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KYLE GANNON

1. Ax-Grothendieck

1.1. Fields. Let E be a field extension of F .

Definition 1.1. Let S ⊆ E. We say that S is algebraically independent over F
is for all non-zero polynomials p(x1, ..., xn) ∈ F [x1, ..., xn] and s1, ..., sn ∈ S (all
distinct) we have that p(s1, ..., sn) 6= 0.

Definition 1.2. We say that a subset S of E is a transcendence basis if S is alge-
braically independent over the prime field and S is maximal, i.e. for any extension
S′ ⊇ S, S′ is algebraically dependent.

Example 1.3. If we consider Q̄(π), then S = {π} is algebraically independent.

Fact 1.4. If S and S′ are transcendence basis for E, then |S| = |S′|.

Fact 1.5. If E is an algebraically closed field of size κ, then E has a transcendence
basis of size κ.

Fact 1.6 (Steinitz). Algebraically closed fields are determined up to isomorphism
by their characteristic and the size of their transcendence basis.

1.2. Model theory. We recall that theory of algebraically closed fields, ACF.

Definition 1.7. ACF is a theory in the language of rings Lring = {+,×, 0, 1}
with the following axioms:

(1) ∀x∀y(x+ y = y + x).
(2) ∀x∀y∀z((x+ y) + z = (x+ (y + z))).
(3) ∀x∃y(x+ y = y + x = 0).
(4) ∀x(x+ 0 = 0 + x = x).
(5) ∀x∀y(x× y = y × x).
(6) ∀x∀y∀z((x× y)× z = (x× (y × z))).
(7) ∀x∃y(x 6= 0→ (x× y = y × x = 1)).
(8) ∀x(x× 1 = 1× x = x).
(9) ∀x∀y∀z(x× (y + z) = x× y + x× z).

(10) 0 6= 1.

For any prime p, we let ACFp = ACF ∪ {1 + ...+ 1︸ ︷︷ ︸
p−times

= 0}. We also define the

theory ACF0 = ACF ∪ {1 + ...+ 1︸ ︷︷ ︸
p−times

6= 0 : p is prime}.

Proposition 1.8. For any p ∈ P or p = 0, we have that the theory ACFp is
complete.
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Proof. We claim that ACFp is ℵ1-categorical. Let N1 and N2 be two models of
ACFp of size ℵ1. Then they both have a transcendence basis of size ℵ1. By Fact
1.6, they are isomorphic.

One can check that these theories have no finite models [Hint: consider ∀x∃y(y2 =
x)∧ (1 + 1 6= 0) or some variant]. Hence by Vaught’s test, we conclude that ACFp
is complete. �

Lemma 1.9 (Lefschetz Principle). Let ϕ be a setnence in the language of rings,
Lrings. Then the following are equivalent:

(1) For arbitrarily large primes p, ACFp |= ϕ.
(2) ACF0 |= ϕ.
(3) C |= ϕ.

Proof. We notice that (2) ≡ (3) by completeness of ACF0 and the fundamental
theorem of algebra, i.e. C |= ACF0. (1) ≡ (2) is a direct application of the
compactness theorem. �

Definition 1.10. Fix a language L. We say that a sentence is a Πn-sentence if it
is of the form

∀x̄1,∃x̄2, ...︸ ︷︷ ︸
(n−1)−alternations

ψ(x̄1, ..., x̄n),

where ψ(x̄1, ..., x̄n) is quantifier free. We say that a sentence ϕ is a Σn-sentence if
it is of the form

∃x̄1,∀x̄2, ...︸ ︷︷ ︸
(n−1)−alternations

ψ(x̄1, ..., x̄n),

where ψ(x̄1, ..., x̄n) is quantifier free. For example, if ψ(x1, x2, x3) is quantifier free,
then

∀x1∀x3∃x2ψ(x1, x2, x3),

is a Π2-sentence.

Lemma 1.11. Suppose that M =
⋃
i∈IMi such that

(1) For each i, Mi is a substructure of M .
(2) For each i, Mi is a substructure of Mi+1.

For any Π2 sentence ϕ, if Mi |= ϕ for every i < ω, then M |= ϕ.

Proof. Suppose that

ϕ = ∀x1, ..., xn∃y1, ..., ymψ(x̄, ȳ),

where ψ(x̄, ȳ) is quantifier free. Let a1, ..., an ∈ M . There exists some β < ω such
that a1, ..., an ∈Mβ . By our hypothesis, Mβ |= ψ. Hence,

Mβ |= ∃y1, ..., ymψ(a1, ..., a,y1, ..., ym).

By definition of satisfaction, this implies

Mβ |= ψ(a1, ..., an, b1, ..., bm),

for some b1, ..., bm ∈Mβ . Since ψ(x̄, ȳ) is quantifier free, we have that M |= ϕ(ā, b̄).
Therefore we have shown that M |= ∀x̄∃ȳψ(x̄, ȳ). �

Example 1.12. We can write (N,≤) =
⋃
n>4({1, ..., 4},≤). Notice that Σ2 sen-

tences do not necessarily work.



PKU MODEL THEORY NOTES 3

1.3. Finite fields. For every prime number p and every natural numbers n ≥ 1,
there exists a unique field (up to isomorphism) of cardinality |pn|. This field has
characteristic p and we denote it Fpn . Hence the collection of all finite fields of
characteristic p are of the form {Fp, Fp2 , Fp3 , ...}. Moreover, there is an injective
homomorphism from a field Fpn to Fpm if and only if n|m.

Remark 1.13. There are two ways one can construct an algebraically closed fields
of characteristic p. One is to use the direct limit construction. For every pair of
n ≥ m ≥ 1 where m|n, choose a maps gm,n : Fpm → Fpn such that

(1) gm,m = idFpm
.

(2) gm,n is an injective homomorphism.
(3) for any k such that n < k and n|k, we have that gm,k = gn,k ◦ gm,n.

Then the direct limit is the set

lim
→
Fpn =

⊔
n∈N

Fpn/ ∼

where if a ∈ Fpn and b ∈ Fpm then a ∼ b if and only if there exists some k such
that gn,k(a) = gm,k(b). In other words, they are eventually equal. Choosing this
set of maps so that everything is consistent is a little bit of a pain. It turns out
that this is a model of ACFp.

Remark 1.14. The second way is the same as above, but we consider a smaller
collection of structures. In particular, consider the set {Fpn! : n ≥ 1}. Thence we
have a sequence of homomorphisms,

Fp → Fp2! → ...→ Fpn! → ...

Since these are injective homomorphisms, we can think of these structures nested
inside on another, i.e.

Fp ⊆ Fp2! ⊆ ... ⊆ Fpn! ⊆ ...
Then the direct limit is simply the union. Furthermore, one can check that this is
also a model of ACFp. We let F̄p =

⋃
n≥1 Fpn!

1.4. Ax-Grothendieck.

Lemma 1.15. Let ϕ be a Π2 sentence in the language of rings and suppose that ϕ
is true in all finite fields. Then ACFp |= ϕ for every prime p. Moreover, we have
that ACF0 |= ϕ and thus C |= ϕ.

Proof. By Remark 1.14, we can construct a model of ACFp as an increasing union
of finite fields. Since ϕ is true in all finite fields, it is true in all the models in our
construction. Since ϕ is Π2, we may apply Lemma 1.11 and conclude that F̄p |= ϕ.
By completeness, ACFp |= ϕ. Since p was arbitrary, we know that ACFp |= ϕ for
arbitrarily large p. By the Lefschetz Principle, we are done. �

Fact 1.16 (Quantifiers). Suppose that ϕ and ψ are formulas. Suppose furthermore
that x does not appear freely in ψ. Then

(1) (∀xϕ)→ ψ is equivalent to ∃x(ϕ→ ψ)
(2) (∃xϕ)→ ψ is equivalent to ∀x(ϕ→ ψ)

Moreover, if y does not appear freely in ϕ, then

(1) ϕ→ (∃yψ) is equivalent to ∃x(ϕ→ ψ)
(2) ϕ→ (∀yψ) is equivalent to ∀x(ϕ→ ψ)
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Theorem 1.17 (Ax-Grothendieck). Suppose that P : Cm → Cm is a polynomial
map, i.e.

P (x1, ..., xm) = (P1(x1, ..., xm), ..., Pm(x1, ..., xm)),

If P is injective, then P is surjective.

Proof. We construct a Π2-sentence ϕ such that

(1) ϕ is true in every finite field.
(2) If ϕ is true, then every polynomial map (of a certain form) which is injective

is also surjective.
(3) By the previous lemma, we will conclude that the statement holds in C.

We write the proof in the case where m = 1. The proof is the same for higher
dimensions. Suppose that the degree of P is n, so P (x) = anx

n + ... + a1x + a0.
Then we want to write, “P (x) is injective implies P (x) is surjective”. So this is the
same as,

(∀x∀y(P (x) = P (y)→ x = y)→ ∀z∃w(P (w) = z))

Formally, we say, “For any polynomial of degree n, if the map is injecitve, then it
is surjective”,

∀v0, ..., vn(∀x∀y(vnx
n + ...+ v1x+ v0 = vny

n + ...+ v1y + v0 → x = y)

→ ∀z∃w(vnw
n + ...v1w + v0 = z))

Moving the quantifier out (via the previous fact), we see that this is equivalent to:

∀v0, ..., vn∀z∃w∃x∃y((vnx
n + ...+ v1x+ v0 = vny

n + ...+ v1y + v0 → x = y)

→ (vnw
n + ...v1w + v0 = z)).

Let the sentence above be ϕ. Notice that

(1) ϕ is a Π2 sentence.
(2) ϕ is true in any finite field. Indeed, ϕ says that any polynomial map (of

degree n) from a finite set to a finite set which is injective is also surjective.
This is true because any function from a finite set to a finite set which is
injective is also surjective.

(3) By the preivous lemma, we see that C |= ϕ.
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