PKU MODEL THEORY NOTES

KYLE GANNON

1. FIRST-ORDER LOGIC

A first-order language £ has the following symbols:

(1) Logical symbols, all languages have the following;:
(a) ‘(and ‘).
(b) Connectives, —, A, V, .
(c) Variables (v;);en (In formal proofs, we have this countable of variables.
In practice, we usually use the symbols z,y, z...).
(d) An equality symbols ‘=".
(e) Quantifiers V, 3.
(2) Other symbols:
(a) A collection of function symbols (each with fixed arity). This can be
possibly empty.
(b) A collection of Relation symbols (each with fixed arity). This can be
possible empty.
(¢) A collection of constant symbols. This can be possibly
In practice, we write £ = {(fi)ier, (Rj)jes, (ck)ker } where the f;’s are function
symbols, the R;’s are relation symbols, and the c;’s are constant symbols.

Definition 1.1 (Atomic Formulas). Let £ = {(fi)ier, (R;)jet, (ck)rek }-
(1) A term is defined as follows:
(a) A constant symbol is a term. A variable v; for i € N is a term.
(b) Ifty,...,t, are terms and f is an n-ary function symbol, then f(t1, ..., ;)
is a term.
(2) An atomic formula is one of the following:
(a) If 1 and t9 are terms, then t; = o is an atomic formula.
(b) If R is an n-ary relation symbol in the language, then R(t1,...,t,) is
an atomic formula.

Definition 1.2 (L-formula). These are defined recursively:

(1) An atomic formula is a formula.
(2) If @, are formulas, then (—=p), (9 AY), (¢ — 1), and (¢ V1)) are formulas.
(3) If o if a formula and x is a variable, then Vay and Jzp are formulas.

Definition 1.3 (Free variables). Let ¢ be a formula in a language £ and z be a
variable. We say that = occurs freely in ¢ if

(1) If o is atomic, then x occurs freely in ¢ if and only if z appears in ¢ (e.g.
in the atomic formula R(z,y), both 2 and y occur freely in it).
(2) If ¢ = (—), then x occurs freely in ¢ if and only if & occurs freely in .
(3) If ¢ = (¢ ® 0) where ® is a binary connective, then = occurs freely in ¢ if
and only if = occurs freely in ¢ or (inclusively) 6.
1

2 KYLE GANNON

(4) If ¢ is Vyep, then = occurs freely in ¢ if and only if = is free in ¢ and = # y.

Definition 1.4. Let ¢ be an L-formula. Then ¢ is said to be a sentence if no
variables occur freely in .

2. MODELS AND SATISFACTION

Definition 2.1. Let £ = {f1,..., fn, R1, ..., Rin,c1,...,c}. Then an L-structure
(also called an £-model) is a tuple (A4; fM, ..., RM ... M) where
(1) A is a non-empty set.
(2) An interpreation for each function, relation, and constant symbol.
(a) For each n-ary function symbol f; in £, fM : A" — A.
(b) For each n-ary relation symbol R; in £, RM C A™.
(¢) For each constant symbol ¢; in £, ¢cM € A.

Definition 2.2 (Satisfaction). Let £ be a first-order language. Let M = (4;...) be
an L-structure. Let V be the collection of variables in £. An assignment is a map
s:V — A. s extends naturally to a function §: T — A where T is the collection
of terms constructed in £. More explicitly
(1) If z € V, then §(x) = s(x).
(2) If c is a constant in £, then 5(c) = cM.
(3) Ifty, ..., t, are terms and f is an n-ary function symbol, then 5(f (¢4, ...,t,)) =
M (5(t1), ..., 5(tn))-
Let ¢ be an L-formula. We now define M = ¢[s].
(1) If p is t; = to; then M |= ¢[s] if and only if 3(¢1) = 5(t2).
(2) If pis R(ty,...,tn), then M = R(ty, ..., t,)[s] if and only if (3(¢1), ..., 5(t,)) €
RM.
(3) If p is (—)), then M = p[s] if and only if M B~ v][s].
(4) If pis (Y A O), then M |= ¢[s] if and only if M = ¢[s] and M = 0[s].
(5) If pis (¢ vV O) then M = ¢[s] if and only if M |=[s] or M = 0[s].
(6) If ¢ is (¢p — 0) then M | ¢[s] if and only if M = (- V 0)[s].
(7) If ¢ is Vaep, then M = ¢[s] if and only if for every d € A, M E ¢[s(x|d)]
where s(z|d) : V — A, if © # y then s(z|d)(y) = s(y) and if y = z, then
s(y) = d.
(8) If p is Jxtp, then M |= ¢[s] if and only if there exists d € A, M = ¢[s(z|d)].

Proposition 2.3. Fix L. Let M = (A4;...) be an L-structure. Let s1,82 : V — A
be assignments. Let ¢ be an L-formula and F(p) be the free variables which occur
in . Suppose that s1|p) = S2|p(p). Then M |= @[s1] if and only if M |= ¢[ss].

Proof. Homework. O

Corollary 2.4. Let ¢ be an L-sentence and M = (A4;...) be an L-structure. Then
precisely one of the following holds.

(1) For anys:V — A, M = ¢[s].

(2) Fornos:V — A, M = ¢[s].

Proof. Let s1,53 : V. — A. Then F(p) = () and so s1|p(,) = 52|p(p). By the
previous proposition, M = ¢[s1] if and only if M = ¢[ss]. O

Definition 2.5. If ¢ is an L-sentence and M is an L-structure. We say that M = ¢
if there exists s : V' — A such that M = ¢[s].

PKU MODEL THEORY NOTES 3

Definition 2.6. Let p(zq,...,z,) be an L-formula with free variables precisely
X1y, Tn. Let M = (A;...) be an L-structure and (aq,...,a,) € A". We write
M = ¢(aq,...,a,) and say “(aq, ..., a,) satisfiable ¢” if there exists s : V' — A such
that s(x;) = a; for 1 <4 <nand M = ¢[s].

Definition 2.7 (Definable set). . Let M = (A;...) be an L-structure. Let D C A™.
We say that D is definable if there exists an L-formula ¢(x1,...,2,) such that
(a1,...,an) € D if and only if M = ¢(aq, ..., an).

Definition 2.8. Let My = (Aj;...) and My = (As;...) be L-structures. We say
that Mj is isomorphic to My and write My = M, if there exists a map G : A1 — Ao
with the following properties:

(1) G: Ay — As is a bijection.

(2) G preserves functions, relation and constant symbols, i.e.
M,

(a) For each n-ary function f; in £ and tuple (a1, ..., a,) € A™, G(f;"* (a1, ...

M2(G(ar), ..., Glan)).
(b) For each m-ary relation symbol R; in £ and tuple (a1, ...,a,) € A",
(a1, .-, an) € RM if and only if (G(ay), ..., G(an)) € RM2.

(¢) For each constant symbol ¢, G(cM1) = M2,

For convention, we sometimes say an isomorphism G maps from M; to Ms.

Definition 2.9. Let M; and M5 be L-structures. We say that M; is elementary
equivalent to My and write My = My if for every L-sentences ¢, My = ¢ if and
only if Ms | .

Proposition 2.10. Let My and My be L-structures. If My = M, then My = Ms.
Proof. Homework. O

Example 2.11. (Q;<) and (N;<) are not elementary equivalent. (R;<) and
(Q; <) are not isomorphic, but they are elementary equivalent.

Example 2.12. Consider the language £ = {f} where f is a unary function
symbol. Consider the structure M = (N, fM) where fM = S is the usual successor
function. Let E = {n € N: nis even} and S’ : E — E via S’(n) = n + 2. Let
N = (E, fV) where f¥ = §’. Consider the map G : M — N via G(n) =n+2. We
claim that this map is an isomorphism.

