PKU MODEL THEORY NOTES

KYLE GANNON

1. Ultrafilters

Definition 1.1. Let I be an indexing set and $\mathcal{P}(I)$ denote the power set of I. A filter \mathcal{F} (on I) is a non-empty subset of $\mathcal{P}(I)$ with the following properties:

- (1) $\emptyset \notin \mathcal{F}$.
- (2) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
- (3) If $B \supseteq A$ and $A \in \mathcal{F}$, then $B \in \mathcal{F}$.

The following facts are easy to check.

Fact 1.2. Let I be an indexing set and \mathcal{F} is a filter on I.

(1) For any finite collections $A_1, ..., A_n \in \mathcal{F}, \bigcap_{i=1}^n A_i \in \mathcal{F}$. (2) $I \in \mathcal{F}$.

Example 1.3. Let $I = \mathbb{N}$.

- (1) For any $a \in \mathbb{N}$, we let $D_a = \{X \subseteq \mathbb{N} : a \in X\}$. D_a is a filter. Filters of this form are called *principal*.
- (2) Let $\mathcal{F}_{cofinite} = \{X \subseteq \mathbb{N} : |\mathbb{N} \setminus X| < \aleph_0\}$. This is a filter and is known as the cofinite-filter or the *Frechet* filter.

Definition 1.4. Let I be an indexing set and let \mathcal{F} be a filter on I. We say that F is an ultrafilter on I if for every $X \subseteq I$, either $X \in \mathcal{F}$ or $I \setminus X \in \mathcal{F}$.

Proposition 1.5. Suppose that \mathcal{F} is a filter on I. Suppose that $A \subset \mathbb{N}$ such that $A \notin \mathcal{F} \text{ and } I \setminus A \notin \mathcal{F}.$ Let $\mathcal{F}_A = \{B \cap A : B \in \mathcal{F}\}.$ Let $\overline{\mathcal{F}_A} = \{C : \exists E \in \mathcal{F}_A \text{ such } V\}$ that $C \supseteq E$. Then

- (1) $F \subset \overline{\mathcal{F}_A}$. (2) $\overline{\mathcal{F}_A}$ is a filter on I.

Proof. Suppose that $C \in \mathcal{F}$. Then $C \supseteq C \cap A$ and so $C \in \overline{\mathcal{F}_A}$. Moreover, $A \in \overline{\mathcal{F}_A}$, but $A \notin F$ by assumption. Hence $F \subsetneq \overline{\mathcal{F}_A}$.

We now show that \mathcal{F}_A is a filter.

- (1) Suppose that $\emptyset \in \overline{\mathcal{F}_A}$. Then $\emptyset \in \mathcal{F}_A$. Hence there exists some $B \in \mathcal{F}$ such that $B \cap A = \emptyset$. Then $I \setminus A \supset B$ which implies that $I \setminus A \in F$. This contradicts our assumption.
- (2) Suppose that $C_1, C_2 \in \overline{\mathcal{F}_A}$. Then there exists $B_1, B_2 \in \mathcal{F}$ such that $C_1 \supseteq$ $B_1 \cap A$ and $C_2 \supseteq B_2 \cap A$. Then $B_1 \cap B_2 \in \mathcal{F}$ and $C_1 \cap C_2 \supseteq (B_1 \cap B_2) \cap A$. By construction, $C_1 \cap C_2 \in \overline{\mathcal{F}_A}$.
- (3) Suppose that $C_1 \in \overline{\mathcal{F}_A}$ and $C_2 \supseteq C_1$. Then there exists $B \in \mathcal{F}$ such that $C_1 \supseteq B \cap A$. So $C_2 \supseteq B \cap A$ and therefore $C_2 \in \overline{\mathcal{F}_A}$.

Hence $\overline{\mathcal{F}_A}$ is a filter.

KYLE GANNON

Theorem 1.6. Let I be an indexing set and suppose that \mathcal{F} is a filter on I. Then there exists an ultrafilter D on I such that $\mathcal{F} \subseteq D$.

Proof. This follows from an application of Zorn's lemma. Consider (\mathcal{G}, \subseteq) where $\mathcal{G} = \{D : D \text{ is a filter over } I \text{ and } D \supseteq \mathcal{F}\}$. Let (\mathcal{C}, \subseteq) be a chain in this partial order. We need to show that this chain has an upper bound. Consider the set $H = \bigcup_{D \in \mathcal{C}} D$. We claim that $H \in \mathcal{G}$ and H is an upper bound for C. It suffices to show that H is a filter.

- (1) Suppose that $\emptyset \in H$. Then there exists some $D \in \mathcal{C}$ such that $\emptyset \in D$, but this is a contradiction since D is a filter. Hence $\emptyset \notin H$.
- (2) Suppose that $A_1, A_2 \in H$. Then there exists some $D \in \mathcal{C}$ such that $A_1, A_2 \in D$. Then $A_1 \cap A_2 \in D$ which implies $A_1 \cap A_2 \in H$.
- (3) Suppose that $A_1 \supseteq A_2$ and $A_2 \in H$. Then there is some $D \in \mathcal{C}$ such that $A_2 \in D$. So $A_1 \in D$ and so $A_1 \in H$.

By Zorn's lemma, there exists a maximal element $K \in \mathcal{G}$. Since $K \in \mathcal{G}$, we know that $F \subseteq K$. We claim that K is an ultrafilter. Assume not. Then there exists some $A \subseteq I$ such that $A \notin K$ and $I \setminus A \notin K$. By the previous proposition $\overline{K_A}$ is a filter which properly extends K. Thus K is not maximal and so we have a contradiction.

Definition 1.7. Let *I* be an indexing set and *D* be an ultrafilter on *I*. We say that *D* is a principle ultrafilter if there exists some $i \in I$ such that $D = D_i = \{X \subseteq I : i \in X\}$. Otherwise, we say that *D* is non-principle.

Proposition 1.8. Suppose that I is finite. Then every ultrafilter on I is principle.

Proposition 1.9. Suppose that I is infinite. Then there exists a non-principle ultrafilter on I. Moreover, if D is a non-principle ultrafilter on I, then D contains every cofinite set, i.e. for any $X \subseteq I$ such that $|I \setminus X| < \aleph_0$, $X \in D$.

2. Ultraproducts

Definition 2.1. Let I be an indexing set and $(M_i)_{i \in I}$ an indexed family of \mathcal{L} structures. We consider the product $\prod_{i \in I} M_i$. Notice that every element in $\prod_{i \in I} M_i$ can be thought of as a function $f : I \to \bigcup_{i \in I} M_i$ where $f(i) \in M_i$.
Elements of $\prod_{i \in I} M_i$ can also be thought of as sequences of points $(a_1, a_2, a_3, ...)$ where each $a_i \in M_i$.

Now let D be a filter on I. We define a relation \sim_D on $\prod_{i \in I} M_i$ where $f \sim_D g$ if and only if $\{i \in I : f(i) = g(i)\} \in D$.

Proposition 2.2. Let I be an indexing set, $(M_i)_{i \in I}$ an indexed family of \mathcal{L} -structures, and D be a filter on I. Then \sim_D is an equivalence relation on $\prod_{i \in I} M_i$.

 \square

Definition 2.3. Let *I* be an indexing set, $(M_i)_{i \in I}$ an indexed family of \mathcal{L} -structures, and *D* be an ultrafilter on *I*. We let $\prod_D M_i = \prod_{i \in I} M_i / \sim_D$. In other words, if $[f]_D = \{g \in \prod_{i \in I} M_i : f \sim_D g\}$, then $\prod_D M_i = \{[f]_D : f \in \prod_{i \in I} M_i\}$. $\prod_D M_i$ is an \mathcal{L} -structure with the following interpretations of \mathcal{L} -symbols (for ease of notation, we let $N = \prod_D M_i$):

(1) Let R be an n-ary relation symbol. Then $([f_1]_D, ..., [f_n]_D) \in \mathbb{R}^N$ if and only if $\{i \in I : (f_1(i), ..., f_n(i)) \in \mathbb{R}^{M_i}\} \in D$.

- (2) Let G be an n-ary function symbols. Then $G^{N}([f_{1}]_{D},...,[f_{n}]_{D}) = [h]_{D}$ where $h(i) = G^{M_{i}}(f_{1}(i),...,f_{n}(i)).$
- (3) Let c be a constant symbol. Then $c^N = [f_c]_D$ where $f_c(i) = c^{M_i}$.

The structure $\prod_D M_i$ is called an ultraproduct.

Theorem 2.4 (Loś's Theorem). Let I be an indexing set, D an ultrafilter on I, $(M_i)_{i \in I}$ an indexed family of \mathcal{L} -structures, and $f_1, ..., f_n \in \prod_{i \in I} M_i$. Then for any \mathcal{L} -formula $\varphi(x_1, ..., x_n)$,

$$\prod_{D} M_i \models \varphi([f_1]_D, ..., [f_n]_D) \iff \{i \in I : M_i \models \varphi(f_1(i), ..., f_n(i))\} \in D.$$

Moreover, for any \mathcal{L} -sentence φ , we have that

$$\prod_{D} M_i \models \varphi \iff \{i \in I : M_i \models \varphi\} \in D.$$

Proof. Induction hypothesis: Suppose the condition holds for $\psi(x_1, ..., x_n)$ and $\theta(x_1, ..., x_n)$.

Conjunction: Follows from intersection part.

$$\begin{split} &\prod_{D} M_{i} \models \psi([f_{1}]_{D}, ..., [f_{n}]_{D}) \land \theta([f_{1}]_{D}, ..., [f_{n}]_{D}) \\ &\iff \prod_{D} M_{i} \models \psi([f_{1}]_{D}, ..., [f_{n}]_{D}) \text{ and } \prod_{D} M_{i} \models \theta([f_{1}]_{D}, ..., [f_{n}]_{D}) \\ &\iff \{i \in I : M_{i} \models \psi(f_{1}(i), ..., f_{n}(i))\} \in D \text{ and } \{i \in I : M_{i} \models \psi(f_{1}(i), ..., f_{n}(i))\} \in D \\ &\iff \{i \in I : M_{i} \models \psi(f_{1}(i), ..., f_{n}(i))\} \cap \{i \in I : M_{i} \models \psi(f_{1}(i), ..., f_{n}(i))\} \in D \\ &\iff \{i \in I : M_{i} \models \psi(f_{1}(i), ..., f_{n}(i)) \land \psi(f_{1}(i), ..., f_{n}(i))\} \in D \end{split}$$

Negation: Check.

Existential quantifier: We want to show that the statement holds for $\exists x_1 \psi(x_1, ..., x_n)$.

$$\prod_{D} M_i \models \exists x_1 \psi(x_1, [f_2]_D, ..., [f_n]_D) \iff \prod_{D} M_i \models \psi([g]_D, [f_2]_D, ..., [f_n]_D)$$
$$\iff \{i \in I : M_i \models \psi(g(i), f_2(i), ..., f_n(i))\} \in D$$
$$\iff \{i \in I : M_i \models \exists x \psi(x, f_2(i), ..., f_n(i))\} \in D.$$

Last if and only if forward direction is trivial, backwards direction "relies on the Axiom of choice". $\hfill \Box$

Definition 2.5. Let I be an indexing set, $M_i = M$ for every $i \in I$, and D be an ultrafilter on I. Then $\prod_D M_i$ is called an ultrapower and there is a natural map $\Delta : M \to \prod_D M$ via $\Delta(a) = [(a_0, a_1, a_2, \ldots)]_D$. In other words, an element a in M is mapped to equivalence class of the constant function f_a where for any $i \in I$, $f_a(i) = a$.

Example 2.6. Let $I = \omega$, $M_i = (\mathbb{N}, <)$ for each $i < \omega$, and D be an ultrafilter on I which extends the confinite filter. Then

(1) We notice that there are elements in $\prod_D M_i$ which are larger than every standard natural numbers, e.g. $[(0, 1, 2, 3, 4, ...)]_D$.

KYLE GANNON

- (2) $\prod_D M_i$ has no greatest elements since $\{i \in I : M_i \models \forall x \exists y (x < y)\} \in D$. (3) We notice that $\prod_D M_i$ is not well-ordered: Consider the sequence

 $[(0, 1, 2, 3, 4, 5, \ldots)]_D > [(0, 0, 1, 2, 3, 4, \ldots)]_D > [(0, 0, 0, 1, 2, 3)]_D \ldots$

Example 2.7. Consider the theory of algebraically closed fields of characteristic p (ACF_p) in the language $\mathcal{L}_{ring} = \{+, \times, 0, 1\}$. These theories say

- (1) The structure is a field.
- (2) The structure is algebraically closed (i.e., every polynomial has a solution).
- (3) $1 + \dots + 1 = 0$ p-times

4

For each prime p, we let $\mathbf{F}_p \models ACF_p$. Then $\prod_D \mathbf{F}_p \models ACF_0$. More generically, one can prove that $\prod_D \mathbf{F}_p \equiv (\mathbb{C}; +, \times, 0, 1)$.