PKU MODEL THEORY NOTES

KYLE GANNON

1. First-order logic

A first-order language $\mathcal L$ has the following symbols:

- (1) Logical symbols, all languages have the following:
 - (a) '(' and ')'.
 - (b) Connectives, \rightarrow , \land , \lor , \neg .
 - (c) Variables $(v_i)_{i\in\mathbb{N}}$ (In formal proofs, we have this countable of variables. In practice, we usually use the symbols x, y, z...).
 - (d) An equality symbols '='.
 - (e) Quantifiers \forall , \exists .
- (2) Other symbols:
 - (a) A collection of function symbols (each with fixed arity). This can be possibly empty.
 - (b) A collection of Relation symbols (each with fixed arity). This can be possible empty.
 - (c) A collection of constant symbols. This can be possibly

In practice, we write $\mathcal{L} = \{(f_i)_{i \in I}, (R_j)_{j \in J}, (c_k)_{k \in K}\}$ where the f_i 's are function symbols, the R_i 's are relation symbols, and the c_k 's are constant symbols.

Definition 1.1 (Atomic Formulas). Let $\mathcal{L} = \{(f_i)_{i \in I}, (R_j)_{j \in J}, (c_k)_{k \in K}\}.$

- (1) A term is defined as follows:
 - (a) A constant symbol is a term. A variable v_i for $i \in \mathbb{N}$ is a term.
 - (b) If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $f(t_1, ..., t_n)$ is a term.
- (2) An atomic formula is one of the following:
 - (a) If t_1 and t_2 are terms, then $t_1 = t_2$ is an atomic formula.
 - (b) If R is an n-ary relation symbol in the language, then $R(t_1,...,t_n)$ is an atomic formula.

Definition 1.2 (\mathcal{L} -formula). These are defined recursively:

- (1) An atomic formula is a formula.
- (2) If φ, ψ are formulas, then $(\neg \varphi), (\varphi \land \psi), (\varphi \to \psi),$ and $(\varphi \lor \psi)$ are formulas.
- (3) If φ if a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulas.

Definition 1.3 (Free variables). Let φ be a formula in a language \mathcal{L} and x be a variable. We say that x occurs freely in φ if

- (1) If φ is atomic, then x occurs freely in φ if and only if x appears in φ (e.g. in the atomic formula R(x,y), both x and y occur freely in it).
- (2) If $\varphi = (\neg \psi)$, then x occurs freely in φ if and only if x occurs freely in ψ .
- (3) If $\varphi = (\psi \otimes \theta)$ where \otimes is a binary connective, then x occurs freely in φ if and only if x occurs freely in ψ or (inclusively) θ .

(4) If φ is $\forall y \varphi$, then x occurs freely in φ if and only if x is free in ψ and $x \neq y$.

Definition 1.4. Let φ be an \mathcal{L} -formula. Then φ is said to be a sentence if no variables occur freely in φ .

2. Models and satisfaction

Definition 2.1. Let $\mathcal{L} = \{f_1, ..., f_n, R_1, ..., R_m, c_1, ..., c_k\}$. Then an \mathcal{L} -structure (also called an \mathcal{L} -model) is a tuple $(A; f_1^M, ..., R_1^M, ..., c_1^M)$ where

- (1) A is a non-empty set.
- (2) An interpretaion for each function, relation, and constant symbol.
 - (a) For each n-ary function symbol f_i in \mathcal{L} , $f_i^M: A^n \to A$.
 - (b) For each *n*-ary relation symbol R_i in \mathcal{L} , $R_i^M \subseteq A^n$. (c) For each constant symbol c_i in \mathcal{L} , $c_i^M \in A$.

Definition 2.2 (Satisfaction). Let \mathcal{L} be a first-order language. Let M = (A; ...) be an \mathcal{L} -structure. Let V be the collection of variables in \mathcal{L} . An assignment is a map $s:V\to A$. s extends naturally to a function $\bar{s}:T\to A$ where T is the collection of terms constructed in \mathcal{L} . More explicitly

- (1) If $x \in V$, then $\bar{s}(x) = s(x)$.
- (2) If c is a constant in \mathcal{L} , then $\bar{s}(c) = c^M$.
- (3) If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $\bar{s}(f(t_1, ..., t_n)) =$ $f^M(\bar{s}(t_1),...,\bar{s}(t_n)).$

Let φ be an \mathcal{L} -formula. We now define $M \models \varphi[s]$.

- (1) If φ is $t_1 = t_2$; then $M \models \varphi[s]$ if and only if $\bar{s}(t_1) = \bar{s}(t_2)$.
- (2) If φ is $R(t_1,...,t_n)$, then $M \models R(t_1,...,t_n)[s]$ if and only if $(\bar{s}(t_1),...,\bar{s}(t_n)) \in$ \mathbb{R}^{M} .
- (3) If φ is $(\neg \psi)$, then $M \models \varphi[s]$ if and only if $M \not\models \psi[s]$.
- (4) If φ is $(\psi \wedge \theta)$, then $M \models \varphi[s]$ if and only if $M \models \psi[s]$ and $M \models \theta[s]$.
- (5) If φ is $(\psi \vee \theta)$ then $M \models \varphi[s]$ if and only if $M \models \psi[s]$ or $M \models \theta[s]$.
- (6) If φ is $(\psi \to \theta)$ then $M \models \varphi[s]$ if and only if $M \models (\neg \psi \lor \theta)[s]$.
- (7) If φ is $\forall x\psi$, then $M \models \varphi[s]$ if and only if for every $d \in A$, $M \models \varphi[s(x|d)]$ where $s(x|d): V \to A$, if $x \neq y$ then s(x|d)(y) = s(y) and if y = x, then s(y) = d.
- (8) If φ is $\exists x \psi$, then $M \models \varphi[s]$ if and only if there exists $d \in A$, $M \models \varphi[s(x|d)]$.

Proposition 2.3. Fix \mathcal{L} . Let M = (A; ...) be an \mathcal{L} -structure. Let $s_1, s_2 : V \to A$ be assignments. Let φ be an \mathcal{L} -formula and $F(\varphi)$ be the free variables which occur in φ . Suppose that $s_1|_{F(\varphi)} = s_2|_{F(\varphi)}$. Then $M \models \varphi[s_1]$ if and only if $M \models \varphi[s_2]$.

Corollary 2.4. Let φ be an \mathcal{L} -sentence and M=(A;...) be an \mathcal{L} -structure. Then precisely one of the following holds.

- (1) For any $s: V \to A$, $M \models \varphi[s]$.
- (2) For no $s: V \to A$, $M \models \varphi[s]$.

Proof. Let $s_1, s_2 : V \to A$. Then $F(\varphi) = \emptyset$ and so $s_1|_{F(\varphi)} = s_2|_{F(\varphi)}$. By the previous proposition, $M \models \varphi[s_1]$ if and only if $M \models \varphi[s_2]$.

Definition 2.5. If φ is an \mathcal{L} -sentence and M is an \mathcal{L} -structure. We say that $M \models \varphi$ if there exists $s: V \to A$ such that $M \models \varphi[s]$.

Definition 2.6. Let $\varphi(x_1,...,x_n)$ be an \mathcal{L} -formula with free variables precisely $x_1,...,x_n$. Let M=(A;...) be an \mathcal{L} -structure and $(a_1,...,a_n)\in A^n$. We write $M \models \varphi(a_1,...,a_n)$ and say " $(a_1,...,a_n)$ satisfiable φ " if there exists $s: V \to A$ such that $s(x_i) = a_i$ for $1 \le i \le n$ and $M \models \varphi[s]$.

Definition 2.7 (Definable set). Let M = (A; ...) be an \mathcal{L} -structure. Let $D \subseteq A^n$. We say that D is definable if there exists an \mathcal{L} -formula $\varphi(x_1,...,x_n)$ such that $(a_1,...,a_n) \in D$ if and only if $M \models \varphi(a_1,...,a_n)$.

Definition 2.8. Let $M_1 = (A_1; ...)$ and $M_2 = (A_2; ...)$ be \mathcal{L} -structures. We say that M_1 is isomorphic to M_2 and write $M_1 \cong M_2$ if there exists a map $G: A_1 \to A_2$ with the following properties:

- (1) $G: A_1 \to A_2$ is a bijection.
- (2) G preserves functions, relation and constant symbols, i.e.
 - (a) For each n-ary function f_i in \mathcal{L} and tuple $(a_1,...,a_n) \in A^n$, $G(f_i^{M_1}(a_1,...,a_n)) =$ $f_i^{M_2}(G(a_1),...,G(a_n)).$
 - (b) For each n-ary relation symbol R_i in \mathcal{L} and tuple $(a_1,...,a_n) \in A^n$, $(a_1,...,a_n) \in R_i^{M_1}$ if and only if $(G(a_1),...,G(a_n)) \in R_i^{M_2}$. (c) For each constant symbol c, $G(c^{M_1}) = c^{M_2}$.

For convention, we sometimes say an isomorphism G maps from M_1 to M_2 .

Definition 2.9. Let M_1 and M_2 be \mathcal{L} -structures. We say that M_1 is elementary equivalent to M_2 and write $M_1 \equiv M_2$ if for every \mathcal{L} -sentences φ , $M_1 \models \varphi$ if and only if $M_2 \models \varphi$.

Proposition 2.10. Let M_1 and M_2 be \mathcal{L} -structures. If $M_1 \cong M_2$, then $M_1 \equiv M_2$.

Proof. Homework.

Example 2.11. $(\mathbb{Q}; \leq)$ and $(\mathbb{N}; \leq)$ are not elementary equivalent. $(\mathbb{R}; \leq)$ and $(\mathbb{Q}; \leq)$ are not isomorphic, but they are elementary equivalent.

Example 2.12. Consider the language $\mathcal{L} = \{f\}$ where f is a unary function symbol. Consider the structure $M = (\mathbb{N}, f^M)$ where $f^M = S$ is the usual successor function. Let $\mathbb{E} = \{n \in \mathbb{N} : n \text{ is even}\}\$ and $S' : \mathbb{E} \to \mathbb{E}$ via S'(n) = n + 2. Let $N=(\mathbb{E},f^N)$ where $f^N=S'$. Consider the map $G:M\to N$ via G(n)=n+2. We claim that this map is an isomorphism.