PKU MODEL THEORY NOTES

KYLE GANNON

Throughout these notes, x will denote a tuple of variables.

Lemma 0.1. Suppose that $\theta(x), \psi_1(x), \psi_2(x) \in \mathcal{L}_x(\mathcal{U})$. If $RM(\theta(x)) \geq \alpha$ and $\theta(x) \subseteq \psi_1(x) \cup \psi_2(x)$, then $RM(\theta(x) \land \psi_1(x)) \geq \alpha$ or $RM(\theta(x) \cap \psi_2(x)) \geq \alpha$.

Proof. Induction on α .

Lemma 0.2. Suppose that $\psi_1(x), \psi_2(x) \in \mathcal{L}_x(\mathcal{U})$. Then $RM(\psi_1(x) \cup \psi_2(x)) = \max\{RM(\psi_1(x)), RM(\psi_2(x))\}.$

Definition 0.3. Let $\psi(x) \in \mathcal{L}_x(\mathcal{U})$ and suppose that $RM(\psi(x)) = \alpha$. Then the Morley degree of $\psi(x)$, denoted $dM(\psi(x))$, is the largest d such that there exists $\theta_1(x), ..., \theta_d(x) \in \mathcal{L}_x(\mathcal{U})$ such that

- (1) The θ_i 's are pairwise disjoint, i.e. $\theta_i(x) \cap \theta_j(x) = \emptyset$ if $i \neq j$.
- (2) $RM(\theta_i(x)) = \alpha$ for each $i \leq d$.

The Morley degree of a theory is the Morley degree of $\mathbf{x} = \mathbf{x}$ where \mathbf{x} is a singleton of variables. We write this as dM(T).

Definition 0.4. We say that T is strongly minimal if RM(T) = dM(T) = 1.

Example 0.5. ACF_p and ACF_0 are strongly minimal.

Lemma 0.6. Suppose that $A \subseteq \mathcal{U}$. Let $p \in S_x(A)$ and suppose that p contains a ranked formula, i.e. there exists some $\theta(x) \in p$ such that $MR(\theta(x))$ is ordinal valued. Then p is completely determined by a single formula. Consider the formula $\varphi_p(x) \in p$ such that $\varphi_p(x)$ has the smallest Morley rank among all the formulas in p, say α , and out of all the formulas of rank α in p, $\varphi_p(x)$ has the smallest Morley degree. In other words, choose $\varphi_p(x) \in p$ such that for any $\theta(x) \in p$, $RM(\varphi_p(x)) \leq$ $RM(\theta(x))$ and if $RM(\varphi_p(x)) = RM(\theta(x))$, then $dM(\varphi_p(x)) \leq dM(\theta(x))$. We claim that

$$p = \{\psi(x) \in \mathcal{L}_x(A) : MR(\varphi_p(x) \setminus \psi(x)) < \alpha\}$$

Proof. Fix p and choose $\varphi_p(x)$ as above. Suppose that $MR(\varphi_p(x)) = \alpha$. We also assume for this proof that $dM(\varphi_p(x)) = 1$, just for simplicity.

First, suppose that $\psi(x) \in p$. Then $\varphi_p(x) \wedge \psi(x) \in p$. Notice that

(1) $\varphi_p(x) \wedge \psi(x) \subseteq \varphi_p(x)$ and so $RM(\varphi_p(x) \wedge \psi(x)) \leq RM(\varphi_p(x)) = \alpha$. Notice that $\varphi_p(x) \wedge \psi(x)$ cannot have rank strictly less than α , otherwise $\varphi_p(x)$ would not be a minimal choice. Hence $RM(\varphi_p(x) \wedge \psi(x)) = \alpha$

(2) Also, $\varphi_p(x) \wedge \neg \psi(x) \subseteq \varphi_p(x)$ and so $RM(\varphi_p(x) \wedge \neg \psi(x)) \leq RM(\varphi_p(x)) = \alpha$. Now, if $RM(\varphi_p(x) \wedge \neg \psi(x)) = \alpha$, then $mD(\psi_p(x)) \geq 2$, which is a contradiction. Thus, $RM(\psi_p(x) \wedge \neg \psi(x)) < \alpha$.

Second, suppose that $RM(\varphi_p(x) \land \neg \psi(x)) < \alpha$. Since p is a type, either $\neg \psi(x) \in p$ or $\psi(x) \in p$. Notice that if $\neg \psi(x) \in p$, then $\varphi_p(x) \land \neg \psi(x) \in p$ and so $\varphi_p(x)$ is not minimal. Hence it must follow that $\psi(x) \in p$.

KYLE GANNON

Definition 0.7. Let T be a complete theory. For emphasis, we will use \bar{x} to denote a tuple of variables.

- (1) We say that T is totally transcendental if for every formula $\psi(\bar{x}) \in \mathcal{L}_{\bar{x}}(\mathcal{U})$, we have that $RM(\psi(\bar{x})) < \infty$.
- (2) We say that T is ω -stable if for any $A \subset \mathcal{U}, |A| = \aleph_0, |S_{\bar{x}}(A)| = \aleph_0.$

Theorem 0.8. Suppose that T is a countable complete theory. Then T is totally transcendental if and only if T is ω -stable.

Proof. We first show the forward direction. Suppose that T is t.t.. The for any $p \in S_{\bar{x}}(A)$ there exists a formula $\varphi_p(\bar{x})$ such that

$$p = \{\psi(\bar{x}) \in \mathcal{L}_{\bar{x}}(A) : RM(\varphi_p(\bar{x}) \setminus \psi(\bar{x})) < RM(\varphi_p(x))\}.$$

The map $p \to \varphi_p$ is an injection from $S_{\bar{x}}(A)$ to $\mathcal{L}_{\bar{x}}(A)$, which implies $|S_{\bar{x}}(A)| \leq \aleph_0$.

Now we prove the backwards direction. Suppose that T is not totally t.t.. Then there exists a formula $\psi(\bar{x}) \in \mathcal{L}_{\bar{x}}(\mathcal{U})$ such that $RM(\psi(\bar{x})) = \infty$. [HW] Now, there exists $\psi_0(\bar{x})$ and $\psi_1(\bar{x})$ such that

- (1) $\psi_0(\bar{x}), \psi_1(\bar{x}) \subset \psi(\bar{x}).$
- (2) $\psi_0(\bar{x}) \cap \psi_1(\bar{x}) = \emptyset.$
- (3) $RM(\psi_0(\bar{x})) = RM(\psi_1(\bar{x})) = \infty$

Now iterate and build an infinite binary tree of formulas. We claim there are 2^{\aleph_0} many types the parameters used in the formulas to construct this tree.

1. Stability

Definition 1.1. A formula $\varphi(\bar{x}, \bar{y})$ is said to be stable if there do not exists sequence of points $(\bar{a}_i)_{i < \omega}$ and $(\bar{b}_j)_{j < \omega}$ such that

$$\mathcal{U} \models \varphi(\bar{a}_i, \bar{b}_j) \Longleftrightarrow i \leq j.$$

We say that $\varphi(\bar{x}, \bar{y})$ is k-stable if there does not exists $(\bar{a}_i, \bar{b}_j)_{1 \le i,j \le k}$ such that

$$\mathcal{U} \models \varphi(\bar{a}_i, \bar{b}_j) \Longleftrightarrow \leq i \leq j.$$

We say that T is stable if every \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$ is stable.

Proposition 1.2. If T is ω -stable, then T is stable.

Proof. Suppose that T is unstable. Then there exists a formula $\varphi(\bar{x}, \bar{y})$ and sequences $(\bar{a}_i)_{i < \omega}$ and $(\bar{b}_j)_{j < \omega}$ witnessing the order property. By compactness, there exists $(\bar{c}_i, \bar{d}_j)_{(i,j) \in \mathbb{Q} \times \mathbb{Q}}$ such that

$$\mathcal{U} \models \varphi(c_i, d_j) \Longleftrightarrow i \leq j.$$

Then, for each $r \in \mathbb{R} \setminus \mathbb{Q}$, we let p_r be a complete type such that

$$p_r \subseteq \{\neg \varphi(\bar{x}, \bar{d}_k) \land \varphi(\bar{x}, \bar{d}_j) : k < r < j\}$$

Then we have an injection from $\mathbb{R}\setminus\mathbb{Q}\to S_{\bar{x}}(D)$ where D is the collection of parameters occurs in $(\bar{d}_j)_{j\in\mathbb{Q}}$.

Example 1.3. (1) 'x divides y' in \mathbb{N} is unstable.

(2) Let G be a group and H be a subgroup. Then the relation xH = yH is 2-stable.