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Definition 0.1. We say that an L-sentence ϕ is valid if it is true in every L-
structure.

Example 0.2. Check that the following are valid:

(1) ∀x(x = x).
(2) Let ϕ(x) be an L-formula with one free variable x. Then ∀xϕ(x) →
∀yϕ(x|y) is valid where ϕ(x|y) is the formula where each free occurrence of
x is replaced by a new variable y which does not appear in ϕ(x).

Definition 0.3 (Model Theorist’s Proof System). Let Σ be an L-theory. Then
Σ ` ϕ if and only if there exists θ1, ..., θn a finite sequence of L-sentences such that
θn = ϕ and for each i ≤ n, either

(1) θi is valid.
(2) θi ∈ Σ.
(3) (Modus Ponens) There exists k, j < i such that θj = ψ → θi and θk = ψ.

Definition 0.4. We say that Σ is consistent if there exists some L-sentence ϕ such
that Σ 6` ϕ.

Proposition 0.5. The following are equivalent.

(1) Σ is inconsistent.
(2) For every L-sentence ϕ, Σ ` ϕ ∧ ¬ϕ.
(3) There exists an L-sentence ϕ such that Σ ` ϕ ∧ ¬ϕ.

Proof. Similar to propositional logic. �

1. Basics of Proofs

Definition 1.1. We say that Σ is maximally consistent if Σ is consistent and for
any Σ′ ) Σ, Σ′ is inconsistent.

Lemma 1.2. Assume that Γ ` ϕ and c is a constant symbol which occurs in no
sentence in Γ. Suppose that y is a variable which does not occur in ϕ. Then
Γ ` ∀yϕ(c|y) where ϕ(c|y) is the formula constructed by replacing every occurrence
of the constant c with the variable y. Moreover, there is a proof of ∀yϕ(c|y) from
Γ where c does not occur.

Proof Sketch. Let θ1, ..., θn be a proof of ϕ from Γ. Let y be a variable which does
not occur in any of the θi’s. We claim that ∀yθ1(c|y), ...,∀yθn(c|y) is a proof of
∀yϕ(c|y). �

Lemma 1.3. [Deduction Theorem] If Γ ∪ {ψ} ` ϕ, then Γ ` ψ → ϕ.

Lemma 1.4. If Γ is consistent and Γ ∪ {ψ} is inconsistent, then Γ ` ¬ψ.
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Proof. Assume the above. Since Γ ∪ {ψ} is inconsistent, Γ ∪ {ψ} ` ϕ ∧ ¬ϕ for
some/any L-sentence ϕ. By the deduction theorem, Γ ` ψ → ϕ∧¬ϕ. Let θ1, ..., θn
be a proof of ψ → ϕ ∧ ¬ϕ from Γ. Claim: (ψ → ϕ ∧ ¬ϕ) → ¬ψ is valid. So,
θ1, ..., θn, (ψ → ϕ ∧ ¬ϕ),¬ψ is a proof of ¬ψ from Γ. �

Lemma 1.5 (Lindenbaum’s Theorem). If Σ is a consistent L-theory, then ∃Γ such
that Γ ⊇ Σ and Γ is maximally consistent.

Proof. Zorn’s lemma, almost identical to propositional logic. �

2. Building Models

Definition 2.1. Let Σ be a set of L-sentences. Let C be a subset of the constant
symbols in L. We say that C is a set of witnesses for Σ in L if and only if for every
formula ϕ with at most one free variable, say x, there exists a constant symbol
c ∈ C such that

Σ ` ∃xϕ→ ϕ(x|c)
where ϕ(x|c) is the sentence where each free instance of x is replaced by c.

Lemma 2.2. Let Σ be a consistent set of L-sentences. Let C be a set of new
constant symbols such that |C| = |N| if |L| is finite or countable and |C| = |L|
otherwise. Let L = L ∪ C. Then there exists Σ, an L-theory such that

(1) Σ ⊃ Σ.
(2) Σ is consistent.
(3) Σ has witnesses in L, namely C.

Proof. We prove the countable case. Suppose that |L| ≤ |N|. Let C = {ki : i ∈ N}.
Check that |{ϕ : ϕ is an L-formula }| = |N|. Hence |{ϕ|ϕ is an L-formula with at
most one free variable}| = |N|. Enumerate this set, ϕ1, ϕ2, .... We now construct
Σ.

(1) Step 1: Let Σ1 = Σ.
(2) Step n+ 1: Suppose that we have constructed Σn. We let

Σn+1 = Σn ∪ {∃xiϕi → ϕi(xi|di)}

where xi is the free variable which occurs in ϕi (if no free variable occurs, we
treat xi simply as v0). We let di be the first constant symbol in k0, k1, k2, ...
which does not occur in Σn.

(3) Let Σ =
⋃

i∈N Σi.

Notice that

(1) Σ ⊆ Σ.
(2) By construction, Σ has a set of witnesses in L.
(3) We need to check that Σ is consistent. Suppose not. Since proofs are

finitary, there exists some j such that Σj is inconsistent. Let j be the
small Σj such that Σj is inconsistent. So, Σj−1 is consistent and Σj =
Σj−1 ∪ {∃xjϕj → ϕj(xj |dj)} is inconsistent. By Lemma 1.4, we have that

Σj−1 ` ¬(∃xjϕj → ϕj(xj |dj))

and so one can check,

Σj−1 ` ∃xjϕj ∧ ¬ϕj(xj |dj))
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and so by Lemma 1.2,

Σj−1 ` ∀y(∃xjϕj ∧ ¬ϕj(y))

and so one can check,

Σj−1 ` ∃xjϕj ∧ ∀y(¬ϕj(y))

and so one can check,

Σj−1 ` ∃xjϕj ∧ ¬∃yϕj(y))

and so one can check,

Σj−1 ` ∃xjϕj ∧ ¬∃xjϕj(y|xj))
Hence Σj−1 is inconsistent, a contradiction.

Therefore, Σ has the appropriate properties. �

Definition 2.3 (Equivalence relations). Suppose that X is a set. An equivalence
relation ∼ on X is a relation such that

(1) For every x ∈ X, x ∼ x.
(2) For every x, y ∈ X, if x ∼ y, then y ∼ x.
(3) For every x, y, z ∈ X, if x ∼ y and y ∼ z, then x ∼ z.

If X is a set and ∼ is an equivalence relation on X, we let x̃ = {y ∈ X : x ∼ y}. x̃
is called the equivalence class of x. Finally, X/ ∼= {x̃ : x ∈ X}.

Lemma 2.4. Let Σ be a consistent set of L-sentences. Suppose that C is a set of
witnesses for Σ in L. Then there exists M such that M |= Σ.

Proof. By Lindenbaum’s theorem, there exists Γ such that Σ ⊆ Γ and Γ is max-
imally consistent. Note that C is a set of witnesses for Γ in L. We define an
equivalence relation ∼ on C as follows; For any a, b ∈ C, we say that a ∼ b if and
only if a = b ∈ Γ. We let A = {c̃ : c ∈ C}. We now build a model of Γ. We let
M = (A; ...). We now need to give interpretations to relation symbols, constant
symbols, and function symbols.

(1) Suppose that R is an n-ary relation symbol in L. We let (c̃1, ..., c̃n) ∈ RM

if and only if R(c1, ..., cn) ∈ Γ. This is well-defined since R(c1, ..., cn) ∧∧n
i=1 ci = di → R(d1, ..., dn) is valid.

(2) Suppose that e is a constant symbol in L. Then ∃v0(e = v0) is valid and
so Γ,Σ ` ∃v0(e = v0). Then ‘e = v0’ is a formula with one free variable.
Since C is a set of witnesses for Γ, there exists some c ∈ C such that

Γ,Σ ` ∃v0(e = v0)→ e = c

Hence e = c ∈ Γ for some c ∈ C. We let eM = c̃ and claim that this is
well-defined.

(3) Suppose that f is an n-ary function symbol in L. Let c1, ..., cn ∈ C. Then
Γ ` ∃v0(f(c1, ..., cn) = v0) and since C is a set of witnesses for Γ, Γ `
f(c1, ..., cn) = c for some c ∈ C. We let fM (c̃1, ..., c̃n) = c̃m if and only if
f(c1, ..., cn) = cm ∈ Γ and claim that this is also well-defined.

We now argue that M |= Γ. Everything is more or less straightforward. The base
case follows via construction and ∧,¬ are as usual downhill proofs. We prove the
case with quantifiers via induction. We let Q(ψ) be the number of quantifiers in ψ.
We suppose that if Q(ψ) < n, then M |= ψ if and only if ψ ∈ Γ. Let ϕ = ∃xψ and
Q(ϕ) = n.
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Suppose that M |= ϕ. Then M |= ∃xψ. So, there exists some c̃ ∈ A such that
M |= ϕ[s] where s(x) = c̃. Hence M |= ψ(x|c) where ψ(x|c) is obtained by replacing
each free occurrence of x with the constant symbol c. By our induction hypothesis,
ψ(x|c) ∈ Γ. Since ψ(x|c)→ ∃xψ is valid, we conclude that Γ ` ∃xψ and since Γ is
maximally consistent, ∃xψ ∈ Γ.

Suppose that ϕ ∈ Γ. Recall that Γ has witnesses in C. Hence Γ ` ∃xψ → ψ(x|c)
for some c ∈ C. Since Γ is maximal, Γ ` ψ(x|c). By our induction hypothesis,
M |= ψ(x|c) and hence M |= ∃xψ.

We conclude that the structure M is a model of Γ. �

Theorem 2.5 (Completeness Theorem). Let Σ be an L-theory. Σ is consistent if
and only if Σ is satisfiable.

Proof. Satisfiable (⇒) consistent since “Models respect deductions”. We show that
consistent (⇒) satisfiable. Consider L = L∪C where |C| is countable if |L| is finite
or countable, otherwise, we take |C| = |L|. Let Σ be an L-theory such that

(1) Σ ⊃ Σ.
(2) Σ is conisistent.
(3) Σ has a set of witnesses in C.

Then ∃M , an L-structure such that M |= Σ. Let M∗ be the L-structure obtained
by forgetting about the new constant symbols. Then M∗ |= Σ. �

Theorem 2.6 (Compactness Theorem). Σ is satisfiable if and only if Σ is finitely
satisfiable. In other words, ∃M such that M |= Σ if and only if for any Σ0 ⊆finite Σ,
there exists M0 such that M0 |= Σ0.

Proof. Homework/Same as the proof as in propositional logic (from the complete-
ness theorem). �

3. Categoricity

Definition 3.1. Let X be a set. We say that X is countable if there exists a
bijection f : X → N. We also write |X| = ℵ0 to mean this. If κ is any cardinal,
we say that X has size κ if there exists a bijection f : X → κ (and again, write
|X| = κ).

Definition 3.2. Let Σ be an L-theory. We say that Σ is κ-categorical if for any
M1,M2 |= Σ, |M1| = |M2| = κ =⇒ M1

∼= M2. We say that Σ is countably
categorical if Σ is ℵ0-categorical.

Definition 3.3. We say that Σ is complete if

(1) Σ is consistent.
(2) For any L-sentence ϕ, either Σ ` ϕ (exclusively) or Σ ` ¬ϕ

Example 3.4. Let M be an L-structure. Then ThL(M) := {ϕ : M |= ϕ} is a
complete L-theory.


