangian LH

above. We have

d

dt

∂LH

∂vi

∣∣∣
(q(t),q̇(t))

=
d

dt

∂T

∂vi

∣∣∣
(q(t),q̇(t))

= m
d

dt

(
gij(q(t))q̇

j(t)
)

= mgij(q(t))q̈
j(t) +m

∂gij
∂qk

∣∣∣
q(t)

q̇k(t)q̇j(t)

and
∂LH

∂qi

∣∣∣
(q(t),q̇(t))

=
1

2
m
∂gjk
∂qi

∣∣∣
q(t)

q̇j(t)q̇k(t)− ∂V

∂qi

∣∣∣
q(t)

.

The Euler–Lagrange equation is thus

0 =
d

dt

∂LH

∂vi

∣∣∣
(q(t),q̇(t))

− ∂LH

∂qi

∣∣∣
(q(t),q̇(t))

= m

(
gij q̈

j + ∂kgij q̇
kq̇j − 1

2
∂igjkq̇

j q̇k
)
+
∂V

∂qi

= m

(
gij q̈

j +
1

2
(∂kgij + ∂jgik − ∂igjk)q̇j q̇k

)
+ (dV )i.

Raising indices with the metric, we arrive at the following equation for the motions
γ(t) ∼ q(t),

0 = m
(
q̈l + Γl

jkq̇
j q̇k
)
+ ((dV )♯)l

∣∣∣
q(t)

, (37)

where Γl
jk are the Christoffel symbols19 associated to g. In coordinate-independent

notation,

−gradV
∣∣∣
γ(t)
≡ −(dV )♯

∣∣∣
γ(t)

= m∇γ̇(t)γ̇(t)︸ ︷︷ ︸
acceleration

, (38)

where ∇ = ∇LC is the Levi–Civita covariant derivative. The left side of (38) is the
conservative force vector field. So (38) is precisely Newton’s second law,

Force = mass× acceleration, (holds along motions γ)

on the Riemannian manifold (M, g).

19These are the connection coefficients of the Levi–Civita connection on TM , in terms of a chart-
induced local trivialization (q,v). Explicitly,

Γl
jk =

1

2
gli
(
∂jgik + ∂kgij − ∂igjk

)
.
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2.4.2 Gauge for metric?

When we fix a reference yardstick and a clock tick, we have a reference speed yardstick
clock tick

.
When applied to a velocity vector, the numerical Riemannian metric is understood to
be multiplied to this reference speed2. So if we scale the reference yardstick/clock by a
factor λ, the numerical metric would be scaled by λ−2.

H. Weyl was worried about the possibility that there is secretly some non-trivial
“parallel transport of “yardstick/clock” it self. This led to his invention of gauge theory
in 1918. His suggestion was that any yardstick was merely a “local gauge20”, which could
acquire some scale factor λ ̸= 1 after being brought around a closed loop. The criterion
for “parallel transport” of yardsticks would be specified by a gauge field associated
with the non-compact abelian group (R>0,×) of scalings21. Furthermore, this gauge
field was postulated to be the potentials appearing in electromagnetic theory.

Although this particular proposal did not work out, it turned out that the basic
concept was correct. It is just that electromangetic potentials are linked to the com-
pact U(1)-phase freedom in quantum mechanics, rather than the noncompact (R>0,×)-
scaling freedom in metrics.

2.5 Charged particle motion in an electromagnetic field

So far, we have discussed motion of a particle with no intrinsic property other than its
mass m. In electromagnetism, one learns that there is another particle property called
electric charge22 Q, relevant to motion in the presence of an electric field E and/or a
magnetic flux density field23 B over M , the motion of a charged particle is modified.

Generally, E,B are themselves dynamical objects (i.e., time-dependent vector fields),
which, together with electric charges and currents, obey equations of motion called
Maxwell’s equations. For example, the following two Maxwell equations hold:

curlE = −∂B
∂t
, (39)

divB = 0. (40)

There are two other Maxwell equations24, but we will not need them. Furthermore,
for this section, we make the simplifying assumption that E,B are time-independent
“background” vector fields, and are unaffected by the charged particle’s motion25.

Eq. (39)–(40) apparently require M to be 3-dimensional. Below, we will use an
intrinsic formulation in terms of differential forms, which works on any manifold.

20In ordinary language, “gauge” refers to some standard of measure, for example; railway track
gauges vary from location to location.

21Note that the problem of scaling ambiguity is not addressed by working with metrics modulo
rescaling functions (conformal geometry).

22Electric charge is a numerical multiple of the elementary electron charge e.
23Often B is called the “magnetic field”. There is a distinct vector field, H, also called the magnetic

field, which is closely related to B. To avoid confusion, we use the term magnetic flux density for B,
which is closer to its geometric meaning.

24These involve the H field and electric displacement field D, and sources (charges/currents).
25A moving charge is itself a source of electromagnetic fields, via the remaining Maxwell equations.

So we are basically assuming that Q is very small and produces a negligible field compared to B,E.
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2.5.1 Electric 1-form

An electric field E is a tangent vector field over M . We can use the Riemannian metric
to regard E field as a 1-form

E = E♭ ∈ Ω1(M).

In physics, an electric field is synonymous with “force-per-unit-charge”, meaning that
a test particle of charge Q experiences a force 1-form

Felectric = QE .

Now, the differential form version of the Maxwell equation (39) is

dE = 0.

So, locally, one can write
E = −dϕ,

where ϕ :M → R is an electric potential function, determined up to an overall constant.
So

Felectric = QE = −d(Qϕ).
Ignoring global issues, V = Qϕ ∈ C∞(M) is a typical example of a scalar potential
energy term that enters the Hamiltonian/Lagrangian T ± V ◦ π,

H(ϕ) = T +Qπ∗ϕ, L(ϕ) = T −Qπ∗ϕ.

2.5.2 Magnetic 2-form

The story is more subtle for B. The idea of a magnetic flux density might come
from inspecting the lines formed by iron filings under the influence of a magnet. The
“flux density” refers to the number of such lines piercing through a unit-area surface.
Furthermore, in three-dimensional space, it is observed that a moving particle with
mass m and charge Q experiences the following acceleration,

∇γ̇(t)γ̇(t) =
Q

m
γ̇(t)×B(γ(t)). (41)

The left side of (42) multiplied bym, is called the Lorentz force. So we have the Lorentz
force law26,

Fmagnetic(γ(t))
♯ = Qγ̇(t)×B(γ(t)). (42)

Puzzle: On the right side of (45), the cross product of vectors (in three dimensions)
depends on a choice of orientation, but the force on the left side of (45) makes no
reference to orientation!

Resolution: The right side of (42) is actually an orientation-dependent way of
spelling out how the acceleration depends on B, and the most common convention is
the “right-hand rule27” for the cross product. Since the cross product picks up a minus
sign when we switch orientation choice, it must be the case that B also picks up a minus
sign. Because of this behaviour, physicists call B a pseudovector field, in contrast to
an ordinary (tangent) vector field.

26Often, the electric force Felectric is also included in “Lorentz force”.
27The naming of this convention as “right-hand rule” is itself a convention!
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In modern differential geometric language, a choice of orientation is an example
of a gauge choice (for the bundle of orientations on M), and B is a gauge-dependent
object. One of the main lessons of modern physics is that only quantities which are
gauge-independent28 are observable. For example, the lines formed by iron filings are
gauge-independent, but any arrows that we decide to draw on them are conventional.
The Earth’s B points from the geographic South pole to the geographic North pole,
by convention. Let us thus formulate the right side of the Lorentz force law, (42), in a
manifestly gauge-independent way.

Recall that on an oriented Riemannian manifold (M, g), there is a Hodge dual oper-
ation ⋆ : Ωk(M)→ Ωd−k(M): the Hodge dual of ζ ∈ Ωk(M) is defined by the condition

η ∧ ⋆ζ = g(η, ζ)volM,g, ∀ η ∈ Ωk(M).

Above, volM,g is the Riemannian volume form, which evaluates to 1 on any oriented
orthonormal tangent frame. For example,

⋆1 = volM,g.

If it happens that M is 3-dimensional, then the cross product of (tangent) vectors
v,w can be formulated as

(v ×w)♭ = ⋆(v♭ ∧w♭). (43)

The orientation-dependent formulation of the Lorentz force law, (42), can be written
as

Fmagnetic(γ(t)) = −Q
(
B(γ(t))× γ̇(t)

)♭
= −Q ⋆

(
B(γ(t))♭ ∧ γ̇(t)♭

)
(Eq. (43))

= −Qιγ̇(t) ⋆B♭(γ(t)).

For the last equality, we used the identity ⋆(a ∧ b) = ιa♯ ⋆ b, valid for any 1-form b
(Exercise). So if we write

B = ⋆B♭ ∈ Ω2(M),

the Lorentz 1-form law is
Fmagnetic(γ(t)) = −Qιγ̇(t)B. (44)

The 2-form B ∈ Ω2(M) is called the magnetic flux density29. Eq. (44) is manifestly
orientation-independent, and makes sense in any dimension. In fact, a Riemannian
metric is only needed when converting (44) into a statement about acceleration vectors,

∇γ̇(t)(γ(t)) = −
Q

m
(ιγ̇(t)B)♯. (45)

(Generally, mass m appears when a metric does.)

Remark 2.6. If you have dealt with angular momentum “vectors” in 3D, you might have
learned that they are also pseudovectors, thus more properly understood as 2-forms.
There are close relationships between magnetic fields, rotations, and “spin angular
momentum” from quantum mechanics, to be explored later.

28Physicists sometimes say “gauge-invariant” or “gauge-covariant”.
29It can be integrated over an oriented 2-dimensional surface S ⊆ M , to get the magnetic flux

through S.
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Here is another advantage of working with the 2-form B. Suppose B̃ ∈ Ω2(R3) is the
magnetic flux density on a background space R3, and j :M ↪→ R3 is a submanifold on
which motion is confined. Then for a path γ in M , the tangential part of the Lorentz
force is readily seen to be

j∗F (γ(t)) = −Q · j∗ιγ̇(t)B̃ = −Q · ιγ̇(t)(j∗B̃).

(Whatever the background Riemannian metric, the normal components of the Lorentz
force will, by fiat, be cancelled out by other complicated forces.) The upshot is that the
intrinsic magnetic flux density felt by a charged particle confined to M is the 2-form
B = j∗B̃ on M .

Note that the Lorentz force is only defined along γ, and depend on γ̇. It does
not constitute a “force field/1-form” over M , and it does not make sense to try to
write F = −dV for some scalar potential function V ∈ C∞(M). The appropriate way
to account for (45) in Lagrangian/Hamiltonian mechanics is as follows. In terms of
differential forms, the Maxwell equation (40), is

dB = 0. (46)

So locally, we can always choose a 1-form A such that

dA = B. (47)

Such an A is called a magnetic (vector) potential30.
For simplicity, let us assume that A can be globally chosen, A ∈ Ω1(M). Modify the

Hamiltonian H = T + π∗V to

H(A) : T ∗M → R

p 7→ 1

2m

∣∣∣∣p−QA|π(p)∣∣∣∣2 + V (π(p)). (48)

It is straightforward to check that

FH(A) : p 7→ 1

m
(p−QA|π(p))♯,

so that
(FH(A))−1 : v 7→ m(v♭ +QA|π(v)).

We no longer have “momentum=mass×velocity”31.
We proceed to calculate the corresponding Lagrangian, (exercise)

LH(A) =
(
θ(XH(A))−H(A)

)
◦ (FH(A))−1 : TM → R

v 7→ · · · = 1

2
m||v||2 + 1

m
g(QA|π(v),mv♭)− V (π(v))

= (T − π∗V )(v) +QA(v),

comprising the usual T − π∗V term and an extra QA(v) term.

30In three dimensions, A♯ is a locally-defined magnetic vector potential such that curlA♯ = B.
31In physics, one uses “canonical momentum” to distinguish it from “kinetic momentum = mass ×

velocity”.
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In the Euler–Lagrange equation for LH(A) , the T − π∗V term contributes the usual
force term −dV . It remains to work out the contribution of the QA(·) term. For the
latter, we calculate

d

dt

∂A(v)
∂vi

∣∣∣
(q(t),q̇(t))

=
d

dt
Ai|q(t) =

∂Ai

∂qj

∣∣∣
q(t)

q̇j(t),

and
∂A(v)
∂qi

∣∣∣
(q(t),q̇(t))

=
∂Aj

∂qi

∣∣∣
q(t)

q̇j(t).

Thus (
d

dt

∂A(v)
∂vi

− ∂A(v)
∂qi

) ∣∣∣
(q(t),q̇(t))

=

(
∂Ai

∂qj
− ∂Aj

∂qi

) ∣∣∣
q(t)

q̇j(t),

which we recognize as the i-th component of (exercise)

ιγ̇(t)B = ιγ̇(t)dA =

(
∂Ai

∂qj
− ∂Aj

∂qi

) ∣∣∣
q(t)

q̇j(t)dxi.

We conclude that the Euler–Lagrange E.O.M. associated to L(A) is

0 = m∇γ̇(t)γ̇(t) + (gradV |γ(t)) +Q(ιγ̇(t)B)♯.

The extra force 1-form due to B is thus −Qιγ̇(t)B, which is precisely the Lorentz force,
(44).

2.6 Hamilton–Jacobi equation (sketch)

Let H : T ∗M → R be a Hamiltonian. Recall that by virtue of the canonical 1-form
θ ∈ Ω1(T ∗M), we get the Hamiltonian vector field XH ∈ X(T ∗M) via Eq. (15). Points
in T ∗M evolve along integral curves of XH . Let us write the local flow along these
curves as a time-parametrized family of local diffeomorphisms,

ft : T
∗M → T ∗M, t ∈ I.

These ft are actually symplectomorphisms, or canonical transformations, in the sense
that ω = −dθ is preserved, i.e., f ∗

t ω = ω (Exercise). Since

0 = ω − f ∗
t ω = −dθ + f ∗

t dθ = d(f ∗
t θ − θ),

we can locally write
f ∗
t θ − θ = dŠt (49)

for some locally defined functions Št : T
∗M → R. In fact, from (19), we can take Št to

be the action integral

Št =

∫ t

0

( θ(XH)−H︸ ︷︷ ︸
Langrangian LH◦FH

) ◦ fs ds. (50)

(See §3.2.9 of Thirring.)
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Let us spell out Št using a bundle chart for T ∗M |U , with position-momentum coor-
dinates denoted (q̄, p̄). If p ∈ T ∗M |U has initial position-momentum coordinates (q̄, p̄),
then after time t, it evolves to the point ft(p) with coordinates

(q,p)(y; t) := (q̄ ◦ ft, p̄ ◦ ft)(y) = (f ∗
t q̄, f

∗
t p̄)(y). (51)

(At least for small t.) To avoid confusion, in (q,p), the p are not necessarily momentum
coordinates induced by regarding q as a local chart on M .

Next, because ω = p̄idq
i, we have

f ∗
t θ = f ∗

t (p̄idq̄
i)

(51)
= pidq

i,

at each time t. Eq. (49) becomes the equality of local 1-forms on T ∗M ,

pidq
i − p̄idq̄i = dŠt. (52)

Now we make the assumption that the map, (q̄, p̄; t) 7→ (q,p), satisfies

det

(
∂qi

∂p̄j

)
̸= 0

at every q̄ and t. Then, on some possibly smaller domain in T ∗M |U , we can invert the
relationship q ≡ q(q̄, p̄; t) to obtain

p̄ ≡ p̄(q̄,q; t).

In other words, we can switch to using initial/final-positions (q̄,q) instead of initial
position-momenta (q̄, p̄) as the local coordinates for T ∗M . Taking the (q̄,q) perspec-
tive, we write

S ≡ S(q̄,q; t) := Št(q̄, p̄(q̄,q; t)), (53)

which is called the characteristic function determined by H.
Let us investigate the partial derivatives of S ≡ S(q̄,q; t). The defining Eq. (52)

reads

pidq
i = p̄idq̄

i +
∂S

∂q̄i
dq̄i +

∂S

∂qi
dqi.

Comparing coefficients of dq̄i and dqi, we get

∂S

∂q̄i
= −p̄i, (54)

∂S

∂qi
= pi, i = 1, . . . , d. (55)
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The remaining t-partial derivative is

∂S

∂t
=
∂Št

∂t
+
∂Št

∂p̄i

∂p̄i
∂t

(Eq. (53))

=
∂Št

∂t
− ∂Št

∂p̄i

∂p̄i
∂qj

q̇j (
dp̄i
dt

= 0 =
∂p̄i
∂t

+
∂p̄i
∂qj

q̇j)

=
∂Št

∂t
− ∂S

∂qj
q̇j (Eq. (53))

= LH ◦ FH ◦ ft −
∂S

∂qj
q̇j (Eq. (50))

= LH ◦ FH ◦ ft − pj q̇
j︸︷︷︸

θ(XH)◦ft

(Eq. (55))

= −H ◦ ft.

When spelt out in terms of (q̄,q) coordinates, the last equation for ∂S
∂t

is

∂

∂t
S(q̄,q; t) +H

(
q,

∂

∂q1
S(q̄,q; t), . . . ,

∂

∂qd
S(q̄,q; t)

)
= 0. (56)

Remark 2.7. Let a Hamiltonian function H : T ∗M → R be given, and suppose S ≡
S(q̄,q; t) satisfies (56). The time evolution due to H is actually encoded within S (or
rather, its partial derivatives), in the following way. Define initial/final momenta p̄,p
by the partial derivatives of S, as in (54)–(55). Suppose initial data q̄, p̄ and a final
time t are given. Then Eq. (54),

∂S

∂q̄i
(q̄,q; t) = −p̄i(q̄,q; t),

specify d equations in the d unknowns q. Solving these gives the future positions q in
terms of (q̄, p̄; t). Then Eq. (55) specify p ≡ p(q̄,q(q̄, p̄; t); t) as well. Altogether, we
get curves (q,p) in phase space, labelled by initial (q̄, p̄) and parametrized by t. One
then checks that Hamilton’s E.O.M. are satisfied.

Remark 2.7 is meant convey the idea that classical Hamiltonian mechanics for paths
q(t) has a “wave mechanics” reformulation, in terms of a PDE for S. This PDE, Eq.
(56), is often stated as the Hamilton–Jacobi equation

∂

∂t
S(q; t) +H

(
q,

∂

∂q
S(q; t)

)
= 0, (57)

for Hamilton’s principal (“wave”)function S ≡ S(q; t).
When studying H with no explicit t-dependent, one usually separates variables,

taking
S(q; t) = W (q)− Et, E ∈ R. (58)

Then the Hamilton–Jacobi equation is reduced to

H

(
q,

∂

∂qj
W (q)

)
= E, (59)
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2.6.1 Schrödinger equation and wavefunction for a single particle

With a view towards quantum wave mechanics, we abandon the premise that there are
objective paths deterministically specified by sharp initial values of q̄, p̄. Instead, we
take the wave S(q; t) as the a classical mechanical analogue to a better model object
evolving according to quantum mechanics.

It turns out that S itself does not work, and the simplest ansatz which works is that
S/ℏ is the R-valued phase function for a quantum mechanical C-valued wavefunction32,

Ψ = R exp(iS/ℏ), R = |Ψ| ∈ C∞(M).

Here, ℏ is some reference “unit of action33” (i.e., having units energy × time), needed
to turn S into a numerical R-valued function that can be exponentiated to a C-valued
function.

For now, let consider a Riemannian metric and scalar potential function V , deter-
mining the classical Hamiltonian function H(q,p) = 1

2m
||p||2 + V (q). This describes a

single, isolated particle of mass m in a potential V . The associated Hamilton–Jacobi
equation is

−∂S
∂t

=
1

2m
||dS||2 + V. (60)

In comparison, the Schrödinger equation for Ψ (associated to the metric and scalar
potential V ) is

iℏ
∂Ψ

∂t
= − ℏ2

2m
∆Ψ+ V ·Ψ, (61)

where ∆ denotes the scalar Laplacian,

∆u =
1√
|g|
∂j(
√
|g|gjk∂ku).

Substitute Ψ = R exp(iS/ℏ) into the Schrödinger equation. The real part gives
(Exercise)

−∂S
∂t

=
1

2m
gjk∂kS∂jS + V +O(ℏ2) = 1

2m
||dS||2 + V +O(ℏ2),

where O(ℏ2) denotes terms with a ℏ2 factor. The imaginary part involves a ℏ factor
throughout.

Thus, provided we are studying phenomena where ℏ is much smaller than typical
actions34, the Schrödinger equation for Ψ = R exp(iS/ℏ) approximately reduces to the
classical Hamilton–Jacobi equation (60) for the phase function S.

32After you learn about the geometric meaning of A, revisit this ansatz, and think about it in terms
of compactness of the Lie group ∼ U(1) corresponding to the 1-dimensional abelian Lie algebra.

33Nature does provide such a reference, namely, Planck’s constant.
34Actually, ℏ is a universal unit of action. Since 2019, mass is, by definition, measured in terms of

Planck’s constant (and meters, second), via

kilogram :=
1

6.62607015
× 1034(Planck′s constant) · (metre)−2 · (second).

So the classical regime is, more precisely, the regime where

mass × distance2/time ∼ momentum × distance

is large compared to ℏ in the above sense. For example, a 1 kilogram ball moving at distance/time
scales of meters and seconds, would involve huge (1034) action compared to ℏ.

27



Remark 2.8. We mention that ∆, thus the Schrödinger equation, is independent of
the choice of coordinate chart. However, this property, together with the property of
reducing to (60) as a classical ℏ → 0 limit, does not fix the form of the Schrödinger
uniquely. For example, we could modify the Laplacian ∆ by adding some multiple of
the scalar curvature function.

The Schrödinger equation, (61), is usually written as

iℏ
∂Ψ

∂t
= HΨ, H = − ℏ2

2m
∆+ V,

with H now understood as a linear, differential operator acting on wavefunctions Ψ,
rather than a function of qi, pj. Formally, we are making the replacement

pj ↔ −iℏ
∂

∂qj
, qj ↔ multiplication by coordinate function qj,

when converting the classical H function to the quantum mechanical H operator.
Furthermore, because H is time-independent, for the factorized S (Eq. (58)), we

have
Ψ(q; t) = ψ(q) · e−iEt/ℏ, E ∈ R,

where ψ = R exp(iW/ℏ). The Schrödinger equation reduces to an eigenvalue equation

Eψ = Hψ, ψ ≡ ψ(q),

called the time-independent Schrödinger equation. The spectral properties35 of the
Hamiltonian operator H thus play a prominent role in quantum mechanics.

2.6.2 Gauge potential ambiguity

Eq (61) describes a chargeless and spinless “quantum particle”. The ansatz used to
“derive” it seems ad-hoc, but let us see that it is actually geometrically very natural.
The first physics-related point is that particles exhibiting non-classical behaviour (thus
requiring quantum mechanics), usually have electric charge Q ̸= 0, e.g. electrons.

Recall from Section 2.5.2 that when there is a magnetic flux density B ∈ Ω2(M),
we chose a magnetic potential 1-form A satisfying dA = B, and declared the classical
Hamiltonian H(A) for a charge-Q particle to be

H(A) = (f (A))∗H,

where

f (A) : T ∗M → T ∗M

p 7→ p−QA|π(p).

In other words, the momentum coordinate is adjusted in accordance with A, whilst
fixing the base position, before evaluating the old Hamiltonian.

35One considers the Hilbert space L2(M) of wavefunctions, and H is formally self-adjoint on the
dense subspace C∞

c (M).
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Importantly, the choice of A can be freely modified to Ã = A + dΛ for any Λ ∈
C∞(M), while maintaining the criterion dÃ = B. Thus

H(A+dΛ) = (f (dΛ))∗H(A)

is an equally valid Hamiltonian.
The map f = f (dΛ) is actually a particular kind of canonical transformation,

f ∗ω = f ∗dθ = df ∗θ = df ∗(pidq
i) = d

(
(pi ◦ f)dqi

)
= d
(
pi −Q∂iΛ)dqi

)
= d(pidq

i)−Q(∂j∂iΛ · dqj ∧ dqi)
= d(pidq

i) ((skew)symmetry)

= ω.

From this, we deduce that the Hamiltonian vector fields XH(A+dΛ) and XH(A) are related
by the diffeomorphism f (dΛ), and likewise for their integral curves. Since f (dΛ) preserves
basepoints, the resulting motions on M do not suffer from the ambiguity in choice of
A.

So, there is no canonical choice of A, thus H(A). Similarly, S ≡ S(A) satisfying the
Hamilton–Jacobi equation for H(A), (59) is not canonical. Specifically, we know that S
comes from an action integral (integrating the Lagrangian, Eq. (50)). When we modify
A by dΛ, the Lagrangian is modified by QdΛ, and the action integral is modified by

∆Št(q̄, p̄) =

∫ t

0

QdΛ|q(s) ds = Λ(q(q̄; t))− Λ(q̄).

So S gets modified by Λ and possibly an overall constant.
These ambiguities do not matter for determining the classical paths inM . However,

the “wave” S, or W in case of time-independent H, is ambiguous, and we cannot
interpret it as a literal observable wave. Later on, we will explain how A, or rather
iA is understood as a U(1)-connection 1-form (with experimental justification!). This
is tightly related to the ansatz that (ambiguous) W is the ambiguous phase function
ψ = R exp(iW/ℏ). Under A → A+ dΛ, we have

ψ → exp(iQΛ/ℏ) · ψ. (62)

This ambiguity is called the local U(1) gauge ambiguity in quantum mechanical wave-
functions.

In view of (62), it is not correct to regard ψ as a scalar C-valued function on M ,
with objective measurable pointwise C-values. There is automatically the problem of
comparing ψ(x) with ψ(x′) for distinct x, x′ ∈ M , and therefore what it means to
differentiate ψ. The solution to this problem is already apparent from the replacement
of pj with QAj in the classical Hamiltonian. Namely, for the quantum mechanical
Hamiltonian corresponding to H(A), we have

pj −QAj ↔ −iℏ
(
∂j − i

Q

ℏ
Aj

)
. (63)

replacing −iℏ∂j. The operator in brackets is called the j-th gauge-covariant partial
derivative. Let us explain this terminology. Under the modification A → Ã = A+ dΛ,
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we transform ψ according to (62). Correspondingly, the conjugated gauge-covariant
partial derivative operator is

exp(iQΛ/ℏ)
(
∂j − i

Q

ℏ
Aj

)
exp(−iQΛ/ℏ) = ∂j − i

Q

ℏ
(Aj + ∂jΛ) = ∂j − i

Q

ℏ
Ãj,

which is exactly the gauge-covariant partial derivative with the modified Ã.
Therefore, despite the apparent A ambiguity causing apparently different wavefunc-

tions and Schrödinger equations, all the different choices are unitarily related to each
other via (62). Physically meaningful quantities must be invariant under such transfor-
mations, the spectrum of H(A) being a typical example. The squared absolute value,
|ψ|2 = R2 is unambiguously a well-defined R≥0-valued function on M , and has physical
meaning is the spatial probability density function for the “quantum state” ψ.

A non-physical quantity is the “U(1)-phase of ψ at x ∈ M”. Nevertheless, relative
U(1)-phases of a pair of wavefunctions ψ, ψ′ are physical.

The above discussion does not address the issue that A can actually only be locally
defined. Its role in the Schrödinger equation seems to be to ensure a gauge-independent
notion of differentiating ψ, and this is a local requirement. In the next section, we will
understand what A really are, in geometric terms.
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3 Principal bundles and gauge theory

The mathematical way of summarizing the discussion in Section 2.6.2 is:

� Invariantly, wavefunctions of a (spinless) charged “particle” are sections of a
complex Hermitian line bundle L → M , associated to a principal U(1)-bundle
P →M . A choice of (local) trivialization (a “gauge choice”) turns such a section
into a C-valued function.

� There is a connection on P , which induces a Hermitian connection ∇ on L via
the charge Q. This ∇ provides the parallel transport facilitating comparison of
ψ(x), ψ(x′) at different x, x′ (along a curve) inM . This gives a gauge-independent
notion of differentiating a section ψ. When a local trivialization is chosen, ∇j is
represented as ∂j − iQℏAj, where Aj are some local functions. The local 1-form
Ajdq

j is called the local gauge potential, or gauge field in physics.

� The connection ∇ has a curvature 2-form, which is precisely the magnetic flux
density B, and can be computed as dA (with respect to any local trivialization).

Now, it turns out that in nature fundamental particles with charge, e.g. electrons,
also have another non-trivial geometric property, called spin. The concept of spin is
also gauge-theoretic, and is mathematically understood in the language of principal
bundles.

Roughly speaking, for a Lie group G, a principal G-bundle is just a collection of
G-torsors, smoothly parametrized by some base space M . And G-torsor refers to the
underlying manifold of G equipped with the group-multiplication action of G on the
right. For example, affine space is a principal V -bundle over a single pointM = pt. We
will be interested in G-torsors coming from the idea of frames, or simply, vector space
bases.

Now, if V is an n-dimensional vector space over K, then a basis is simply a linear
isomorphism

β : Kn → V.

As we know from linear algebra, we can change a basis by applying an invertible n× n
matrix g ∈ GL(n),

β ◦ g : Kn → V.

So basis-change is nothing but the right action of GL(n) on the set of bases,

{Bases for V } ×GL(n)→ {Bases for V }.

Starting from a reference basis, all other bases are obtained this way by a unique
change-of-basis matrix. So {Bases for V } is a GL(n)-torsor.

After making a reference basis choice, any basis is uniquely labelled by GL(n). Simi-
larly, if V is a complex inner product space, then {Orthonormal bases} is a U(n)-torsor.
If V is a real inner product space, then {(Oriented) Orthonormal bases} is a (S)O(n)-
torsor.
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3.1 Tangent frame bundle as a principal bundle

In the special case of a tangent space TxM , a basis is usually called a (tangent) frame
at x. Just as the tangent bundle is the disjoint union of the TxM , we can consider the
frame bundle

FM =
⊔
x∈M

{Frames at x},

which is a disjoint union of GL(n)-torsors. Thus FM possesses a right action of GL(n),
acting fibrewise.

The key thing to remember is that different fibres of F(TM) are not canonically
identified with each other, just like tangent spaces TxM are not identified for different
x. Nevertheless, once a local trivialization TM |U ∼= U × Rd is chosen, then

FM |U =
⊔
x∈U

{Frames at x} ∼= U ×GL(n).

Therefore, F(TM) is locally trivializable. The following definitions make this precise.

Definition 3.1. Let G be a Lie group36. The trivial principal G-bundle over a manifold
U is the product manifold U ×G, equipped with the projection map

πU : U ×G→ U, (x, g) 7→ x,

and the fibrewise right G-action,

(x, g′) · g = (x, g′g), x ∈ U, g′, g ∈ G.

Definition 3.2. A principal G-bundle over a manifoldM is a manifold P with a smooth
surjection π : P →M and a smooth right G-action,

P ×G→ P, (p, g) 7→ p · g,

such that

� The G-action restricts to fibres,

π(p · g) = π(p), p ∈ P, g ∈ G;

� Each x ∈ X is contained in some open neighbourhood U such that there exists a
diffeomorphism (“local trivialization”)

Φ : P |U :→ U ×G,

satisfying

πU ◦ Φ = π

Φ(p · g) = Φ(p) · g, p ∈ π−1(U), g ∈ G.
36A Lie group G is a manifold with a group structure such that

G×G→ G, (g1, g2) 7→ g1g
−1
2

is smooth.
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So the frame bundle π : FM → M is a principal GL(d)-bundle in the sense of
Definition 3.2. If M is oriented and has a Riemannian metric, so that each tangent
space TxM is an inner product space, then we can restrict to the oriented orthonormal
frames, obtaining the oriented orthonormal frame bundle

π : FSOM →M

as a principal SO(d)-bundle.

3.2 Gauges and gauge transformations

3.2.1 Local gauge

Definition 3.3. Let π : P → X be a principal G-bundle. A local gauge over an open
neighbourhood U ⊂ X is a smooth section over U , i.e., a smooth map s : U → P such
that π ◦ s = idU .

To get some intuition, consider the tangent bundle TS2. Over a local patch of S2,
e.g., the upper hemisphere UN , we can smoothly assign oriented orthonormal frames
{↘,↗}x to points x ∈ UN . Such an assignment is precisely a local gauge s of FSOS2.

A local gauge s is basically the same thing as a local trivialization of FSOS2. This
is because any frame βx for TxS

2 becomes labelled by the unique SO(2) rotation which
turns the frame s(x) into βx. So we have an identification

FSO|UN
∼= UN × SO(2).

The purpose of choosing a local gauge is to convert tangent vector fields X over UN

into R2-valued functions on UN . Always remember: the numerical representation of X
is non-canonical, i.e., local gauge dependent !

FS2 is an example of a non-trivializable principal bundle, i.e., no global gauge exists.

3.2.2 Local gauge transformations

Let π : P → M be a principal G-bundle. Let s, s′ be two choices of local gauge over
U ⊆M . Then we can write

s′(x) = s(x) · λ(x), x ∈ U, (64)

for some uniquely determined map λ : U → G. The G-valued function λ is said to
implement a local gauge transformation.

3.2.3 Global gauge group

The global notion of a gauge transformation is:

Definition 3.4. A gauge transformation of a principal G bundle π : P → M is an
automorphism of P inducing the identity map idM on the base. The group of gauge
transformations is called the gauge group of P .
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The idea of gauge transformation is very foundational. A gauge transformation
F : P → P acts fibrewise, F : Px → Px, while respecting the G-torsor structure of Px,

F (p · g) = F (p) · g, ∀g ∈ G, p ∈ Px, x ∈M. (65)

In other words, it preserves “relativity of frames”.

Remark 3.5. Locally, gauge transformations can be (non-canonically) identified with
Map(U,G), as in (64). In general, because P may not even admit any reference global
gauge, we can only characterize the gauge group as the following group of equivariant
maps,

G(P ) ∼= Map(P,G)G

:= {σ : P → G smooth : σ(p · g) = g−1σ(p)g, ∀p ∈ P, g ∈ G},

acting on P by multiplication on the right (exercise).

Example 3.6. If G is Abelian, then

Map(P,G)G = {σ : P → G smooth : σ(p · g) = σ(p) ∀p ∈ P, g ∈ G}.

Because σ ∈ Map(P,G)G is constant on the fibres, it descends to a map on M . Thus,
there is a canonical isomorphism

Map(M,G)→ Map(P,G)G ∼= G(P ), τ 7→ τ ◦ π.

We will mostly be concerned with G = U(1). In this case, the näıve understanding of
the gauge group as Map(M,U(1)) suffices.

3.3 Associated vector bundle

By now, you must have heard:

“A vector is not just a column of numbers!”

A vector v ∈ V is obtained by pairing of basis β : Kn
∼=→ V with numerical compo-

nents ξ ∈ Kn, in many equivalent ways:

v = β(ξ) = (β ◦ g)(g−1 · ξ), ∀g ∈ GL(n).

Therefore, V is the set of equivalence classes,

V =
(
{Bases} ×Kn

)
/(β,ξ)∼(β·g,g−1·ξ). (66)

Eq. (66) generalizes to the construction of a vector bundle from a principal G-bundle.
Let π : P → M be a principal G-bundle. Let ρ be a linear representation of G on

Kn,

G×Kn → Kn

(g, ξ) 7→ ρ(g) · ξ =: g · ξ. (67)

The set P ×Kn is equipped with the right G-action,

(p, ξ) · g := (p · g, g−1 · ξ),
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and we may pass to the set of equivalence classes,

P ×ρ Kn := (P ×Kn)/(p,ξ)∼(p·g,g−1·ξ).

The projection map

πρ : P ×ρ Kn →M

[p, ξ] 7→ π(p)

is well-defined, so we have constructed a “bundle of equivalence classes”. In fact, each
fibre can be identified with Kn,

π−1
ρ (x) =

{
[p, ξ] : ξ ∈ Kn

}
,

where p can be chosen to be any point in P |x (Exercise).
We call πρ : P×ρKn →M the vector bundle37 associated to P via the representation

ρ.

Example 3.7. Let P = FM be the frame bundle of M , and let ρ = id be the defining
representation of GL(d) on Rd. Then FM ×id Rd recovers the tangent bundle TM as
a vector bundle.

Example 3.8. Let ρtriv be the trivial representation of GL(d) on Kn, meaning that every
g ∈ GL(d) is represented as the identity n× n identity matrix . Then in FM ×ρtriv Kn,
each element is an equivalence class

[p, ξ] = [p · g, ξ], ∀ g ∈ GL(d).

So we can unambiguously label the equivalence classes by (π(p), ξ). Thus

FM ×ρtriv K
n =M ×Kn

is canonically a trivial vector bundle. Sections of this vector bundle are n-component
scalar fields, or functions M → Kn — the numerical components ξ have no dependence
on the frame at all!

Remark 3.9. Often, we require Kn to have an inner product and ρ to be an orthogonal
or unitary representation of G. In this case, the fibres become inner product spaces.
For example, if M is an oriented Riemannian manifold, then FSOM is a principal
SO(d)-bundle. When we reconstruct TM as

FSOM ×id Rd,

the fibres have inner products coinciding with that coming from the Riemannian metric.

3.4 Vertical parallelization of principal bundles

On a Lie group G, we write Lg : G→ G for the diffeomorphism of left-multiplication-by
g ∈ G. Similarly, Rg : G→ G denotes the right-multiplication-by-g map.

37To make this more precise, we should provide the manifold structure, local trivializations, etc.
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3.4.1 Lie algebra of left-invariant vector fields on G

Definition 3.10. A vector field v on a Lie group G is left-invariant if

(Lg)∗v = v, ∀g ∈ G.

The Lie algebra g of G is the vector space of left-invariant vector fields on G, equipped
with the commutator Lie bracket [·, ·].

Certainly, we can evaluate a left-invariant vector field at the identity element e ∈ G,
to get a map

g→ TeG.

It is not too hard to show that this is a linear isomorphism.

Example 3.11. Write gl(n,R) for the Lie algebra of GL(n,R). Regard GL(n,R) as an
open subset of the vector space manifold Mn(R) = Rn2

. Then

gl(n,R) = TeGL(n) ∼= TeMn(R) = Mn(R).

Chasing through the definitions, the Lie bracket on gl(n,R) coincides with the matrix
commutator on Mn(R). Similarly for gl(n,C) ∼= Mn(C).

In physics, Lie groups usually arise (non-canonically!) as subgroups G ⊆ GL(n).
Then g ⊆ Mn(K). For example, so(d) is the Lie algebra of real antisymmetric d × d
matrices, while u(d) is the Lie algebra of d × d complex skew-Hermitian matrices. In
particular, we will use the identification

u(1) ∼= iR.

3.4.2 Exponential map and adjoint action

Starting at the identity element e ∈ G, the integral curves of a left-invariant v ∈ g can
be extended indefinitely (use the translation action). We use the suggestive exponential
notation for these curves,

exp( · v) : R→ G

t 7→ exp(tv),

so that the integral curve condition is

d

dt

∣∣∣
t=0

exp(tv) = v ∈ TeG.

It is justified by the fact that these curves are also group homomorphisms (Exercise),

exp((t+ t′)v) = exp(tv) exp(t′v), t, t′ ∈ R.

Given v ∈ g, we can use g ∈ G to conjugate the curve t 7→ exp(tv) to another curve

t 7→ g exp(tv)g−1.

The resulting curve is itself exponentiated from some other v′ ∈ g. Thus, we see that
conjugation-by-g induces a map g→ g, called the adjoint action, and denoted

Adg : g→ g

d

dt

∣∣∣
t=0

exp(tv) 7→ d

dt

∣∣∣
t=0
g exp(tv)g−1.
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3.4.3 Vertical parallelization

At any g ∈ G, the manifold underlying G “looks the same” as it does at e ∈ G. Indeed,
the translated curves

t 7→ g exp(tv)

represent the elements of TgG via their velocity vectors,

d

dt

∣∣∣
t=0
g exp(tv) ∈ TgG.

So all the tangent spaces TgG are canonically identified with the tangent space at the
identity, TeG = g. Thus G is a parallelizable manifold,

TG =
⊔
g∈G

TgG ∼= G× g.

Let us generalize this parallelization to a principal G-bundle π : P →M , which is after
all, a collection of G-torsors.

At any p ∈ P , there are “vertical” tangent directions represented by curves along
the fibre P |π(p). Such vertical curves project down to constant curves on the base. So
let us define

V P =
⊔
p∈P

VpP := ker(dπ : TP → TM)

to be the vertical tangent bundle of P .
It is crucial that V P is canonically parallelizable,

V P =
⊔
p∈P

VpP ∼= P × g.

This is due to the fact that at each p ∈ P , there is a canonical collection of vertical
curves labelled by g,

p · exp(tv), v ∈ g.

Thus, each v ∈ g determines a vertical vector field v♯ via the assignment

v♯|p :=
d

dt

∣∣∣
t=0
p · exp(tv).

We call v♯ ∈ X(P ) a fundamental vector field.

Remark 3.12. We stress that while VpP ⊂ TpP is canonical, there is no canonical
complementary “horizontal tangent space” HpP such that VpP ⊕ HpP = TpP . One
way to specify Hp is to choose a (local) gauge, i.e., a trivialization P |U ∼= U ×G, then
at p ∼ (x, g), we would have

TpP ∼= T(x,g)(M ×G) = TxM ⊕ TgG ∼= TxM ⊕ VpP.

But this method is gauge-dependent !
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3.5 Connections on a principal G-bundle

3.5.1 Moving horizontally between G-torsors

Definition 3.13. A connection on a principal G bundle P is a g-valued 1-form ω on
P which satisfies

ω(v♯) = v, v ∈ g, (68)

R∗
gω = Adg−1 ◦ ω, g ∈ G. (69)

This definition might appear mysterious, so let us spell out its geometric meaning.
A 1-form is supposed to do something to tangent vectors. Eq. (68) is just the statement
that a connection does the “tautological” thing to vertical vectors. The second condition
(69) is automatic when applied to vertical vectors,

R∗
gω|p(v♯|p) = ω|p·g(dRg(v

♯|p)) = ω|p·g
( d
dt

∣∣∣
t=0
p · exp(tv)g

)
= ω|p·g

( d
dt

∣∣∣
t=0
p · g · g−1 exp(tv)g

)
= ω|p·g

(
(Adg−1(v))♯|p·g

)
= Adg−1(v) (Eq. (68))

= Adg−1(ω|p(v♯|p)). (Eq. (68))

Therefore, the only meaningful data that a connection ω contains is what it does in the
non-vertical directions38.

Indeed, a connection supplies the previously missing notion of horizontal tangent
spaces, via

HpP := kerω|p.

Furthermore, due to Condition (69), this horizontal subspace assignment is G-invariant,

Hp·gP = (Rg)∗HpP.

Thus, a connection is a gauge-independent way to specify “horizontal directions” in P .
To summarize, a connection ω allows us to write

TpP = HpP︸︷︷︸
ker ω|p

⊕ VpP︸︷︷︸
∼=g

, (70)

and measures the vertical component of elements of TpP .

3.5.2 Curvature

Definition 3.14. Let ω ∈ Ω1(P, g) be a connection 1-form on a principal G-bundle P .
Its curvature is the g-valued 2-form

Ω(u, v) = dω(uhor, vhor), u, v ∈ X(P ). (71)

38In the case P = G which has no non-vertical directions, there is only one connection, called the
Maurer–Cartan form.
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If you know a bit more general differential geometry,

dω(u, v) = u(ω(v))− v(ω(u))− ω([u, v]).

Since horizontal vectors are annihilated by ω by definition, an equivalent formula for
the curvature is

Ω(u, v) = −ω[uhor, vhor], (72)

where (·)hor means horizontal component (Eq. (70)).

Intuitively: Inside P , imagine moving an small distance horizontally along uhor, then
horizontally along vhor. Now do this in the opposite order. Generally, there can be a
small vertical mismatch in the result, and this is what (72) measures.

Theorem 3.15 (Cartan structure equation). The curvature of a connection ω ∈ Ω1(P, g)
is

Ω = dω +
1

2
[ω, ω], (73)

where [·, ·] means Lie bracket and wedge product.

The proof proceeds by direct computation on vertical/horizontal vectors separately
(it can be found in standard textbooks).

3.5.3 Local description of connection: gauge potentials

For concrete computations, one describes connections locally, i.e., with respect to some
local trivialization/gauge.

Definition 3.16. Let ω be a connection on a principal G-bundle π : P → M . Let
s : U → P be a local gauge over an open subset U ⊂M . Then

� s∗ω ∈ Ω1(U, g) is called the local gauge potential.

� s∗Ω ∈ Ω2(U, g) is called the local field strength.

Intuitively, think of a local gauge as a candidate way to specify “horizontal” (Re-
mark 3.12). If this happens to coincide with what ω actually specifies, then the gauge
potential s∗ω will vanish. Otherwise,

s∗ω(u) = ω(ds(u)) = ω
(
(ds(u))vert

)
, u ∈ TxM,

where (·)vert means vertical component (Eq. (70)).

3.5.4 Local versus global description of connections

A gauge potential is a local, gauge-dependent description of a connection. If there is no
global gauge available, then we have to use a collection of local sections sα : Uα → P |Uα

to obtain a collection of local gauge potentials s∗αω ∈ Ω1(Uα, g). Of course, these gauge
potentials have to be consistent with the local gauge transformations gαβ : Uα∩Uβ → G
relating the various choices of local sections. Explicitly, the consistency condition is

s∗βω = Adg−1
αβ
◦ s∗αω + g∗αβΘ, (74)
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where Θ is the Maurer–Cartan form of G. (The calculation can be found in textbook
references.) When G is abelian, this simplifies to

s∗βω = s∗αω + g∗αβΘ. (75)

In physics, it is more usual to think of a connection as a collection Aα ∈ Ω1(Uα, g),
such that

Aβ = Adg−1
αβ
◦ Aα + g∗αβΘ over Uα ∩ Uβ, (76)

wherever some “local gauge transformation gαβ is applied”. An instance of Aα is called
a gauge field, and (76) is understood as the transformation rule defining what gauge
fields “are”, in contrast to “ordinary fields” like tangent vector fields, etc.

Generally, the local field strength s∗Ω is similarly gauge-dependent. Nevertheless,
due to the Cartan structure equation (following (73)),

s∗Ω = d(s∗ω) +
1

2
[s∗ω, s∗ω], (77)

if G is abelian, it follows from (76) and dΘ = 0 that

s∗βΩ = s∗αΩ

is actually gauge-independent. So the field strength is actually a globally well-defined
g-valued 2-form on M . In physics notation, one writes this 2-form as

F = s∗Ω = ds∗ω = dA,
where the formula on the right side holds locally (because A is locally defined).

3.6 Connections and gauge-covariant differentiation

We shall now explain how a connection allows us to “parallel transport frames”, and
consequently, gauge-independent differentiation for any associated vector bundle.

3.6.1 Parallel transport of frames

Definition 3.17. Let π : P → M be a principal G-bundle with connection ω. Let
γ : I →M be a curve in M . A curve γ̃ : I → P is a horizontal lift of γ if π ◦ γ̃ = γ and
its velocity vectors are horizontal for all t ∈ I.
Theorem 3.18. Let π : P → M be a principal G-bundle with connection, and let
γ : I →M . For each p ∈ P |γ(0), there exists a unique horizontal lift γ̃p starting at p.

The proof is omitted: It boils down to ODEs when the horizontal lift condition is
expressed in terms of a local trivialization.

Definition 3.19. Let π : P → M be a principal G-bundle with connection ω, and let
γ : [0, 1]→M be a curve. Parallel transport along γ, with respect to ω, is the map

τωγ : P |γ(0) → P |γ(1)
p 7→ γ̃p(1),

where γ̃p is the unique horizontal lift of γ starting at p ∈ P |γ(0).
It is crucial, and follows readily from (69), that parallel transport is G-equivariant,

τωγ (p · g) = (τωγ (p)) · g, p ∈ Pγ(0), g ∈ G. (78)

In words: the relativity of frames is respected.
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3.6.2 Covariant derivatives on associated vector bundles

Recall our perspective that vector bundles are obtained by attaching numerical compo-
nents Kn to a principal G-bundle of “frames”, via the associated bundle construction.

So let E = P ×ρ Kn by any associated vector bundle. Given a connection ω on P ,
each curve γ : [0, 1]→M determines a linear isomorphism

τE,ω
γ : E|γ(0) → E|γ(1)

[p, ξ] 7→ [τωγ (p), ξ].

This is well-defined:

τE,ω
γ [p · g, g−1 · ξ] = [τωγ (p · g), g−1 · ξ] (78)

= [τωγ (p) · g, g−1 · ξ] = [τωγ (p), ξ] = τE,ω
γ [p, ξ].

Definition 3.20. With the above notation, the induced covariant derivative of a section
ψ ∈ Γ(E) along X ∈ X(M) is the section ∇ω

Xψ given by

(∇ω
Xψ) (x) :=

d

dt

∣∣∣
t=0

(
τE,ω
γ|[0,t]

)−1(ψ(γ(t))
)
∈ E|x. (79)

Above, γ can be any curve39 representing the tangent vector X|x.

What is happening is this: we parallel transport ψ(γ(t)) ∈ E|γ(t) to the initial fibre
E|γ(0) = E|x, whence they become comparable and the usual t-derivative makes sense.

As an exercise, one can check the following properties of ∇ω: for all X, Y ∈ X(M),
f ∈ C∞(M), and ψ ∈ Γ(E),

� ∇X+fY ψ = ∇Xψ + (∇Y ψ) · f .

� The Leibniz property holds:

∇X(ψ · f) = ψ ·X(f) + (∇Xψ) · f.

3.6.3 Local formula and connection coefficients

Notice that (79) is manifestly gauge-independent!
With respect to a local gauge s : U → P , we would write

ψ(x) = [s(x), ξ(x)]

with ξ : U → Kn being the numerical function representing ψ. Then the local formula
for ∇ω is (exercise)

∇ω
Xψ = [s, dξ(X) + dρe(s

∗ω(X)) · ξ], X ∈ X(M), ψ ∈ Γ(E). (80)

The first term dξ(v) is the usual directional derivative of ξ along X. The extra term is
the “infinitesimal vertical correction”.

Let us further choose local coordinates over U ⊆ M , so we have partial derivatives
∂j, j = 1, . . . , d. Then we may expand the local gauge potential as

s∗ω = Ajdq
j, Aj = s∗ω(∂j) ∈ C∞(U, g).

39This is not immediately obvious, but can be checked.
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We also have the following basis of sections for E|U ,

ea := [s, ηa] ≡ [s, (0, . . . , 0, 1︸︷︷︸
a-th

, 0, . . . , 0)].

Then

∇ω
j ea := ∇ω

∂j
ea

(80)
= [s,Aj · ηa].

Above, Aj means (dρe)(Aj), which is an n× n matrix,

(Aj)
b
a ≡ Ab

ja.

The entries are called connection coefficients. In this notation,

∇ω
j ea = [s,Ab

jaηb] = [s, ηb]Ab
ja = ebAb

ja.

For a general section of E, locally expanded as ψ = eaψ
a, the Leibniz property of ∇ω

leads to

∇ω
j ψ = ∇ω

j (eaψ
a) = ea(∂jψ

a) + (∇ω
j ea)ψ

a

= ea(∂jψ
a +Aa

jcψ
c).

In physics terminology, the above local formula is the statement that the j-th covariant
partial derivative is

“ ∇j = ∂j +Aj ” acting on Kn-valued functions.

3.7 Example: Quantum mechanics of charged particle

For an integer N , the charge-N unitary representation of G = U(1) is

ρ(N) : G = U(1)→ U(1)

eiθ 7→ eiNθ.

Also,
dρ(N)

e : u(1) = iR→ End(C), iλ 7→ iNλ.

The local gauge potential s∗ω has the form

dρ(N)
e (s∗ω) = dρ(N)

e (Ajdq
j) = NAj dq

j

with Aj being u(1) = iR-valued. For physics purposes, it is customary to replace

Aj ⇝ −i
e

ℏ
Aj

where e is the electron charge and ℏ is Planck’s constant. This ensures that dAj is
real-valued and has the correct physical dimensions for a magnetic flux density. With
these conventions, the j-th covariant partial derivative is represented in the gauge s by
the formula

∇j = ∂j − i
Ne

ℏ
Aj.

With Q = Ne the (quantized!) electric charge, this is precisely what we found in (63).
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Furthermore, the abelian transformation formula, (75), says that under a gauge
transformation g = e−ieΛ/ℏ (which would modify the representation of ψ by g−1), we
should replace s∗ω by

s∗ω + g−1dg = s∗ω + i
e

ℏ
dΛ.

In the physics convention, this amounts to modifying the magnetic potential 1-form to

A⇝ A+ dΛ.

To summarize, quantum mechanics naturally provides a consistent home for A:

� Local magnetic vector potentials A are local gauge potentials for a connection on
a principal U(1) bundle P , whose curvature dA is a (gauge-independent) closed
2-form giving the magnetic flux density B.

� For integer charge Q = Ne, the “wavefunction” is a section of the associated
Hermitian line bundle L = P ×ρ(N) C. Only in the chargeless Q = 0 case, can a
wavefunction be unambiguously regarded as a C-valued function. (But, can you
name any chargeless, spinless quantum particle?)

� The (gauge-invariant) time-independent Schrödinger equation for ψ ∈ Γ(L) is

Eψ =
(
− ℏ2

2m
∆L + V

)
ψ,

where ∆L is the connection Laplacian associated to the gauge-covariant derivative
∇ on L.

3.8 Aharonov–Bohm effect

Sometimes, one finds the statement that classical electromagnetism is a U(1) gauge
theory. Actually, this is not quite true. The transformation property of the potentials A
only narrows down the Lie algebra to the 1-dimensional one (with trivial Lie brackets).
In principle, the Lie group could be (R>0,×) rather than the compact Lie group U(1).
Indeed, the former choice is precisely the group of scalings originally considered by
Weyl. The problem with U(1) is that there had been no reason to consider complex
vector bundles, until quantum mechanics arose. One of the constraints imposed by
having a principal U(1)-bundle, is that the charge has to be quantized, and so far, this
is consistent with experiment40.

Despite the geometric unity of electromagnetism and quantum mechanics via gauge
theory, one might object that the gauge-theoretic interpretation of A and ψ is mere
formalism, with no experimental consequence. Actually, a connection ω has some fur-
ther gauge-invariants besides the curvature. The most dramatic example of this is the
holonomy along a closed loop ℓ in M ,

exp
(
− i e

ℏ

∮
ℓ

A
)
∈ U(1). (81)

40Caveat: Quarks have 1/3-quantized charge, but are “confined”. More interestingly, there are
apparently more generally fractionally-quantized charges appearing in 2D materials, and this is a
subject of intense modern research.
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We can try to detect this holonomy.
Consider the situation where ℓ encloses some thin tube in M = R3 in which B is

concentrated. Thus B vanishes on a (non-simply-connected) neighbourhood U of ℓ. So
on U , any admissible A must satisfy dA = B. Classically, the local condition dA = B
is the only constraint, and we are allowed to choose A = 0 on U — this predicts that
the integral (81) vanishes.

However, the gauge-theoretic requirement that A is a local gauge potential for some
global U(1) connection ω on P →M constrains which A can be used in U , namely, the
gauge-transformation rule (75). Indeed, let D be a disc with ∂D = ℓ. There is a A′

defined over D satisfying dA′ = B. Stokes’ theorem forces∮
ℓ

A′ =

∫
D

B ̸= 0,

so the holonomy (81) does not generally vanish. Any admissible A on U ⊂ D must be
related to A′ by a gauge transformation over U . If you know some topology, verify that
the exponentiated loop integral (81) is unchanged under such a gauge transformation
(thus it is gauge-independent).

Quantum mechanics predicts that a charged particle can, in principle, detect this
holonomy, basically by picking up the extra phase factor (81) after propagating around
ℓ. In 1959 Aharanov–Bohm proposed that this extra (relative) phase can be measured
by wavefunction interference experiments, and in the 1960s, this was confirmed.

3.9 Further geometry–physics

The Aharonov–Bohm effect shows indisputably that quantummechanical wavefunctions
should be understood as sections of some vector bundle, with no absolute numerical
meaning to the pointwise values. This is analogous to:

� Classical tangent vector fields requiring gauges/tangent frames to be numerically
described.

� No preferred origin in affine space (or, more generally, G-torsors).

� A vector not being a collection of numerical scalars.

It is similar, but not the same thing as

� Points, paths, etc., in a manifold being independent of coordinates used to label
them.

Once ψ is understood as a bundle section, it becomes mandatory to provide a connec-
tion/parallel transport, to meaningfully differentiate it. This “coupling” of connection
to sections models interactions of “quantum particles” mediated by electromagnetic
(or more general force) fields. In fact, fundamental “quantum particles” and interac-
tions now understood this way, with non-Abelian G-connections — this is the Standard
Model.

Although we have only studied the Abelian case concretely, the gauge principle is
already apparent: only quantities that depend on equivalence classes modulo change-of-
gauge are physically measurable41. Examples are relative quantum mechanical phases,
holonomies, and energy spectra of Hamiltonians.

41As numerical multiples of some comparable quantity (i.e., physical units like metres, Joule, etc.)!
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So a “quantum mechanical particle” is neither a classical particle (with an objective
path), nor a classical wave (with objective values at each time and location). In quantum
mechanics, it merely has observables, modelled as self-adjoint operators O on a Hilbert
space of wavefunctions ψ. The spectral set of O comprises the possible measured
outcomes. In the normalized state represented by the wavefunction ψ, the probability
of observing outcome λ ∈ Spec(O) is the gauge-invariant number

⟨ψ|Pλψ⟩ ∈ [0, 1],

where Pλ is the eigenprojection for λ. General observables are non-commuting, e.g.,
we cannot simultaneously talk about the position and the momentum of a quantum
mechanical state, since its wavefunction cannot simultaneously be an eigenfunction
of the position and momentum operators. In other words, we precisely abandon the
classical paradigm of objective t-parametrized paths in phase space!

3.9.1 Spin geometry and gauge

One of the deepest contributions of quantum theory to geometry is the spin refinement
of Riemannian geometry.

From the physics perspective, spin originally referred to a certain mysterious “angu-
lar momentum” of electrons. In Euclidean Rd, angular momentum (about the origin)
refers to the functions

Ljk = qjpk − qkpj, 1 ≤ j < k ≤ d.

where qi are Cartesian position coordinates and pj the corresponding momentum co-
ordinates. They are associated to the symmetry under SO(d) rotations42. A rotating
charge Q should have a magnetic moment

µ = γL, γ
classical
=

Q

2m
,

where the ratio γ is the gyromagnetic ratio. In the presence of a magnetic flux density
B, the potential energy is modified by

−
∑
j<k

µjkBjk.

Since 1915, physicists have experimentally determined that the free charge-e electron
has an “intrinsic” contribution to its angular momentum, for which γ is e

m
instead of

e
2m

. This discrepancy is inconsistent with a classical picture of the electron orbiting
in a small loop. One says that the electron possesses spin angular momentum “about
itself”, in addition to the usual orbital angular momentum about some other point
(e.g. a nucleus). Mathematically, instead of the classical angular momenta generating
SO(d) rotations around orbits, one considers the spin group extension,

1→ {±1} → Spin(d)
χ→ SO(d)→ 1,

with corresponding Lie algebra isomorphism

dχe : spin(d)→ so(d).

42They constitute the d(d−1)
2 component functions of the moment map µ : T ∗Rd → so(d)∗.
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Spin angular momentum operators come from spin(d), and are infinitesimal “internal”
rotations of a abstract Spin(d)-torsor of “spin frames”. This lifts the usual SO(d)-torsor
of oriented orthonormal tangent frames. But spin angular momentum generates only
“half as much” rotation, basically due to the 2 : 1 mapping χ.

Globally, spin geometry is a refinement of Riemannian geometry. Namely, instead
of the classical frame bundle FSOM , one pass to a principal Spin(d)-bundle FSpinM
which χ-equivariantly lifts of FSOM ; this is called a spin structure. Accordingly, the
so(d)-valued Levi–Civita connection is lifted to the spin(d)-valued spin connection ωSpin

on FSpinM . From here, representation theory of Spin(d) takes over. The simplest

irreducible representation is the spin representation of Spin(d) on C2⌊
d
2 ⌋
, and leads to

the associated spinor bundle

S = (FSpinM)×ρ C2⌊
d
2 ⌋
.

Fermionic quantum particles, e.g. electrons, have wavefunctions which are sections of S.
Actually, since spin is deduced from electrically charged particles43 coupled to magnetic
fields, the appropriate bundle for charged fermions is the twisted spinor bundle,

S ⊗ L,

whose covariant derivative has an extra electromagnetic contribution.
For example, in d = 3 spatial dimensions, fermions have a C2 spinor degree of

freedom at each basepoint. The spin angular momentum operator (about any axis in
3D) acts on C2 with eigenvalues ±ℏ

2
, and contributes an extra 2× 2 matrix term to the

Hamiltonian (energy) operator for charged fermions in the presence of a magnetic field.

Remarkably, there is a canonical first-order gauge-covariant (with respect to Spin(d)
and U(1)) differential operator on sections of S ⊗L, called the (twisted) Dirac operator
/D. It is popularly described as the “square root of Laplacian”. In relativistic physics, it
is mandatory to use the /D rather than the Laplacian to achieve a Schrödinger equation
compatible with special relativistic spacetime.

First constructed on R4 by Dirac in 1928, the twisted Dirac operator provides the
generating examples for the profound Atiyah–Singer index theory, which counts the
zero-eigenvalues of /D through topological invariants of the manifold M . This, in turn,
provided a powerful new technique to address various Riemannian geometry questions,
e.g., about positive scalar curvature metrics.

43The apparent exception of neutrinos is a topic of current research.
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