PKU MODEL THEORY NOTES

KYLE GANNON

1. First-order logic

A first-order language \mathcal{L} has the following symbols:
(1) Logical symbols, all languages have the following:
(a) '(' and ')'.
(b) Connectives, $\rightarrow, \wedge, \vee, \neg$.
(c) Variables $\left(v_{i}\right)_{i \in \mathbb{N}}$ (In formal proofs, we have this countable of variables. In practice, we usually use the symbols $x, y, z \ldots$).
(d) An equality symbols ' $=$ '.
(e) Quantifiers \forall, \exists.
(2) Other symbols:
(a) A collection of function symbols (each with fixed arity). This can be possibly empty.
(b) A collection of Relation symbols (each with fixed arity). This can be possible empty.
(c) A collection of constant symbols. This can be possibly

In practice, we write $\mathcal{L}=\left\{\left(f_{i}\right)_{i \in I},\left(R_{j}\right)_{j \in J},\left(c_{k}\right)_{k \in K}\right\}$ where the f_{i} 's are function symbols, the R_{j} 's are relation symbols, and the c_{k} 's are constant symbols.

Definition 1.1 (Atomic Formulas). Let $\mathcal{L}=\left\{\left(f_{i}\right)_{i \in I},\left(R_{j}\right)_{j \in J},\left(c_{k}\right)_{k \in K}\right\}$.
(1) A term is defined as follows:
(a) A constant symbol is a term. A variable v_{i} for $i \in \mathbb{N}$ is a term.
(b) If t_{1}, \ldots, t_{n} are terms and f is an n-ary function symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
(2) An atomic formula is one of the following:
(a) If t_{1} and t_{2} are terms, then $t_{1}=t_{2}$ is an atomic formula.
(b) If R is an n-ary relation symbol in the language, then $R\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula.

Definition 1.2 (\mathcal{L}-formula). These are defined recursively:
(1) An atomic formula is a formula.
(2) If φ, ψ are formulas, then $(\neg \varphi),(\varphi \wedge \psi),(\varphi \rightarrow \psi)$, and $(\varphi \vee \psi)$ are formulas.
(3) If φ if a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulas.

Definition 1.3 (Free variables). Let φ be a formula in a language \mathcal{L} and x be a variable. We say that x occurs freely in φ if
(1) If φ is atomic, then x occurs freely in φ if and only if x appears in φ (e.g. in the atomic formula $R(x, y)$, both x and y occur freely in it).
(2) If $\varphi=(\neg \psi)$, then x occurs freely in φ if and only if x occurs freely in ψ.
(3) If $\varphi=(\psi \otimes \theta)$ where \otimes is a binary connective, then x occurs freely in φ if and only if x occurs freely in ψ or (inclusively) θ.
(4) If φ is $\forall y \varphi$, then x occurs freely in φ if and only if x is free in ψ and $x \neq y$.

Definition 1.4. Let φ be an \mathcal{L}-formula. Then φ is said to be a sentence if no variables occur freely in φ.

2. Models and satisfaction

Definition 2.1. Let $\mathcal{L}=\left\{f_{1}, \ldots, f_{n}, R_{1}, \ldots, R_{m}, c_{1}, \ldots, c_{k}\right\}$. Then an \mathcal{L}-structure (also called an \mathcal{L}-model) is a tuple $\left(A ; f_{1}^{M}, \ldots, R_{1}^{M}, \ldots, c_{1}^{M}\right)$ where
(1) A is a non-empty set.
(2) An interpreation for each function, relation, and constant symbol.
(a) For each n-ary function symbol f_{i} in $\mathcal{L}, f_{i}^{M}: A^{n} \rightarrow A$.
(b) For each n-ary relation symbol R_{i} in $\mathcal{L}, R_{i}^{M} \subseteq A^{n}$.
(c) For each constant symbol c_{i} in $\mathcal{L}, c_{i}^{M} \in A$.

Definition 2.2 (Satisfaction). Let \mathcal{L} be a first-order language. Let $M=(A ; \ldots)$ be an \mathcal{L}-structure. Let V be the collection of variables in \mathcal{L}. An assignment is a map $s: V \rightarrow A . s$ extends naturally to a function $\bar{s}: T \rightarrow A$ where T is the collection of terms constructed in \mathcal{L}. More explicitly
(1) If $x \in V$, then $\bar{s}(x)=s(x)$.
(2) If c is a constant in \mathcal{L}, then $\bar{s}(c)=c^{M}$.
(3) If t_{1}, \ldots, t_{n} are terms and f is an n-ary function symbol, then $\bar{s}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=$ $f^{M}\left(\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right)$.
Let φ be an \mathcal{L}-formula. We now define $M \models \varphi[s]$.
(1) If φ is $t_{1}=t_{2}$; then $M \models \varphi[s]$ if and only if $\bar{s}\left(t_{1}\right)=\bar{s}\left(t_{2}\right)$.
(2) If φ is $R\left(t_{1}, \ldots, t_{n}\right)$, then $M \models R\left(t_{1}, \ldots, t_{n}\right)[s]$ if and only if $\left(\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right) \in$ R^{M}.
(3) If φ is $(\neg \psi)$, then $M \models \varphi[s]$ if and only if $M \not \vDash \psi[s]$.
(4) If φ is $(\psi \wedge \theta)$, then $M \models \varphi[s]$ if and only if $M \models \psi[s]$ and $M \models \theta[s]$.
(5) If φ is $(\psi \vee \theta)$ then $M \models \varphi[s]$ if and only if $M \models \psi[s]$ or $M \models \theta[s]$.
(6) If φ is $(\psi \rightarrow \theta)$ then $M \models \varphi[s]$ if and only if $M \models(\neg \psi \vee \theta)[s]$.
(7) If φ is $\forall x \psi$, then $M \models \varphi[s]$ if and only if for every $d \in A, M \models \varphi[s(x \mid d)]$ where $s(x \mid d): V \rightarrow A$, if $x \neq y$ then $s(x \mid d)(y)=s(y)$ and if $y=x$, then $s(y)=d$.
(8) If φ is $\exists x \psi$, then $M \models \varphi[s]$ if and only if there exists $d \in A, M \models \varphi[s(x \mid d)]$.

Proposition 2.3. Fix \mathcal{L}. Let $M=(A ; \ldots)$ be an \mathcal{L}-structure. Let $s_{1}, s_{2}: V \rightarrow A$ be assignments. Let φ be an \mathcal{L}-formula and $F(\varphi)$ be the free variables which occur in φ. Suppose that $\left.s_{1}\right|_{F(\varphi)}=\left.s_{2}\right|_{F(\varphi)}$. Then $M \models \varphi\left[s_{1}\right]$ if and only if $M \vDash \varphi\left[s_{2}\right]$.

Proof. Homework.
Corollary 2.4. Let φ be an \mathcal{L}-sentence and $M=(A ; \ldots)$ be an \mathcal{L}-structure. Then precisely one of the following holds.
(1) For any $s: V \rightarrow A, M \models \varphi[s]$.
(2) For no $s: V \rightarrow A, M \models \varphi[s]$.

Proof. Let $s_{1}, s_{2}: V \rightarrow A$. Then $F(\varphi)=\emptyset$ and so $\left.s_{1}\right|_{F(\varphi)}=\left.s_{2}\right|_{F(\varphi)}$. By the previous proposition, $M \models \varphi\left[s_{1}\right]$ if and only if $M \models \varphi\left[s_{2}\right]$.
Definition 2.5. If φ is an \mathcal{L}-sentence and M is an \mathcal{L}-structure. We say that $M \models \varphi$ if there exists $s: V \rightarrow A$ such that $M \models \varphi[s]$.

Definition 2.6. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an \mathcal{L}-formula with free variables precisely x_{1}, \ldots, x_{n}. Let $M=(A ; \ldots)$ be an \mathcal{L}-structure and $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$. We write $M \models \varphi\left(a_{1}, \ldots, a_{n}\right)$ and say " $\left(a_{1}, \ldots, a_{n}\right)$ satisfiable φ " if there exists $s: V \rightarrow A$ such that $s\left(x_{i}\right)=a_{i}$ for $1 \leq i \leq n$ and $M \models \varphi[s]$.

Definition 2.7 (Definable set). . Let $M=(A ; \ldots)$ be an \mathcal{L}-structure. Let $D \subseteq A^{n}$. We say that D is definable if there exists an \mathcal{L}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ such that $\left(a_{1}, \ldots, a_{n}\right) \in D$ if and only if $M \models \varphi\left(a_{1}, \ldots, a_{n}\right)$.

Definition 2.8. Let $M_{1}=\left(A_{1} ; \ldots\right)$ and $M_{2}=\left(A_{2} ; \ldots\right)$ be \mathcal{L}-structures. We say that M_{1} is isomorphic to M_{2} and write $M_{1} \cong M_{2}$ if there exists a map $G: A_{1} \rightarrow A_{2}$ with the following properties:
(1) $G: A_{1} \rightarrow A_{2}$ is a bijection.
(2) G preserves functions, relation and constant symbols, i.e.
(a) For each n-ary function f_{i} in \mathcal{L} and tuple $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}, G\left(f_{i}^{M_{1}}\left(a_{1}, \ldots, a_{n}\right)\right)=$ $f_{i}^{M_{2}}\left(G\left(a_{1}\right), \ldots, G\left(a_{n}\right)\right)$.
(b) For each n-ary relation symbol R_{i} in \mathcal{L} and tuple $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$, $\left(a_{1}, \ldots, a_{n}\right) \in R_{i}^{M_{1}}$ if and only if $\left(G\left(a_{1}\right), \ldots, G\left(a_{n}\right)\right) \in R_{i}^{M_{2}}$.
(c) For each constant symbol $c, G\left(c^{M_{1}}\right)=c^{M_{2}}$.

For convention, we sometimes say an isomorphism G maps from M_{1} to M_{2}.
Definition 2.9. Let M_{1} and M_{2} be \mathcal{L}-structures. We say that M_{1} is elementary equivalent to M_{2} and write $M_{1} \equiv M_{2}$ if for every \mathcal{L}-sentences $\varphi, M_{1} \models \varphi$ if and only if $M_{2} \models \varphi$.

Proposition 2.10. Let M_{1} and M_{2} be \mathcal{L}-structures. If $M_{1} \cong M_{2}$, then $M_{1} \equiv M_{2}$.
Proof. Homework.
Example 2.11. ($\mathbb{Q} ; \leq$) and $(\mathbb{N} ; \leq)$ are not elementary equivalent. ($\mathbb{R} ; \leq$) and $(\mathbb{Q} ; \leq)$ are not isomorphic, but they are elementary equivalent.

Example 2.12. Consider the language $\mathcal{L}=\{f\}$ where f is a unary function symbol. Consider the structure $M=\left(\mathbb{N}, f^{M}\right)$ where $f^{M}=S$ is the usual successor function. Let $\mathbb{E}=\{n \in \mathbb{N}: n$ is even $\}$ and $S^{\prime}: \mathbb{E} \rightarrow \mathbb{E}$ via $S^{\prime}(n)=n+2$. Let $N=\left(\mathbb{E}, f^{N}\right)$ where $f^{N}=S^{\prime}$. Consider the map $G: M \rightarrow N$ via $G(n)=n+2$. We claim that this map is an isomorphism.

