PKU MODEL THEORY NOTES

KYLE GANNON

This entire collection of notes comes almost directly from portions of Chapter 4 of Marker's Introduction to model theory.

Theorem 0.1. Let \mathcal{L} be a countable language and T a complete \mathcal{L} -theory with infinite models. Then the followsing are equivalent:

- (1) T has a prime model.
- (2) T has an atomic model.
- (3) The isolated types in $S_n(T)$ are dense for each $n \ge 1$.

Proof. We proved $(i) \iff (ii)$ last lecture.

We first prove that $(ii) \implies (iii)$. Let M be an atomic model of T. Let O be a non-empty open subset of $S_n(T)$. Then

$$O = \bigcup_{i \in I} [\theta_i(\bar{x})].$$

Since O is non-empty, one of the $[\theta_i(\bar{x})]$ is non-empty. Hence $T \vdash \exists \bar{x}\theta(\bar{x})$. Then $M \models \exists \bar{x}\theta(\bar{x})$ and so for some $\bar{a} \in M^n$, $M \models \theta(\bar{a})$. Since M is atomic, the type $\operatorname{tp}(\bar{a}/\emptyset)$ is isolated. Moreover, $\operatorname{tp}(\bar{a}/\emptyset) \in [\theta_i(\bar{x})]$. This completes the proof.

 $(iii) \implies (ii)$. This direction is by a careful Henkin construction. Suppose that the isolated types are dense. We will build an atomic model of T. Let Cbe a collection of countably many new constant symbols, $C = \{c_0, c_1, ...\}$ and $\mathcal{L}^* = \mathcal{L} \cup C$. Let $\phi_0, \phi_1, ...$ be an enumeration of all the \mathcal{L}^* -sentences. We build a sequence $\theta_0, \theta_1, ...$ of \mathcal{L}^* -sentences such that

- (1) $T^* = T \cup \{\theta_i : i = 0, 1, 2, ...\}$ is complete, satisfiable, and has witnesses in C.
- (2) The canonical model of T^* , namely C/\sim , is atomic.

We build T^* in stages. Inductively, we assume that $T \cup \{\theta_s\}$ is satisfiable and $\theta_{s+1} \models \theta_s$.

- (1) Stage 0: Let $\theta_0 = \exists x(x=x)$.
- (2) Stage s + 1 = 3i +1: At this stage, we ensure that the theory we are building is complete. If $T \cup \{\theta_s \cup \phi_i\}$ is satisfiable, we let $\theta_{s+1} = \theta_s \wedge \phi_i$. Otherwise, we let $\theta_{s+1} = \theta_s \wedge \neg \phi_i$.
- (3) Stage s+ 1 = 3i +2: At this stage, we ensure that the theory we are building has witnesses in C. If ϕ_i is of the form $\exists x \psi(x)$, and $\theta_s \models \phi_i$, let $c \in C$ be a constant not occuring in θ_s . Then we set $\theta_{s+1} = \theta_s \land \psi(c)$. Otherwise, we $\theta_{s+1} = \theta_s$. We claim that $T \cup \{\theta_{s+1}\}$ remains satisfiable.
- (4) Stage s+1 = 3i + 3: At this stage, we ensure that the canoincal model of T^* will be atomic. Let n be the smallest number such that all constants from C which appear in θ_s are among $\{c_0, ..., c_n\}$. Let $\psi(x_0, ..., x_n)$ be the \mathcal{L} -formula such that $\theta_s = \psi(c_0, ..., c_n)$. By our hypothesis, we have that $T \cup \{\theta_s\}$ is satisfiable. Since the isolated types are dense, this implies that there exists

some isolated type $p \in S_{n+1}(T)$ such that $p \in [\psi(x_0, ..., x_n)]$. Then there exists a formula $\chi(x_0, ..., x_n)$ which isolates p. We set $\theta_{s+1} = \chi(c_0, ..., c_n)$. We claim that $T \cup \{\chi(\bar{c})\}$ is satisfiable and that $\theta_{s+1} \models \theta_s$.

We claim that the canonical model, C/\sim , is atomic.

Theorem 0.2. Suppose that T is a complete theory in a countable language, and $A \subseteq M \models T$ is countable. If $|S_n(A)| < 2^{\aleph_0}$, then

(1) the isolated types in $S_n(A)$ are dense.

$$(2) |S_n(A)| \le \aleph_0.$$

In particular, if $|S_n(T)| \leq 2^{\aleph_0}$ for all $n \geq 1$, then T has a prime model.

Proof. We prove that if the isolated types are not dense in $|S_n(A)|$, then $|S_n(A)| \ge 2^{\aleph_0}$. The proof of (ii) is similar in flavor. The *in particular* portion follows from (i) and the previous theorem.

Suppose that the isolated types are not dense in $S_n(A)$. There eixsts exists a formula $\phi(\bar{x})$ such that $\phi(\bar{x})$ contains no isolated types. Then there exists an $\mathcal{L}(A)$ -formula $\psi(\bar{x})$ such that $[\phi(\bar{x}) \wedge \psi(\bar{x})]$ and $[\phi(\bar{x}) \wedge \neg \psi(\bar{x})]$ are both non-empty. Again, both $[\phi(\bar{x}) \wedge \psi(\bar{x})]$ and $[\phi(\bar{x}) \wedge \neg \psi(\bar{x})]$ do not contain any isolated types.

We now build a binary tree of formulas. For each $\sigma \in 2^{<\omega}$, we have a collection of formulas such that

- (1) Each $\phi_{\sigma}(\bar{x})$ is non-empty and contains no isolated types.
- (2) If σ is an initial segment of τ , then $[\psi_{\tau}(\bar{x})] \subset [\psi_{\sigma}(\bar{x})]$.
- (3) For each σ , $\psi_{\sigma i}(\bar{x}) \models \neg \psi_{\sigma i-1}(\bar{x})$.

We note that the processes before the bullet points above can be iterated since by replacing $[\psi(\bar{x})]$ with $[\phi(\bar{x}) \wedge \psi(\bar{x})]$ and repeating this argument. This is how the tree of formulas is constructed. For each $f: \omega \to \{0, 1\}$, we have a partial type

$$p_f = \{\psi_{f(0),...,f(n)} : n \in \omega\}$$

We can complete p_f to a complete type, $\bar{p}_f \in S_n(A)$. We claim the map $f \to \bar{p}_f$ is injective which proves the claim.

1. Homogeneous models and partial elementary maps

Definition 1.1. Let M, N be \mathcal{L} structures and $B \subseteq M$. A map $f : B \to N$ is a partial elementary map if

$$M \models \phi(\bar{b}) \implies N \models \phi(f(\bar{b})),$$

For every \mathcal{L} -formula and finite tuple \overline{b} from B.

Example 1.2. Suppose that $\bar{a} = (a_1, ..., a_n)$, $\bar{b} = (b_1, ..., b_n)$ and tuples in M^n such that $\operatorname{tp}(\bar{a}/\emptyset) = \operatorname{tp}(\bar{b}/\emptyset)$. Then the map $f : \{a_1, ..., a_n\} \to \{b_1, ..., b_n\}$ via $f(a_i) = b_i$ is a partial elementary map.

Definition 1.3. Let κ be an infinite cardinal. We say that $M \models T$ is κ -homogeneous is whenever $A \subseteq M$ with $|A| < \kappa$, $f : A \to M$ is a partial elementary map, and $a \in M$, then there exists a map $f * \supseteq f$ such that $f * : A \cup \{a\} \to M$ which is partial elementary. We say that M is homogeneous is M is |M|-homogeneous.

Proposition 1.4. Suppose that M is homogeneous and $A \subseteq M$, |A| < |M| and $f : A \to M$ is a partial elementary map. Then there exists an automorphism $\sigma : M \to M$ such that $\sigma \supseteq f$. In particular, if M is homogeneous and $\bar{a}, \bar{b} \in M^n$

such that $\operatorname{tp}(\bar{a}/\emptyset) = \operatorname{tp}(\bar{b}/\emptyset)$, then there exists an automorphism $\sigma : M \to M$ such that $\sigma(\bar{a}) = \bar{b}$.

Proof. Enumerate model. Extend the function f one point at a time. Need to be a little careful so that at each step you add in each point in both the domain and range (by noticing that the inverse map is also partial elementary). Take union. \Box

Lemma 1.5. If M is atomic then M is \aleph_0 -homogeneous. If M is countable and atomic, then M is homogeneous.

Proof. Suppose that $f: A \to B$ is a partial elementary map. Let $c \in M$. We have that $A = \{a_1, ..., a_n\}, B = \{b_1, ..., b_n\}$ and $f(a_i) = b_i$. It suffices to show that there exists some $d \in M$ such that $\operatorname{tp}(\bar{a}c/\emptyset) = \operatorname{tp}(\bar{b}d/\emptyset)$. Then the map $f \cup \{(c, d)\}$ is a partial elementary map.

Since M is atomic, we have that $\operatorname{tp}(\bar{a}, c/\emptyset)$ is isolated. Hence there exists a formula $\theta(\bar{x}, y)$ which isolates this type. Hence $M \models \exists y \chi(\bar{a}, y)$. Since our map is partial elementary, we see that $M \models \exists y \chi(\bar{b}, y)$. Find $d \in M$ such that $M \models \chi(\bar{b}, d)$. Since χ isolates, we have that $\operatorname{tp}(\bar{a}c/\emptyset) = \operatorname{tp}(\bar{b}d/\emptyset)$. So we are done. \Box

Theorem 1.6. Let T be a complete theory in a countable language. Suppose M and N are countable homogeneous models of T and M and N realizes the same types in $S_n(T)$ for $n \ge 1$. Then $M \cong N$.

Proof. Back and forth argument.

Corollary 1.7. Let T be a complete theory in a countable language. If M, N are prime models of T then $M \cong N$.

Proof. Since M and N are both prime, we know that both M and N are countable and atomic. Hence all the types of $S_n(T)$ which are realized in both M and N are precisely the isolated types. By the previous theorem, we conclude that $M \cong N$. \Box