
PKU MODEL THEORY NOTES

KYLE GANNON

Proposition 0.1. Suppose that T is a complete theory and M,N |= T . Then
M ≡ N .

Proof. Suppose not. Then there exists a sentence such that M |= ϕ and N |= ¬ϕ.
Since T is complete, T ` ϕ or T ` ¬ϕ. Suppose that T ` ϕ. Then N |= T and so
N |= ϕ, but this is a contradiction. �

Remark 0.2. We remark that (Q,≤) ≡ (R,≤). We showed in the previous week’s
notes that T≤ := Dense linear orderings without endpoints was countably categor-
ical. It is also true that this theory has no finite models. Hence T≤ is complete by
Vaught’s test. We have that (R,≤) |= T≤ and (Q,≤) |= T≤. Hence by the previous
proposition, (Q,≤) ≡ (R,≤).

1. Elementary extension and types

Definition 1.1. Let M = (A; ...) and N = (B; ...) be L-structures. We say that
M is a substructure of N if

(1) A ⊆ B.
(2) For every n-ary relation R in L, RM = RN ∩An.
(3) For every n-ary function symbols f in L, fM = fN |An .
(4) For every constant symbol c, cM = cN .

Definition 1.2. Suppose that M = (A; ...) and N = (B; ...) are L-structures. We
say that M � N if

(1) A ⊆ B.
(2) For any formula ψ(x1, ..., xn) and a1, ..., an ∈M ,

M |= ψ(a1, ..., an) ⇐⇒ N |= ψ(a1, ..., an).

Proposition 1.3. Let M and N be L-structures such that M � N . Then M ≡ N .

Proof. Induction. �

Proposition 1.4. Suppose that M is an infinite L-structure. Then there exists
some L-structure N such that M 6= N and M ≺ N .

Proof. Compactness. Let LM = L ∪ {cm : m ∈M}. Turn M into a LM structure.
If N |= ThLM

(M), then M ≺ N (provided the domain of M is a subset of the
domain of N - but this is a non-issue). �

Definition 1.5. Let M = (A; ...) be an L-structure. Let B ⊆ A and x = x1, ..., xn.
We let Lx(B) = {ϕ(x1, ..., xn, b1, ..., bm) : ϕ(x1, ..., xn, y1, ..., ym) is an L-formula,
b1, ..., bm ∈ B}.

Definition 1.6. Fix a model M = (A; ...), B ⊆ A, and x = x1, ..., xn a tuple of
variables. A partial type π (in x over B) is defined as follows:
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(1) π ⊂ Lx(B).
(2) π is finitely satisfiable, i.e. for any π0 ⊆finite π, there exists some (a1, ..., an) ∈

An such that for any θ(x1, ..., xn) ∈ π0, M |= θ(a1, ..., an).

Moreover, we say that π is complete if for any θ(x1, ..., xn) ∈ Lx(B), either θ(x1, ..., xn) ∈
π or ¬θ(x1, ..., xn) ∈ π. Finally, we let Sx(B) be the collection of complete types
(in x over B). If B = A, we write Sx(B) simply as Sx(M).

Example 1.7. Consider (N;≤). Let π = {n ≤ x : n ∈ N}. Then π is a type in x
over N.

Definition 1.8. Fix a model M and let B ⊆M . Let π be a type in variable x over
B (i.e. π ⊆ Lx(B) and π is finitely satisfiable). Let a ∈ M . We say that a |= π or
a realizes π for for every θ(x) ∈ π, M |= θ(a).

Proposition 1.9. Let M ≺ N and consider p = {ϕ(x) ∈ Lx(M) : N |= ϕ(b)}.
Then p ∈ Sx(M), i.e. p is a complete type.

Proof. First, we want to show that p is a type.

(1) It is clear that p ⊆ Lx(M).
(2) We need to show that p is finitely satisfiable. Let p0 ⊆finite p. Then p0 =
{ϕ1(x, c̄1), ..., ϕn(x, c̄n)}. Let θ(x, c̄) =

∧n
i=1 ϕi(x, c̄i). Then N |= θ(b, c)

and so N |= ∃xθ(x, c). Since M ≺ N , we have that M |= ∃xθ(x, c). Hence
there exists some d ∈M such that M |= θ(d, c). By unpacking, we see that
M |= ϕi(d, ci) for any ϕi(x, c̄i) ∈ p0. Hence p0 is satisfied in M . Hence p is
finitely satisfiable.

(3) Finally, we argue that p is complete. Let θ(x) ∈ Lx(M). Then θ(x) ∈
Lx(N). So N |= θ(b) or N |= ¬θ(b). By construction, θ(x) ∈ p or ¬θ(x) ∈ p
and so we are finished. �

Proposition 1.10. Let M be an L-structure. Let p ∈ Sx(M). Then there exists
some N and b ∈ N such that b |= p.

Proof. We provide a sketch. Consider L1 = L ∪ {ca : a ∈ M}. We let M1 be the
L1-structure where the interpretation of each symbol in L is the same as in M and
cM1
a = a. We let D(M1) = ThL1(M1). Notice that p can be written as a type in x

over ∅ in L1, call it p1. In particular, p1 = {ϕ(x, ca1 , ..., can) : ϕ(x, a1, ..., an) ∈ p}.
Now consider L2 = L1 ∪ {d} where d is a new constant symbol. Consider T =
D(M1) ∪ {θ(d) : θ(x) ∈ p1}. We claim that this is finitely consistent. Let M2 |= T .
Let (M2)∗ be the L-structure be obtained by forgetting constants and let d∗ be the
element in (M2)∗ such that M2 |= d = d∗. We1 have that M ≺M2 and the element
d∗ |= p. �

Theorem 1.11 (Tarski-Vaught). Let M be a substructure of N . Then the following
are equivalent.

(1) M � N .
(2) For any a1, ..., an in M and formula ϕ(x, y1, ..., yn), if there exists a b in

N such that N |= ϕ(b, a1, ..., an), then there exists some d ∈ M such that
N |= ϕ(d, a1, ..., an).

1To be very precise, also has to possibly change the underlying set of M2 so that M ⊂ (M2)∗.
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Proof. (⇒) Suppose thatM � N . Suppose that ∃b ∈ N such thatN |= ϕ(b, a1, ..., an).
Then N |= ∃xϕ(x, a1, ..., an). By elementary, M |= ∃xϕ(x, a1, ..., an). Hence
M |= ϕ(d, a1, ..., an) for some d ∈ A. By elementary, N |= ϕ(d, a1, ..., an).

(⇐) Suppose the condition holds. This follows from the induction on complexity
of formulas. This should be checked in the privacy of your own home. �

Proposition 1.12. Suppose that M = (N,≤). If N �M , then N = M .

Proposition 1.13. (2Z; 0,+) is not an elementary substructure of (Z; 0,+)

2. Downward Löwenheim-Skolem theorem

When do elementary substructures exist?

Proposition 2.1. Suppose that |L| ≤ ℵ0 and |M | = κ where κ > ℵ0. Then there
exists a model N such that

(1) N ≺M .
(2) |N | = ℵ0

Proof. For every L-formula ϕ(x, y1, ..., yn), we define the partial function fϕ :
Mn → M where if M |= ∃xϕ(x, a1, ..., an), then M |= ϕ(fϕ(a1, ..., an), a1, ..., an)).
So, the domain of fϕ is {(a1, ..., an) ∈Mn : M |= ∃xϕ(x, a1, ..., an)}.

Let B ⊂ M such that B 6= ∅. We let F (B) = {fϕ(b1, ..., bn) : b1, ..., bn ∈
B,ϕ(x, y1, ..., yn) is an L-formula}. We let Fn+1 = F (Fn+1(B)) and Fω =

⋃
i∈N F

n(B).
We now turn Fω into an L-structure and apply Tarski-Vaught. For ease of notation,
we let C = Fω(B) and construct the structure N = (C; ...).

(1) Let c be a constant symbol. We let cN = cM . How do we know that
cM ∈ N? Consider the formula θ(x, y) := x = c ∧ y = y. Then fθ(b) = cM

for any b ∈ B. Hence cM ∈ F (B) ⊂ N .
(2) Let R be an n-ary relation symbol. We let RN = RM |Cn

(3) Let f be an n-ary function symbol. Again, we let fN = fM |C . We also
need to check that this is well-defined. Suppose that a1, ..., an ∈ N . Then
there exists some k such that a1, ..., an ∈ F k(B). Consider the formula
θ(x, y1, ..., yn) := f(y1, ..., yn) = x. Hence fθ(a1, ..., an) ∈ F k+1(B) and so
fθ(a1, ..., an) ∈ N . Thus our function is well-defined.

We claim that N ≺ M . We apply Tarski-Vaught. Let ϕ(x, y1, ..., yn) be any L-
formula, a1, ..., an ∈ N and d ∈ M such that M |= ϕ(d, a1, ..., an). Then M |=
∃xϕ(x, a1, ..., an). Hence (a1, ..., an) is in the domain of fϕ. Moreover, there exists
some k such that a1, ..., an ∈ F k(B). Hence fϕ(a1, ..., an) ∈ F k+1(B) and so
fϕ(a1, ..., an) ∈ N . By definition, we know that M |= ϕ(fϕ(a1, ..., an), a1, ..., an)
and so the proof is complete.

Now suppose that |B| ≤ ℵ0. Then |F (B)| ≤ ℵ0 and moreover |Fω(B)| ≤ ℵ0.
Therefore, choosing B to be countable gives us a model N such that |N | = ℵ0. �

The following theorem is the generalized version of the Löwenheim-Skolem theo-
rem. The downward version is similar to what we proved above (almost identical).
The upward version follows via compactness/completeness.

Theorem 2.2. Let L be a language and M an L-structure. Suppose that |L| = κ
and M is an infinite L-structure where |M | = λ (κ and λ are infinite cardinals).

(1) (Upward version) For any µ ≥ max{κ, λ}, there exists a model N such that
M � N and |N | = µ.
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(2) (Downward version) For any µ such that κ ≤ µ ≤ λ, there exists a model
N such that N �M and |N | = µ.

In particular, if |L| ≤ ℵ0 and |M | > ℵ0,

(1) For any κ ≥ |M |, there exists N such that M � N and |N | = κ.
(2) There exists some N such that |N | = ℵ0 and N �M .


