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This entire collection of notes comes almost directly from portions of Chapter 4
of Marker’s Introduction to model theory.

Theorem 0.1. Let L be a countable language and T a complete L-theory with
infinite models. Then the followsing are equivalent:

(1) T has a prime model.
(2) T has an atomic model.
(3) The isolated types in Sn(T ) are dense for each n ≥ 1.

Proof. We proved (i) ⇐⇒ (ii) last lecture.
We first prove that (ii) =⇒ (iii). Let M be an atomic model of T . Let O be a

non-empty open subset of Sn(T ). Then

O =
⋃
i∈I

[θi(x̄)].

Since O is non-empty, one of the [θi(x̄)] is non-empty. Hence T ` ∃x̄θ(x̄). Then
M |= ∃x̄θ(x̄) and so for some ā ∈ Mn, M |= θ(ā). Since M is atomic, the type
tp(ā/∅) is isolated. Moreover, tp(ā/∅) ∈ [θi(x̄)]. This completes the proof.

(iii) =⇒ (ii). This direction is by a careful Henkin construction. Suppose
that the isolated types are dense. We will build an atomic model of T . Let C
be a collection of countably many new constant symbols, C = {c0, c1, ...} and
L∗ = L ∪ C. Let φ0, φ1, ... be an enumeration of all the L∗-sentences. We build a
sequence θ0, θ1, ... of L∗-sentences such that

(1) T ∗ = T ∪ {θi : i = 0, 1, 2, ...} is complete, satisfiable, and has witnesses in
C.

(2) The canonical model of T ∗, namely C/ ∼, is atomic.

We build T ∗ in stages. Inductively, we assume that T ∪ {θs} is satisfiable and
θs+1 |= θs.

(1) Stage 0: Let θ0 = ∃x(x = x).
(2) Stage s + 1 = 3i +1: At this stage, we ensure that the theory we are

building is complete. If T ∪ {θs ∪ φi} is satisfiable, we let θs+1 = θs ∧ φi.
Otherwise, we let θs+1 = θs ∧ ¬φi.

(3) Stage s+ 1 = 3i +2: At this stage, we ensure that the theory we are building
has witnesses in C. If φi is of the form ∃xψ(x), and θs |= φi, let c ∈ C be a
constant not occuring in θs. Then we set θs+1 = θs ∧ ψ(c). Otherwise, we
θs+1 = θs. We claim that T ∪ {θs+1} remains satisfiable.

(4) Stage s+1 =3i +3: At this stage, we ensure that the canoincal model of T ∗

will be atomic. Let n be the smallest number such that all constants from C
which appear in θs are among {c0, ..., cn}. Let ψ(x0, ..., xn) be the L-formula
such that θs = ψ(c0, ..., cn). By our hypothesis, we have that T ∪ {θs} is
satisfiable. Since the isolated types are dense, this implies that there exists
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some isolated type p ∈ Sn+1(T ) such that p ∈ [ψ(x0, ..., xn)]. Then there
exists a formula χ(x0, ..., xn) which isolates p. We set θs+1 = χ(c0, ..., cn).
We claim that T ∪ {χ(c̄)} is satisfiable and that θs+1 |= θs.

We claim that the canonical model, C/ ∼, is atomic. �

Theorem 0.2. Suppose that T is a complete theory in a countable language, and
A ⊆M |= T is countable. If |Sn(A)| < 2ℵ0 , then

(1) the isolated types in Sn(A) are dense.
(2) |Sn(A)| ≤ ℵ0.

In particular, if |Sn(T )| ≤ 2ℵ0 for all n ≥ 1, then T has a prime model.

Proof. We prove that if the isolated types are not dense in |Sn(A)|, then |Sn(A)| ≥
2ℵ0 . The proof of (ii) is similar in flavor. The in particular portion follows from
(i) and the previous theorem.

Suppose that the isolated types are not dense in Sn(A). There eixsts exists a
formula φ(x̄) such that φ(x̄) contains no isolated types. Then there exists an L(A)-
formula ψ(x̄) such that [φ(x̄)∧ψ(x̄)] and [φ(x̄)∧¬ψ(x̄)] are both non-empty. Again,
both [φ(x̄) ∧ ψ(x̄)] and [φ(x̄) ∧ ¬ψ(x̄)] do not contain any isolated types.

We now build a binary tree of formulas. For each σ ∈ 2<ω, we have a collection
of formulas such that

(1) Each φσ(x̄) is non-empty and contains no isolated types.
(2) If σ is an initial segment of τ , then [ψτ (x̄)] ⊂ [ψσ(x̄)].
(3) For each σ, ψσi(x̄) |= ¬ψσi−1(x̄).

We note that the processes before the bullet points above can be iterated since
by replacing [ψ(x̄)] with [φ(x̄) ∧ ψψψ(x̄)] and repeating this argument. This is how
the tree of formulas is constructed. For each f : ω → {0, 1}, we have a partial type

pf = {ψf(0),...,f(n) : n ∈ ω}
We can complete pf to a complete type, p̄f ∈ Sn(A). We claim the map f → p̄f is
injective which proves the claim. �

1. Homogeneous models and partial elementary maps

Definition 1.1. Let M,N be L structures and B ⊆ M . A map f : B → N is a
partial elementary map if

M |= φ(b̄) =⇒ N |= φ(f(b̄)),

For every L-formula and finite tuple b̄ from B.

Example 1.2. Suppose that ā = (a1, ..., an), b̄ = (b1, ..., bn) and tuples in Mn such
that tp(ā/∅) = tp(b̄/∅). Then the map f : {a1, ..., an} → {b1, ..., bn} via f(ai) = bi
is a partial elementary map.

Definition 1.3. Let κ be an infinite cardinal. We say thatM |= T is κ-homogeneous
is whenever A ⊆ M with |A| < κ, f : A → M is a partial elementary map, and
a ∈M , then there exists a map f∗ ⊇ f such that f∗ : A∪{a} →M which is partial
elementary. We say that M is homogeneous is M is |M |-homogeneous.

Proposition 1.4. Suppose that M is homogeneous and A ⊆ M , |A| < |M | and
f : A → M is a partial elementary map. Then there exists an automorphism
σ : M → M such that σ ⊇ f . In particular, if M is homogeneous and ā, b̄ ∈ Mn
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such that tp(ā/∅) = tp(b̄/∅), then there exists an automorphism σ : M → M such
that σ(ā) = b̄.

Proof. Enumerate model. Extend the function f one point at a time. Need to be
a little careful so that at each step you add in each point in both the domain and
range (by noticing that the inverse map is also partial elementary). Take union. �

Lemma 1.5. If M is atomic then M is ℵ0-homogeneous. If M is countable and
atomic, then M is homogeneous.

Proof. Suppose that f : A→ B is a partial elementary map. Let c ∈M . We have
that A = {a1, ..., an}, B = {b1, ..., bn} and f(ai) = bi. It suffices to show that there
exists some d ∈ M such that tp(āc/∅) = tp(b̄d/∅). Then the map f ∪ {(c, d)} is a
partial elementary map.

Since M is atomic, we have that tp(ā, c/∅) is isolated. Hence there exists a
formula θ(x̄, y) which isolates this type. Hence M |= ∃yχ(ā, y). Since our map is
partial elementary, we see that M |= ∃yχ(b̄, y). Find d ∈M such that M |= χ(b̄, d).
Since χ isolates, we have that tp(āc/∅) = tp(b̄d/∅). So we are done. �

Theorem 1.6. Let T be a complete theory in a countable language. Suppose M
and N are countable homogeneous models of T and M and N realizes the same
types in Sn(T ) for n ≥ 1. Then M ∼= N .

Proof. Back and forth argument. �

Corollary 1.7. Let T be a complete theory in a countable language. If M,N are
prime models of T then M ∼= N .

Proof. Since M and N are both prime, we know that both M and N are countable
and atomic. Hence all the types of Sn(T ) which are realized in both M and N are
precisely the isolated types. By the previous theorem, we conclude thatM ∼= N . �


