PKU MODEL THEORY NOTES

KYLE GANNON

Proposition 0.1. Suppose that T is a complete theory and $M, N \models T$. Then $M \equiv N$.

Proof. Suppose not. Then there exists a sentence such that $M \models \varphi$ and $N \models \neg \varphi$. Since T is complete, $T \vdash \varphi$ or $T \vdash \neg \varphi$. Suppose that $T \vdash \varphi$. Then $N \models T$ and so $N \models \varphi$, but this is a contradiction.

Remark 0.2. We remark that $(\mathbb{Q}, \leq) \equiv (\mathbb{R}, \leq)$. We showed in the previous week's notes that T_{\leq} := Dense linear orderings without endpoints was countably categorical. It is also true that this theory has no finite models. Hence T_{\leq} is complete by Vaught's test. We have that $(\mathbb{R}, \leq) \models T_{\leq}$ and $(\mathbb{Q}, \leq) \models T_{\leq}$. Hence by the previous proposition, $(\mathbb{Q}, \leq) \equiv (\mathbb{R}, \leq)$.

1. Elementary extension and types

Definition 1.1. Let M = (A; ...) and N = (B; ...) be \mathcal{L} -structures. We say that M is a substructure of N if

- (1) $A \subseteq B$.
- (2) For every *n*-ary relation R in \mathcal{L} , $R^M = R^N \cap A^n$.
- (3) For every *n*-ary function symbols f in \mathcal{L} , $f^M = f^N|_{A^n}$. (4) For every constant symbol c, $c^M = c^N$.

Definition 1.2. Suppose that M = (A; ...) and N = (B; ...) are \mathcal{L} -structures. We say that $M \prec N$ if

(1) $A \subseteq B$.

(2) For any formula $\psi(x_1, ..., x_n)$ and $a_1, ..., a_n \in M$,

$$M \models \psi(a_1, ..., a_n) \iff N \models \psi(a_1, ..., a_n).$$

Proposition 1.3. Let M and N be \mathcal{L} -structures such that $M \preceq N$. Then $M \equiv N$.

Proof. Induction.

Proposition 1.4. Suppose that M is an infinite \mathcal{L} -structure. Then there exists some \mathcal{L} -structure N such that $M \neq N$ and $M \prec N$.

Proof. Compactness. Let $\mathcal{L}_M = \mathcal{L} \cup \{c_m : m \in M\}$. Turn M into a \mathcal{L}_M structure. If $N \models Th_{\mathcal{L}_M}(M)$, then $M \prec N$ (provided the domain of M is a subset of the domain of N - but this is a non-issue).

Definition 1.5. Let M = (A; ...) be an \mathcal{L} -structure. Let $B \subseteq A$ and $\overline{x} = x_1, ..., x_n$. We let $\mathcal{L}_{\overline{x}}(B) = \{\varphi(x_1, ..., x_n, b_1, ..., b_m) : \varphi(x_1, ..., x_n, y_1, ..., y_m) \text{ is an } \mathcal{L}\text{-formula},$ $b_1, ..., b_m \in B$.

Definition 1.6. Fix a model $M = (A; ...), B \subseteq A$, and $\overline{x} = x_1, ..., x_n$ a tuple of variables. A *partial* type π (in \overline{x} over B) is defined as follows:

KYLE GANNON

- (1) $\pi \subset \mathcal{L}_{\overline{x}}(B).$
- (2) π is finitely satisfiable, i.e. for any $\pi_0 \subseteq_{finite} \pi$, there exists some $(a_1, ..., a_n) \in A^n$ such that for any $\theta(x_1, ..., x_n) \in \pi_0, M \models \theta(a_1, ..., a_n)$.

Moreover, we say that π is complete if for any $\theta(x_1, ..., x_n) \in \mathcal{L}_{\overline{x}}(B)$, either $\theta(x_1, ..., x_n) \in \pi$ or $\neg \theta(x_1, ..., x_n) \in \pi$. Finally, we let $S_{\overline{x}}(B)$ be the collection of complete types (in \overline{x} over B). If B = A, we write $S_{\overline{x}}(B)$ simply as $S_{\overline{x}}(M)$.

Example 1.7. Consider $(\mathbb{N}; \leq)$. Let $\pi = \{n \leq x : n \in \mathbb{N}\}$. Then π is a type in x over \mathbb{N} .

Definition 1.8. Fix a model M and let $B \subseteq M$. Let π be a type in variable x over B (i.e. $\pi \subseteq \mathcal{L}_x(B)$ and π is finitely satisfiable). Let $a \in M$. We say that $a \models \pi$ or a realizes π for for every $\theta(x) \in \pi$, $M \models \theta(a)$.

Proposition 1.9. Let $M \prec N$ and consider $p = \{\varphi(x) \in \mathcal{L}_x(M) : N \models \varphi(b)\}$. Then $p \in S_x(M)$, i.e. p is a complete type.

Proof. First, we want to show that p is a type.

- (1) It is clear that $p \subseteq \mathcal{L}_x(M)$.
- (2) We need to show that p is finitely satisfiable. Let $p_0 \subseteq_{finite} p$. Then $p_0 = \{\varphi_1(x, \bar{c}_1), ..., \varphi_n(x, \bar{c}_n)\}$. Let $\theta(x, \bar{c}) = \bigwedge_{i=1}^n \varphi_i(x, \bar{c}_i)$. Then $N \models \theta(b, \bar{c})$ and so $N \models \exists x \theta(x, \bar{c})$. Since $M \prec N$, we have that $M \models \exists x \theta(x, \bar{c})$. Hence there exists some $d \in M$ such that $M \models \theta(d, \bar{c})$. By unpacking, we see that $M \models \varphi_i(d, \bar{c}_i)$ for any $\varphi_i(x, \bar{c}_i) \in p_0$. Hence p_0 is satisfied in M. Hence p is finitely satisfiable.
- (3) Finally, we argue that p is complete. Let $\theta(x) \in \mathcal{L}_x(M)$. Then $\theta(x) \in \mathcal{L}_x(N)$. So $N \models \theta(b)$ or $N \models \neg \theta(b)$. By construction, $\theta(x) \in p$ or $\neg \theta(x) \in p$ and so we are finished.

Proposition 1.10. Let M be an \mathcal{L} -structure. Let $p \in S_x(M)$. Then there exists some N and $b \in N$ such that $b \models p$.

Proof. We provide a sketch. Consider $\mathcal{L}_1 = \mathcal{L} \cup \{c_a : a \in M\}$. We let M_1 be the \mathcal{L}_1 -structure where the interpretation of each symbol in \mathcal{L} is the same as in M and $c_a^{M_1} = a$. We let $D(M_1) = Th_{\mathcal{L}_1}(M_1)$. Notice that p can be written as a type in x over \emptyset in \mathcal{L}_1 , call it p_1 . In particular, $p_1 = \{\varphi(x, c_{a_1}, ..., c_{a_n}) : \varphi(x, a_1, ..., a_n) \in p\}$. Now consider $\mathcal{L}_2 = \mathcal{L}_1 \cup \{d\}$ where d is a new constant symbol. Consider $T = D(M_1) \cup \{\theta(d) : \theta(x) \in p_1\}$. We claim that this is finitely consistent. Let $M_2 \models T$. Let $(M_2)_*$ be the \mathcal{L} -structure be obtained by forgetting constants and let d_* be the element in $(M_2)_*$ such that $M_2 \models d = d_*$. We¹ have that $M \prec M_2$ and the element $d_* \models p$.

Theorem 1.11 (Tarski-Vaught). Let M be a substructure of N. Then the following are equivalent.

- (1) $M \preceq N$.
- (2) For any $a_1, ..., a_n$ in M and formula $\varphi(x, y_1, ..., y_n)$, if there exists a b in N such that $N \models \varphi(b, a_1, ..., a_n)$, then there exists some $d \in M$ such that $N \models \varphi(d, a_1, ..., a_n)$.

 $\mathbf{2}$

¹To be very precise, also has to possibly change the underlying set of M_2 so that $M \subset (M_2)_*$.

Proof. (\Rightarrow) Suppose that $M \leq N$. Suppose that $\exists b \in N$ such that $N \models \varphi(b, a_1, ..., a_n)$. Then $N \models \exists x \varphi(x, a_1, ..., a_n)$. By elementary, $M \models \exists x \varphi(x, a_1, ..., a_n)$. Hence $M \models \varphi(d, a_1, ..., a_n)$ for some $d \in A$. By elementary, $N \models \varphi(d, a_1, ..., a_n)$.

 (\Leftarrow) Suppose the condition holds. This follows from the induction on complexity of formulas. This should be checked in the privacy of your own home.

Proposition 1.12. Suppose that $M = (\mathbb{N}, \leq)$. If $N \preceq M$, then N = M.

Proposition 1.13. $(2\mathbb{Z}; 0, +)$ is **not** an elementary substructure of $(\mathbb{Z}; 0, +)$

2. Downward Löwenheim-Skolem Theorem

When do elementary substructures exist?

Proposition 2.1. Suppose that $|\mathcal{L}| \leq \aleph_0$ and $|M| = \kappa$ where $\kappa > \aleph_0$. Then there exists a model N such that

 $(1) \quad N \prec M.$ $(2) \quad |N| = \aleph_0$

Proof. For every \mathcal{L} -formula $\varphi(x, y_1, ..., y_n)$, we define the partial function f_{φ} : $M^n \to M$ where if $M \models \exists x \varphi(x, a_1, ..., a_n)$, then $M \models \varphi(f_{\varphi}(a_1, ..., a_n), a_1, ..., a_n))$. So, the domain of f_{φ} is $\{(a_1, ..., a_n) \in M^n : M \models \exists x \varphi(x, a_1, ..., a_n)\}$.

Let $B \subset M$ such that $B \neq \emptyset$. We let $F(B) = \{f_{\varphi}(b_1, ..., b_n) : b_1, ..., b_n \in B, \varphi(x, y_1, ..., y_n) \text{ is an } \mathcal{L}\text{-formula}\}$. We let $F^{n+1} = F(F^{n+1}(B))$ and $F^{\omega} = \bigcup_{i \in \mathbb{N}} F^n(B)$. We now turn F^{ω} into an $\mathcal{L}\text{-structure}$ and apply Tarski-Vaught. For ease of notation, we let $C = F^{\omega}(B)$ and construct the structure N = (C; ...).

- (1) Let c be a constant symbol. We let $c^N = c^M$. How do we know that $c^M \in N$? Consider the formula $\theta(x, y) := x = c \wedge y = y$. Then $f_{\theta}(b) = c^M$ for any $b \in B$. Hence $c^M \in F(B) \subset N$.
- (2) Let R be an n-ary relation symbol. We let $R^N = R^M|_{C^n}$
- (3) Let f be an n-ary function symbol. Again, we let $f^{N} = f^{M}|_{C}$. We also need to check that this is well-defined. Suppose that $a_{1}, ..., a_{n} \in N$. Then there exists some k such that $a_{1}, ..., a_{n} \in F^{k}(B)$. Consider the formula $\theta(x, y_{1}, ..., y_{n}) := f(y_{1}, ..., y_{n}) = x$. Hence $f_{\theta}(a_{1}, ..., a_{n}) \in F^{k+1}(B)$ and so $f_{\theta}(a_{1}, ..., a_{n}) \in N$. Thus our function is well-defined.

We claim that $N \prec M$. We apply Tarski-Vaught. Let $\varphi(x, y_1, ..., y_n)$ be any \mathcal{L} -formula, $a_1, ..., a_n \in N$ and $d \in M$ such that $M \models \varphi(d, a_1, ..., a_n)$. Then $M \models \exists x \varphi(x, a_1, ..., a_n)$. Hence $(a_1, ..., a_n)$ is in the domain of f_{φ} . Moreover, there exists some k such that $a_1, ..., a_n \in F^k(B)$. Hence $f_{\varphi}(a_1, ..., a_n) \in F^{k+1}(B)$ and so $f_{\varphi}(a_1, ..., a_n) \in N$. By definition, we know that $M \models \varphi(f_{\varphi}(a_1, ..., a_n), a_1, ..., a_n)$ and so the proof is complete.

Now suppose that $|B| \leq \aleph_0$. Then $|F(B)| \leq \aleph_0$ and moreover $|F^{\omega}(B)| \leq \aleph_0$. Therefore, choosing B to be countable gives us a model N such that $|N| = \aleph_0$. \Box

The following theorem is the generalized version of the Löwenheim-Skolem theorem. The downward version is similar to what we proved above (almost identical). The upward version follows via compactness/completeness.

Theorem 2.2. Let \mathcal{L} be a language and M an \mathcal{L} -structure. Suppose that $|\mathcal{L}| = \kappa$ and M is an infinite \mathcal{L} -structure where $|M| = \lambda$ (κ and λ are infinite cardinals).

(1) (Upward version) For any $\mu \ge \max{\kappa, \lambda}$, there exists a model N such that $M \preceq N$ and $|N| = \mu$.

KYLE GANNON

(2) (Downward version) For any μ such that $\kappa \leq \mu \leq \lambda$, there exists a model N such that $N \preceq M$ and $|N| = \mu$.

In particular, if $|\mathcal{L}| \leq \aleph_0$ and $|M| > \aleph_0$,

- (1) For any $\kappa \ge |M|$, there exists N such that $M \preceq N$ and $|N| = \kappa$. (2) There exists some N such that $|N| = \aleph_0$ and $N \preceq M$.

4