
PKU MODEL THEORY NOTES

Exercise 0.1. Let M = (G;R) be a simple graph, i.e. R(x, y) is a binary relation
such that

(1) M |= ∀x¬R(x, x).
(2) M |= ∀x∀y(R(x, y)→ R(y, x)).

Write down the following formulas:

(1) M |= ϕ(a) iff the degree of a is 4.
(2) M |= ϕ(a, b, c) iff the induced graph on {a, b, c} forms a triangle.
(3) M |= ϕ(a) iff one of a’s neighbors has degree 3.
(4) M |= ϕn(a, b) iff the shortest path from a to b is of length n.
(5) M |= ϕn(a, b, c) iff there exists a path of from a to b avoiding c of length

less than n.

Example 0.2. (R;≤) and (Q;≤) are not isomorphic, but they are elementary
equivalent.

Definition 0.3. Fix L and let M = (A; ...) be an L-structure. A map G : A→ A
is called an automorphism if it is an isomorphism.

Proposition 0.4. Let M = (A; ...) and G : M →M be an automorphism. Let D ⊆
An be a definable set. Then for any (a1, ..., an) ∈ An, we have that (a1, ..., an) ∈ D
if and only if (G(a1), ..., G(an)) ∈ D.

Proof. We prove this statement via induction on the complexity of a formula. We
will show that if (a1, ..., an) ∈ D then (G(a1), ..., G(an)) ∈ D. Noticing that G−1

is also an automorphism finishes the claim. Suppose that (a1, ..., an) ∈ D and
ϕ(x1, ..., xn) is a definition of D.

Claim: For any term t and s : V → A, we have that G(s̄(t)) = (G ◦ s)(t).

(1) If x is a variable, then G(s̄(x)) = G(s(x)) = (G ◦ s)(x) = (G ◦ s)(s).
(2) If c is a constant, then G(s̄(c)) = G(s(c)) = (G ◦ s)(c) = (G ◦ s)(c).
(3) Assume that t1, ..., tn are terms such that G(s̄)(ti) = (G ◦ s)(ti) for i ≤ n.

Let f be an n-ary function symbol. ThenG(s̄(f(t1, ..., tn)) = G(fM (s̄(t1), ..., s̄(tn))

= fM (G(s̄(t1)), ..., G(s̄(tn))) = fM ((G ◦ s)(t1), ..., (G ◦ s)(tn))) = (G ◦ s)(f(t1, ..., tn)).

We now show the claim via induction.

(1) Suppose that ϕ(x1, ..., xn) is atomic. Then ϕ(x1, ..., xn) is R(t1, ..., tm)
where R is a relation symbol in L and t1, ..., tm are terms. Suppose that
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(a1, ..., an) ∈ D. Let s : V → A where s(xi) = a1. Then

(a1, ..., an) ∈ D ⇐⇒ M |= ϕ[s]

⇐⇒ (s̄(t1), ..., s̄(tm)) ∈ RM

⇐⇒ G(s̄(t1)), ..., G(s̄(tm))) ∈ RM

⇐⇒ ((G ◦ s)(t1), ..., (G ◦ s)(tm)) ∈ RM

⇐⇒ M |= ϕ[G ◦ s]
⇐⇒ (G(a1), ..., G(an)) ∈ D.

(2) Induction Hypothesis: Suppose that ψ and θ are formulas. Assume that
if M |= ψ[s] if and only if M |= ψ[G ◦ s] and M |= θ[s] if and only if
M |= ψ[G ◦ s]. We notice that we implicitly proved this statement in the
first step. Moreover, we implicitly prove this hypothesis in the forthcoming
steps as well.

(3) Suppose that ϕ(x1, ..., xn) is ¬ψ(x1, ..., xn). Let (a1, ..., an) ∈ D and s :
V → A such that s(xi) = ai and (a1, ..., an) ∈ D. Then

(a1, ..., an) ∈ D ⇐⇒ M |= ϕ[s]

⇐⇒ M |= ¬ψ[s]

⇐⇒ M 6|= ψ[s]

⇐⇒ M 6|= ψ[G ◦ s]
⇐⇒ M |= ¬ψ[G ◦ s]
⇐⇒ M |= ϕ[G ◦ s]
⇐⇒ (G(a1), ..., G(an)) ∈ D.

(4) Suppose that ϕ(x1, ..., xn) is (ψ ∧ θ)(x1, ..., xn). Let (a1, ..., an) ∈ D and
s : V → A where s(xi) = ai. Then

(a1, ..., an) ∈ D ⇐⇒ M |= ϕ[s]

⇐⇒ M |= (ψ ∧ θ)[s]
⇐⇒ M |= ψ[s] and M |= θ[s]

⇐⇒ M |= ψ[G ◦ s] and M |= θ[G ◦ s]
⇐⇒ M |= (ψ ∧ θ)[G ◦ s]
⇐⇒ M |= (G(a1), ..., G(an)) ∈ D.

(5) Suppose that ϕ(x1, ..., xn) is ∃xψ(x1, ..., xn). Let (a1, ..., an) ∈ D and s :
V → A where s(xi) = ai. Then

(a1, ..., an) ∈ D ⇐⇒ M |= ∃xψ[s]

⇐⇒ There exists some d in A such that M |= ψ[s(x|d)]

⇐⇒ M |= ψ[G ◦ s(x|d)]

⇐⇒ M |= ψ[(G ◦ s)(x|G(d))]

⇐⇒ M |= ∃xψ[G ◦ s]
⇐⇒ (G(a1), ..., G(an)) ∈ D. �

The previous result allows us to show that certain subsets of a first order struc-
tures are not definable.
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Example 0.5. Consider (Z, S) where S is the usual successor function. Let E =
{n ∈ Z : n is even}. Consider the map σ : Z→ Z via σ(n) = n+ 1. We claim that
σ is an automorphism. Notice that if E where definable, then for any a ∈ E, we
have that σ(a) ∈ E. However, 2 ∈ E, σ(2) = 3, and 3 6∈ E. Hence E is not definable
in this structure.

Definition 0.6. A collection of L-sentences is called a an L-theory, or sometimes
just a theory.

Definition 0.7. A collection of L-structures K is called an elementary class if there
exists an L-theory Σ such that M ∈ K if and only if M |= Σ.

Example 0.8. Let L = {≤}. Then linear orders form an L-elementary class.
Consider the following sentences:

(1) ϕ1 = ∀x(x ≤ x).
(2) ϕ2 = ∀x∀y∀z((x ≤ y ∧ y ≤ z)→ x ≤ z).
(3) ϕ3 = ∀x∀y((x ≤ y ∧ y ≤ x)→ x = y).
(4) ϕ4 = ∀x(x ≤ y ∨ y ≤ x)

Let Σ = {ϕ1, ϕ2, ϕ3, ϕ4}. Then Σ shows that linear orders form an elementary
class.

Example 0.9. Let L = {∅}. Then the class of infinite L-structures form an
elementary class. For each n ∈ N\{0}, consider the sentence

ϕn = ∃x1...∃xn

 ∧
1≤i,j≤n;i 6=j

xi 6= xj


Then Σ = {ϕn : n ≥ 1} witnesses the fact that the class of infinite L-structures is
an elementary class.

1. Compactness theorem

Theorem 1.1 (Compactness theorem). Let Σ be an L-theory. Then Σ is satisfiable
if and only if Σ is finitely satisfiable. In other words, there exists some M such that
M |= Σ if and only if for every Σ0 ⊂ Σ such that Σ0 is finite, there exists some
M0 |= Σ0.

Proposition 1.2. Let L = {∅}. Then the class of finite structures is not an L-
elementary class.

Proof. Suppose that the class of finite structures is an L-elementary class. Let Σ
witness this property. Consider L′ = L ∪ {ci : i ∈ N}. Consider Σ′ = Σ ∪ {ci 6=
cj : (i, j) ∈ N2, i 6= j}. We claim that Σ′ is finitely satisfiable (check). Hence
Σ′ is satisfiable and so there exists some L′-structures M = (A; (cMi )i∈N) such
that M |= Σ′. Notice that by construction, we have that |A| is infinite. Consider
M∗ = (A; ). Then M∗ is an L-structure and M∗ |= Σ, but |A| is infinite. This is a
contradiction. �

Definition 1.3. Let (I;≤) be a linear order. We say that (I;≤) is well ordered if
for any subset S of I, S has a least element.

Example 1.4. (N,≤) is well-ordered, (Q,≤) is not well-ordered.
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Proposition 1.5. Let L = {≤}. Then the class of well-ordered linear orders is not
an elementary class.

Proof. Suppose that the class of well ordered linear orders forms an L-elementary
class and let Σ be the collection of L which witnesses this property. Consider
L′ = L∪ {ci : i ∈ N}. Let Σ′ = Σ∪ {ci > ci+1 : i ∈ N}. We claim that Σ′ is finitely

satisfiable (check). Hence there exists an L′-structure M ′ = (A,≤M ′
, (cM

′

i )i∈N)

such that M ′ |= Σ′. Notice that the set S = {a ∈ A : ∃n, cM ′

n = a} is not well-

ordered. Consider M∗ = (A,≤M ′
). Then M∗ |= Σ and M∗ is not well-ordered

(since S is still a subset of A). Hence, we have a contradiction. �

Example 1.6. Let T be an L-theory. If T has arbitrarily large finite models, then
T has an infinite model

Proof. The following idea is a good one to keep in mind.

(1) Expand language L to L′ where L′ = L ∪C where C is a collection of new
constant symbols. Consider a L′-theory T ′ such that T ⊆ T ′.

(2) Aim to apply compactness by turning L-structures into L’-structures.
(3) Show that T ’ is finitely satisfiable using the structures constructed in the

previous step. Apply the compactness theorem to get a L’-structure N .
Note N |= T ′.

(4) Forget about the interpretation of the constants to get an L-structure N0

such that N0 |= T .

Let C = {ci : i ∈ N} be a collection of new constant symbols which do not appear
in L. We let L′ = L ∪ C. Consider the theory T ′ = T ∪ {ci 6= cj : i 6= j}. We
claim that T is finitely consistent. Indeed, let ∆ be a finite subcollection of T ′.
Let k = max{n : cn appears in one of the sentences in ∆}. Then ∆ ⊆ T ∪ {ci 6=
cj : 0 ≤ i 6= j ≤ k}. Since T has arbitrarily large finite models, there exists some
L-structure M0 such that M0 |= T and |M0| ≥ k. We can turn M0 into a L′-
structure by giving interpretations for each constant symbol. Since |M0| ≥ k, we
can choose an injection f : {c1, ..., ck} → M0 and let M ′0 be the L′-structure given

setting c
M ′

0
i = f(ci). Now M ′0 |= ∆.

By the compactness theorem, there exists some L′-structureN such thatN |= T ′.
Notice that we have an injection from N → N via f(i) = cNi . Hence |N | ≥ ℵ0.
Moreover, since T ⊆ T ′, N |= T ′. Technically N is an L′ structure. To get an
L-structure, one should simply forget about the interpretation of the new constant
symbols. �


