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1. Ultrafilters

Definition 1.1. Let I be an indexing set and P(I) denote the power set of I. A
filter F (on I) is a non-empty subset of P(I) with the following properties:

(1) ∅ 6∈ F .
(2) If A,B ∈ F , then A ∩B ∈ F .
(3) If B ⊇ A and A ∈ F , then B ∈ F .

The following facts are easy to check.

Fact 1.2. Let I be an indexing set and F is a filter on I.

(1) For any finite collections A1, ..., An ∈ F ,
⋂n

i=1Ai ∈ F .
(2) I ∈ F .

Example 1.3. Let I = N.

(1) For any a ∈ N, we let Da = {X ⊆ N : a ∈ X}. Da is a filter. Filters of this
form are called principal.

(2) Let Fcofinite = {X ⊆ N : |N\X| < ℵ0}. This is a filter and is known as the
cofinite-filter or the Frechet filter.

Definition 1.4. Let I be an indexing set and let F be a filter on I. We say that
F is an ultrafilter on I if for every X ⊆ I, either X ∈ F or I\X ∈ F .

Proposition 1.5. Suppose that F is a filter on I. Suppose that A ⊂ N such that
A 6∈ F and I\A 6∈ F . Let FA = {B ∩ A : B ∈ F}. Let FA = {C : ∃E ∈ FA such
that C ⊇ E}. Then

(1) F ⊂ FA.
(2) FA is a filter on I.

Proof. Suppose that C ∈ F . Then C ⊇ C ∩A and so C ∈ FA. Moreover, A ∈ FA,
but A 6∈ F by assumption. Hence F ( FA.

We now show that FA is a filter.

(1) Suppose that ∅ ∈ FA. Then ∅ ∈ FA. Hence there exists some B ∈ F
such that B ∩ A = ∅. Then I\A ⊇ B which implies that I\A ∈ F . This
contradicts our assumption.

(2) Suppose that C1, C2 ∈ FA. Then there exists B1, B2 ∈ F such that C1 ⊇
B1 ∩A and C2 ⊇ B2 ∩A. Then B1 ∩B2 ∈ F and C1 ∩C2 ⊇ (B1 ∩B2)∩A.
By construction, C1 ∩ C2 ∈ FA.

(3) Suppose that C1 ∈ FA and C2 ⊇ C1. Then there exists B ∈ F such that
C1 ⊇ B ∩A. So C2 ⊇ B ∩A and therefore C2 ∈ FA.

Hence FA is a filter. �
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Theorem 1.6. Let I be an indexing set and suppose that F is a filter on I. Then
there exists an ultrafilter D on I such that F ⊆ D.

Proof. This follows from an application of Zorn’s lemma. Consider (G,⊆) where
G = {D : D is a filter over I and D ⊇ F}. Let (C,⊆) be a chain in this partial
order. We need to show that this chain has an upper bound. Consider the set
H =

⋃
D∈C D. We claim that H ∈ G and H is an upper bound for C. It suffices to

show that H is a filter.

(1) Suppose that ∅ ∈ H. Then there exists some D ∈ C such that ∅ ∈ D, but
this is a contradiction since D is a filter. Hence ∅ 6∈ H.

(2) Suppose that A1, A2 ∈ H. Then there exists some D ∈ C such that A1, A2 ∈
D. Then A1 ∩A2 ∈ D which implies A1 ∩A2 ∈ H.

(3) Suppose that A1 ⊇ A2 and A2 ∈ H. Then there is some D ∈ C such that
A2 ∈ D. So A1 ∈ D and so A1 ∈ H.

By Zorn’s lemma, there exists a maximal element K ∈ G. Since K ∈ G, we know
that F ⊆ K. We claim that K is an ultrafilter. Assume not. Then there exists
some A ⊆ I such that A 6∈ K and I\A 6∈ K. By the previous proposition KA

is a filter which properly extends K. Thus K is not maximal and so we have a
contradiction. �

Definition 1.7. Let I be an indexing set and D be an ultrafilter on I. We say
that D is a principle ultrafilter if there exists some i ∈ I such that D = Di = {X ⊆
I : i ∈ X}. Otherwise, we say that D is non-principle.

Proposition 1.8. Suppose that I is finite. Then every ultrafilter on I is principle.

Proposition 1.9. Suppose that I is infinite. Then there exists a non-principle
ultrafilter on I. Moreover, if D is a non-principle ultrafilter on I, then D contains
every cofinite set, i.e. for any X ⊆ I such that |I\X| < ℵ0, X ∈ D.

2. Ultraproducts

Definition 2.1. Let I be an indexing set and (Mi)i∈I an indexed family of L-
structures. We consider the product

∏
i∈I Mi. Notice that every element in∏

i∈I Mi can be thought of as a function f : I →
⋃

i∈I Mi where f(i) ∈ Mi.
Elements of

∏
i∈I Mi can also be thought of as sequences of points (a1, a2, a3, ...)

where each ai ∈Mi.
Now let D be a filter on I. We define a relation ∼D on

∏
i∈I Mi where f ∼D g

if and only if {i ∈ I : f(i) = g(i)} ∈ D.

Proposition 2.2. Let I be an indexing set, (Mi)i∈I an indexed family of L-
structures, and D be a filter on I. Then ∼D is an equivalence relation on

∏
i∈I Mi.

Proof. Exercise. �

Definition 2.3. Let I be an indexing set, (Mi)i∈I an indexed family of L-structures,
and D be an ultrafilter on I. We let

∏
DMi =

∏
i∈I Mi/ ∼D. In other words, if

[f ]D = {g ∈
∏

i∈I Mi : f ∼D g}, then
∏

DMi = {[f ]D : f ∈
∏

i∈I Mi}.
∏

DMi is
an L-structure with the following interpretations of L-symbols (for ease of notation,
we let N =

∏
DMi):

(1) Let R be an n-ary relation symbol. Then ([f1]D, ..., [fn]D) ∈ RN if and
only if {i ∈ I : (f1(i), ..., fn(i)) ∈ RMi} ∈ D.
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(2) Let G be an n-ary function symbols. Then GN ([f1]D, ..., [fn]D) = [h]D
where h(i) = GMi(f1(i), ..., fn(i)).

(3) Let c be a constant symbol. Then cN = [fc]D where fc(i) = cMi .

The structure
∏

DMi is called an ultraproduct.

Theorem 2.4 (Loś’s Theorem). . Let I be an indexing set, D an ultrafilter on I,
(Mi)i∈I an indexed family of L-structures, and f1, ..., fn ∈

∏
i∈I Mi. Then for any

L-formula ϕ(x1, ..., xn),∏
D

Mi |= ϕ([f1]D, ..., [fn]D) ⇐⇒ {i ∈ I : Mi |= ϕ(f1(i), ..., fn(i))} ∈ D.

Moreover, for any L-sentence ϕ, we have that∏
D

Mi |= ϕ ⇐⇒ {i ∈ I : Mi |= ϕ} ∈ D.

Proof. Induction hypothesis: Suppose the condition holds for ψ(x1, ..., xn) and
θ(x1, ..., xn).

Conjunction: Follows from intersection part.∏
D

Mi |= ψ([f1]D, ..., [fn]D) ∧ θ([f1]D, ..., [fn]D)

⇐⇒
∏
D

Mi |= ψ([f1]D, ..., [fn]D) and
∏
D

Mi |= θ([f1]D, ..., [fn]D)

⇐⇒ {i ∈ I : Mi |= ψ(f1(i), ..., fn(i))} ∈ D and {i ∈ I : Mi |= ψ(f1(i), ..., fn(i))} ∈ D
⇐⇒ {i ∈ I : Mi |= ψ(f1(i), ..., fn(i))} ∩ {i ∈ I : Mi |= ψ(f1(i), ..., fn(i))} ∈ D
⇐⇒ {i ∈ I : Mi |= ψ(f1(i), ..., fn(i)) ∧ ψ(f1(i), ..., fn(i))} ∈ D

Negation: Check.

Existential quantifier: We want to show that the statement holds for ∃x1ψ(x1, ..., xn).

∏
D

Mi |= ∃x1ψ(x1, [f2]D, ..., [fn]D) ⇐⇒
∏
D

Mi |= ψ([g]D, [f2]D, ..., [fn]D)

⇐⇒ {i ∈ I : Mi |= ψ(g(i), f2(i), ..., fn(i))} ∈ D
⇐⇒ {i ∈ I : Mi |= ∃xψ(x, f2(i), ..., fn(i))} ∈ D.

Last if and only if forward direction is trivial, backwards direction “relies on the
Axiom of choice”. �

Definition 2.5. Let I be an indexing set, Mi = M for every i ∈ I, and D be an
ultrafilter on I. Then

∏
DMi is called an ultrapower and there is a natural map

∆ : M →
∏

DM via ∆(a) = [(a0, a1, a2, ...)]D. In other words, an element a in
M is mapped to equivalence class of the constant function fa where for any i ∈ I,
fa(i) = a.

Example 2.6. Let I = ω, Mi = (N, <) for each i < ω, and D be an ultrafilter on
I which extends the confinite filter. Then

(1) We notice that there are elements in
∏

DMi which are larger than every
standard natural numbers, e.g. [(0, 1, 2, 3, 4, ...)]D.
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(2)
∏

DMi has no greatest elements since {i ∈ I : Mi |= ∀x∃y(x < y)} ∈ D.
(3) We notice that

∏
DMi is not well-ordered: Consider the sequence

[(0, 1, 2, 3, 4, 5, ...)]D > [(0, 0, 1, 2, 3, 4, ...)]D > [(0, 0, 0, 1, 2, 3)]D...

Example 2.7. Consider the theory of algebraically closed fields of characteristic p
(ACFp) in the language Lring = {+,×, 0, 1}. These theories say

(1) The structure is a field.
(2) The structure is algebraically closed (i.e., every polynomial has a solution).
(3) 1 + ....+ 1︸ ︷︷ ︸

p−times

= 0

For each prime p, we let Fp |= ACFp. Then
∏

D Fp |= ACF0. More generically,
one can prove that

∏
D Fp ≡ (C; +,×, 0, 1).


