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1. Basic set theory

Formally, all the the mathematics we are doing is inside a model of ZFC (which
we call V ). V is a structure in the language L = {∈}.

Definition 1.1. An ordinal is an element α in V such that (α,∈) is a well-order
and α is transitive, i.e. if β ∈ α and γ ∈ β, then γ ∈ α.

Fact 1.2. The class of ordinals is well-ordered.

Example 1.3. Here are some examples of ordinals:

(1) (∅,∈) - We write this as 0.
(2) ({∅},∈) - We write this as 1.
(3) ({{∅}, ∅},∈) - We write this as 2.
(4) ({{{∅}, ∅}, {∅}, ∅},∈) - We write this as 3.
(5) For a finite number n+ 1, we have that (n+ 1,∈) = ({n} ∪ n,∈).
(6) ω =

⋃
n∈N n. ω is the first infinite ordinal and has order type (N,≤).

(7) (ω + 1,∈) = ({ω} ∪ ω,∈)
(8) One can keep going and going... ω + ω, ω2,...,
(9) ω1 is the first uncountable ordinal...

(10) ωα is the α-th uncountable ordinal such that there is no bijection from ωα
to any previous ordinal.

Example 1.4. We try to draw some pictures in latex:

(1) 1 looks like ∗.
(2) 5 looks like ∗ ∗ ∗ ∗ ∗.
(3) ω looks like the natural numbers, ∗ ∗ ∗ ∗ .... We will also write ω as → in

the following pictures.
(4) ω + 1 looks like → ∗. It is the order type of the set {1− 1

n : n ≥ 1} ∪ {2}.
(5) ω + 2 looks liks → ∗∗.
(6) ω+ ω looks like →→. It is the order type of the set {1− 1

n : n ≥ 1} ∪ {5−
1

n:n≥1}.
(7) ω2 looks like ω + ω + ω + ...︸ ︷︷ ︸

ω-many times

. So it looks like →→→→ .... Maybe another

way to think about it is to look at ω and replace each ∗ with →.
(8) Now you can consider ω2 + ω + 1.
(9) Notice that ω2 + 1 + ω has the same order type as ω2 + ω.

Remark 1.5. If A is a set of ordinals. Then
⋃
A is an ordinal.

Definition 1.6. A cardinal is an ordinal such that there is no bijection with any
previous ordinal. In other words, κ is a cardinal if for any α ∈ κ, there is not
bijection from κ to α.
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Definition 1.7. We have the following canonical notation:

(1) We let ℵ0 denote ω, or the size of the natural numbers. Formally, there is
no difference between ℵ0 and ω. We just treat them differently.

(2) For any ordinal α, we let ℵα denote the α-th uncountable ordinal. Formally,
there is no difference between ωα and ℵα. However, we treat them differ-
ently. ωα emphasizes the order type while ℵα emphasizes the cardinality.

Proposition 1.8. For every set A, |A| < P(A)

Proof. Suppose that there is a bijection f : A→ P(A). LetK = {a ∈ A : a 6∈ f(a)}.
Since f is a bijection, there exists some b ∈ A such that f(b) = K. Now we ask
the question: is b ∈ K or is b 6∈ K? Suppose that b ∈ K. Then b 6∈ f(b). Then
b 6∈ K. Okay, so this cannot happen. What if b 6∈ K. Then b 6∈ f(b). Then b ∈ K,
but this is also a problem. So we have a contradiction. There is no bijection. Our
proof actually shows that there is no surjection. �

2. Categoricity

Definition 2.1. Let X be a set. We say that X is countable if there exists a
bijection f : X → N. We also write |X| = ℵ0 to mean this. If κ is any cardinal,
we say that X has size κ if there exists a bijection f : X → κ (and again, write
|X| = κ).

Definition 2.2. Let Σ be an L-theory. We say that Σ is κ-categorical if for any
M1,M2 |= Σ, |M1| = |M2| = κ =⇒ M1

∼= M2. We say that Σ is countably
categorical if Σ is ℵ0-categorical.

Definition 2.3. We say that Σ is complete if

(1) Σ is consistent.
(2) For any L-sentence ϕ, either Σ ` ϕ (exclusively) or Σ ` ¬ϕ

Example 2.4. Let M be an L-structure. Then ThL(M) := {ϕ : M |= ϕ} is a
complete L-theory.

Theorem 2.5 (Vaught’s Test). Suppose that |L| ≤ ℵ0, Σ has no finite models, and
Σ is countably categorical. Then Σ is complete.

Proof. Suppose that Σ is incomplete. Then there exists an L-sentence ϕ such that
Σ 6` ϕ and Σ 6` ¬ϕ. We claim that Σ∪{ϕ} and Σ∪{¬ϕ} are consistent. By our proof
of the completeness theorem, there exists M1 and M2 such that M1 |= Σ ∪ {ϕ},
M2 |= Σ ∪ {¬ϕ}, and |M1| = |M2| = ℵ0. Then M1 6≡ M2 and so M1 6∼= M2, a
contradiction. �

Theorem 2.6 (Extended Vaught’s Test). Suppose that |L| ≤ κ, Σ has no finite
models, and Σ is λ-categorical for some λ ≥ κ. Then Σ is complete.

Proof. Same as previous theorem. �

Example 2.7. Let L = ∅. Consider T = {∃x1...∃xn
(∧

1≤i 6=j≤n xi 6= xj

)
|n ≥ 1}.

Then T is countable categorical and complete.

Proof. Let M1 = (A; ) and M2 = (B; ) be countable models of T . Since |M1| = ℵ0,
there exists a bijection f : A → N. Since |M2| = ℵ0, there exists a bijection
g : B → N. Notice that G := g−1 ◦ f : A → B is a bijection which preserves
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relations, functions and constant symbols (since there are none). Hence G is an
isomorphism and M1

∼= M2. Therefore, T is countable categorical. T does not have
any finite models and so by Vaught’s test, T is complete. �

Example 2.8. Consider L = {≤}. We let T≤ be the theory consisting of the
following sentences:

(1) ∀x(x ≤ x).
(2) ∀x∀y(x ≤ y ∧ y ≤ x→ x = y).
(3) ∀x∀y(x ≤ y ∨ y ≤ x)
(4) ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z).
(5) ∀x∀y∃z(x ≤ y ∧ x 6= y → x < y < z) (here < is an abbreviation).
(6) ∀x∃y(x ≤ y ∧ x 6= y).
(7) ∀x∃y(y ≤ x ∧ x 6= y).

The theory above is known as Dense linear orders without endpoints and is some-
times abbreviated as DLO. This theory is countable categorical and complete.

Proof. We know that (Q,≤) is a countable model of T≤. We let N |= T≤ such that
|N | = ℵ0. We now construct an isomorphism between them.

(1) Enumerate Q: a1, a2, a3, ....
(2) Enumerate N : b1, b2, b3, ....
(3) We construction an isomorphism in stages. Step one, Let dom(f1) = {a1}

and set f1(a1) = b1.
(4) Suppose we have constructed fn with the following properties: dom(fn) =
{ai1 , ...., aim}, the image of fn = {bj1 , ..., bjm}, fn(ail) = bjl , ai1 < ai2 <
... < aim , and fn is order preserving. We now construction fn+1 in two
steps:
(a) Step 1: Suppose that k is the smallest index such that ak 6∈ dom(fn).

Then one of the following is true
(i) ak < ail for every l ∈ {1, ...,m}.

(ii) There exists some l ∈ {1, ...,m− 1} such that ail < ak < ail+1
.

(iii) ak > ail for every j ∈ {1, ...,m}.
We work with case 2: Suppose that ail < ak < ail+1

for some l. Notice
that by the density axiom, N |= ∃x(bjl < x < bjl+1

). Hence there
exists some t ∈ N such that N |= bjl < bt < bjl+1

. Let gn+1 ⊃ fn and
also gn+1(ak) = bt. Hence dom(gn+1) = dom(fn) ∪ {ak}.

(b) Step 2: Suppose that r is the smallest index such that br 6∈ the image
of gn+1. By a similar processes as before, we find some as ∈ Q such
that the order type of as over the domain of gn is the same as the
order type of br over the image of gn+1. We let fn+1 ⊃ gn+1 where
fn+1(as) = br. (We need this second argument to ensure that the
function we build is surjective).

(5) We let f =
⋃
n≥1 fn. We claim that f is an isomorphism. �

Definition 2.9. Let L be a first order language and let M be the collection of all
L-structures. We let I(T, κ) = |{[M ] ∈M/ ∼=: M |= T}|

Example 2.10. Notice that if T is countable categorical, then I(T,ℵ0) = 1.

Example 2.11. Consider the language L = {P1, P2} where P1, P2 are both unary
predicates. Suppose that T is the following theory:
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(1) ∀x(P1(x) ∨ P2(x)).
(2) ∀x(P1(x)↔ ¬P2(x)).

(3) For each n ≥ 1 and k ∈ {1, 2}, ∃x1, ..., xn
(∧

1≤i 6=j≤n xi 6= xj ∧
∧n
i=1 P (xi)

)
.

Then we claim that I(T,ℵ0) = 1, I(T,ℵ1) = 3, I(T,ℵ2) = 5, ..., I(T,ℵω) = ℵ0.

3. Structures

Definition 3.1. Let M1 = (A1; ...) and M2 = (A2; ...) be L-structures. Then we
say that M1 is a substructure of M2 if

(1) A1 ⊆ A2.
(2) The restriction of the interpretation any relation, function, or constant sym-

bol from M2 to M1 is precisely the interpretation of that relation, function,
or constant in M1. In other words;
(a) For any n-ary function symbol f , we have that fM2 |An

1
= fM1 .

(b) For any n-ary relational symbol R, we have that RM2 ∩An1 = RM1 .
(c) For any constant symbol c, we have that cM2 = cM1 .


