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Definition 0.1. Let X be an L-theory. ¥ is inconsistent if ¥ F ¢ for every L-
sentence . Otherwise, we say that X is consistent.

Proposition 0.2. Let A € £ and ¥ be an L-theory. Then ¥ is inconsistent if and
only if X+ (AN -A).

Proof. The forward direction is trivial. Let ¢ be any L sentence. Let 61, ...,0, be
a proof of (A A —A) from X. Notice that (A A —-A) — ¢ is valid. We claim that
01,....,0,, (AN—-A) — ¢, is a proof of ¢ from X. |

1. COMPLETENESS AND COMPACTNESS

Theorem 1.1 (Completeness Theorem). X is consistent if and only if there exists
M such that M | 3.

Theorem 1.2 (Compactness Theorem). ¥ is consistent if and only if for any
Yo C X such that |Xo| is finite, there exists My such that My | .

Proposition 1.3. If ¥ is consistent then T' = {¢ : ¥ F @} is consistent. T is called
the deductive closure of X.

Proof. Suppose that I' is inconsistent. In particular, I' = (A A —A) for some A € L.
Let 64, ...,6, be a proof of ¢ from I'. By definition, we know that for each i < n,
either

(1) 0; is valid.

(2) 0; € T.

(3) 0; is inferred by two previous sentences.
Notice that if ; € I" and ¢ < n, then ¥ - 6;. Hence there exists xi, , ..., Xi,, which is
a proof of §; from ¥. In the proof 6y, ..., 0, replace each 8; € T\X with x;,, ..., X4, -
We claim that this new sting of sentences is a proof of ¢ from 3. O

Definition 1.4. ¥ is said to be maxzimally consistent if ¥ is consistent and there
does not exists X’ 2 3 such that ¥’ is consistent.

Example 1.5. Let M be a £-model. Then {¢ : M = ¢} is maximally consistent.
Proposition 1.6. If ¥ is mazimally consistent and ¥+ ¢. Then p € 3.

Proof. Suppose ¢ € ¥. Since ¥ is maximally consistent, ¥ U {¢} is inconsistent.
Notice that X U {p} C {p : ¥ F ¢} and if X U {p} is inconsistent, then so is
{¢ : X F ¢}. By Proposition 1.3, this implies that ¥ is inconsistent and so we have
a contradiction. |

Proposition 1.7 (Deduction Theorem). If ¥ U {¢} F ¢, then X+ ¢ — .
Proof. Exercise. [
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1.1. Zorn’s lemma. If we are given a consistent theory, it is useful to extend to a
maximally consistent theory. To do so, we need to use Zorn’s lemma.

Definition 1.8. A partial order is a set P with a binary relation < which is
reflexive, anti-symmetric, and transitive.

(1) Reflexive: For any z € P, x < x.
(2) Anti-symmetric: For any z,y € P, if x <y and y < z, then x = y.
(3) Transitive: For any z,y,z € P, if x <y and y < z, then z < 2.

Example 1.9. (N, <) is a partial order. (P(N), Q) is also a partial order.

Definition 1.10. Let (P, <) be a partial order.

(1) A chain is a subset of P which is totally ordered, i.e. C'is a chain if C C P
and for any z,y in C, x <y ory < z.

(2) A chain C has an upper bound if there exists some a € P such that for any
re(C,z<a.

(3) An element m € P is called maximal if there does not exists some x € P
such that m < z and m # x.

We now give the statement of Zorn’s lemma:

Lemma 1.11 (Zorn’s Lemma). Let (P, <) be a partial order. Suppose that for
every chain C of P, C' has an upper bound. Then P contains at least one maximal
element.

Theorem 1.12 (Lidenbaum’s Theorem). Let ¥ be a consistent L theory. Then
there exists a mazimally consistent theory X' such that X' D X.

Proof. Let S = {I" : T is an L-theory, I" is consistent, and ¥ C I'}. Notice that
S # () since 3 € S. We consider the partial order (9, <) where I'y < T'5 if and only
if I'y € T's. We now wish to apply Zorn’s lemma to this partial order. Let C be a
chain in S. We need to show that C' has an upper bound. Consider I'c = [Jpc T
We claim that (1) T¢ € S and (2) Forany I' € C, T < T¢.

Claim: I'c € S. It suffices to show that I'c is consistent. Towards a contradic-
tion, suppose that I'¢ is inconsistent. Then I'c F (A A —A) for some A € L. Hence
there exists a proof 61, ...,0,, from I'c to (A A =A) where for each ¢ < n, either

(1) 0; is valid.
(2) 0; € T'c.
(3) 6; is inferred from two previous sentences in the proof.

Let 0,,,...,0;, be the sentences among 64, ...,60, which are in I'c. Since I'c =
Urec T for each j < m, there exists I'; € C such that ¢;;, € I';. Since C is a
chain, the set {I'1,...,I';,} is totally ordered by inclusion and so we may choose
I, € {I'y,...,T';,} such that for any ¢ < m I'; < T, (and so I'; C T',). Hence for
each j < m, we have that 0;, € I'.. Therefore 01, ...,0,, is a proof of (A A —A) fomr
T'.. However I', € S and so I', is consistent. Therefore we have a contradiction.

Claim: For any I' € C, I' < I'c. Suppose that I' € C. Notice that if ¢ € T,
then ¢ € Jpeo I and so ¢ € T'c. Hence I' € I'¢ and so definition I' < T'c.

By Zorn’s lemma, the partial order (S, <) has a maximal element, say T',,. By
construction, I';, is a maximally consistent theory which extends X. (I
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1.2. Completeness and Compactness.

Lemma 1.13. Let X be an L-theory. If X F (p1 — ) and X F (pa — ), then
EF (o1 Ve =)

Proof. Let 61, ...,0, be a proof of (1 — v) form X and let x1, ..., xm be a proof of
(p2 — 1b). We claim that the sentence ((¢1 = ¥) = ((p2 = ¥) = (01 V2 = ¥)))
is valid (check via truth table). Let v1 := ((p1 — ¥) = ((p2 = ¥) = (v1 V 2 —
¥))) and v := ((p2 = ¥) = (1 V @2 — 1)) We claim that

917 ey Hle’ oo Xy V15 Y25 (()01 \ Y2 — ¢)
is a proof of (¢1 V @2 — ) from X.

Proposition 1.14. Suppose that ¥ is mazimally consistent.

(1) For each @, either ¢ € ¥ or —p € X.
(2) For each pair ¢,v, o AN € X if and only if ¢ € 3 and ¢ € 2.

Proof. We prove (1). Suppose that ¢, ¢ ¢ 3. Then ¥ U {¢}, Zsup{—¢} 2 X.
Since ¥ is maximally consistent, both ¥ U {¢} and ¥ U {—¢} are inconsistent.
Hence S U {p} F (AA—-A) and ¥ U {-p} F (AA—A). By the deduction theorem,
we have that X+ ¢ — (AA-A) and ¥ F —p — (A A —A). Notice that ¢ V —gp is
valid. By Lemma 1.14, ¥ F ((¢ V =¢) — (A A =A)). Consider

eV -p, ((pV ) = (AN-A)), (AN -A).
We claim the above is a proof of A A =A from X. Hence X is inconsistent. (I
Lemma 1.15. Suppose that M EX. If X F ¢, then M = .

Proof. This proof is by induction on the length of a proof. The Base case is left as
an exercise. Induction Hypothesis: Suppose that if 64, ...,8, is a proof of ¢ from
S, then M |= .
Induction step: Suppose that 61, ...,6,11 is a proof of ¢ from 3. Consider 6,11
Then one of the following is true:
(1) Op4q is valid. (Hence, 6,41 is true in any model, and in particular, M =
9n+1)-
(2) 011 € . (Since M = X, this implies that M = 0,,11).
(3) 6,41 is inferred by 6, and 6; where k,l < n and 0y = (¢ — 6,41) and
0, = .
In case (3), notice that 01, ..., 0 is a proof of 8 from ¥ and 6, ..., §; is a proof of 6,
from ¥. By our induction hypothesis, M = 6, and M = 6;. Hence M = ¢ — 0,41
and M = 0,,11. We conclude that M |= 6,,41. ]

Theorem 1.16 (Completeness Theorem). % is consistent if and only if ¥ is sat-
isfiable, i.e. there exists an L-model M such that M = X.

Proof. Suppose that M | 3. Towards a contradiction, assume that ¥ is inconsis-
tent. Then ¥+ (AA—A) for some A € L. So M = (AA—-A) by Lemma 1.16. But
this is a contradiction since the sentence (A A = A) is not satisfiable.

Suppose that ¥ is consistent. Let I' O 3 such that I' is maximally consistent.
Let Mpr = {A € £ : A €T} Since I is maximally consistent, we have that
{AeL:AecT}={AecL:THF A}. We now argue that for any £ sentence ¢,
Mr | pif and only if T' F .
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Base Case: Suppose that ¢ = A. Then Mr E ¢ < MrE A < Ac€
I' <<= T'+ A.

Induction Hypothesis: Assume Mpr =0 < T'+60 and Mr F¢ < T F.

Negation: Suppose that ¢ = =t and Mr = ¢. Then Mr = — and so Mr = 4.
By IH, T #/ 4. By (1) of Proposition 1.15, T - —t). Now assume that I' - . Then
I t/ 4 since T is consistent. By our induction hypothesis, Mr = . Therefore
Mr E .

Conjunction: Suppose that ¢ = 6 A 1. Notice that Mr |= 0 A ¢ if and only if
Mr |= 0 and Mt | %. By our induction hypothesis, this is true if and only if ' F 6
and T' - 4. By (2) of Proposition 1.15, this is true if and only if T+ 6 A2

By the structural induction preformed above, Mr |= T' and since ¥ C T', we
conclude that My | X. O

Definition 1.17. Recall that an L-theory X is satisfiable if there exists a model
M such that M | X. We say that ¥ is finitely satisfiable if for every finite subset
Yo C X (i.e. |Xo| is finite), X¢ is satisfiable (i.e. there is a model M, such that
My |= o).

Theorem 1.18 (Compactness). X is satisfiable if and only if X is finitely satisfi-
able.

Proof. The forward direction is trivial. We want to prove that if ¥ is finitely
satisfiable, then X is satisfiable. Suppose not. Then ¥ is not satisfiable and so by
the Completeness theorem, ¥ is inconsistent. Hence X F (A A —A). Let 64,...,0,
be a proof of (A A —A) from ¥. Let £y := {; : j < n,0; € £}. Notice that |X|
is finite. We claim that 64, ...,0, is a proof of (A A —A) from ¥y. Hence ¥ is
inconsistent and by the completeness theorem, Y is not satisfiable. Therefore, we
have shown that ¥ is not finitely satisfable, a contradiction. O



