PKU MODEL THEORY NOTES

KYLE GANNON

1. ULTRAFILTERS

Definition 1.1. Let I be an indexing set and P(I) denote the power set of I. A
filter F (on I) is a non-empty subset of P(I) with the following properties:

(1) 0 g F.

(2) If A,B € F, then ANB € F.

(3) f BD Aand A € F, then B € F.

The following facts are easy to check.

Fact 1.2. Let I be an indexing set and F is a filter on I.

(1) For any finite collections Ay, ..., A, € F, iz, Ai € F.
(2) IeF.

Example 1.3. Let I =N.

(1) For any a € N, welet D, ={X CN:a € X}. D, is a filter. Filters of this
form are called principal.

(2) Let Feofinite = {X C N: |[N\X| < No}. This is a filter and is known as the
cofinite-filter or the Frechet filter.

Definition 1.4. Let I be an indexing set and let F be a filter on I. We say that
F is an ultrafilter on I if for every X C I, either X € F or I\X € F.

Proposition 1.5. Suppose that F is a filter on I. Suppose that A C N such that
AgdF and NA¢ F. Let FA={BNA:BecF}. Lt F4 ={C :3E € Fa such
that C O E}. Then

(1) F C Fa.

(2) Fa is a filter on I.

Proof. Suppose that C € . Then C 2 C N A and so C € Fa. Moreover, A € Fy,
but A ¢ F by assumption. Hence F' C Fy.
We now show that F4 is a filter.

(1) Suppose that ) € F4. Then @ € F4. Hence there exists some B € F
such that BN A = . Then I\A 2 B which implies that I\A € F. This
contradicts our assumption.

(2) Suppose that C;,Cy € F4. Then there exists By, By € F such that C; D
BiNAand Cy D BoNA. Then BiNBy € F and C1NCy D (BlﬁBg)ﬂA
By construction, C; N Cy € Fa.

(3) Suppose that C; € F4 and Co O Cy. Then there exists B € F such that
Cy D BNA. SoCy D BN A and therefore Cy € F4.

Hence F4 is a filter. O
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Theorem 1.6. Let I be an indexing set and suppose that F is a filter on I. Then
there exists an ultrafilter D on I such that F C D.

Proof. This follows from an application of Zorn’s lemma. Consider (G, C) where
G ={D : D is afilter over I and D O F}. Let (C,C) be a chain in this partial
order. We need to show that this chain has an upper bound. Consider the set
H = Upee D. We claim that H € G and H is an upper bound for C. It suffices to
show that H is a filter.

(1) Suppose that § € H. Then there exists some D € C such that () € D, but
this is a contradiction since D is a filter. Hence ) ¢ H.

(2) Suppose that Ay, Ay € H. Then there exists some D € C such that Ay, A €
D. Then A1 N As € D which implies A1 N A; € H.

(3) Suppose that A; O Ay and Ay € H. Then there is some D € C such that
A, € D. So Ay € Dandso A; € H.

By Zorn’s lemma, there exists a maximal element K € G. Since K € G, we know
that F© C K. We claim that K is an ultrafilter. Assume not. Then there exists
some A C I such that A ¢ K and I\A ¢ K. By the previous proposition K 4
is a filter which properly extends K. Thus K is not maximal and so we have a
contradiction. (]

Definition 1.7. Let I be an indexing set and D be an ultrafilter on I. We say
that D is a principle ultrafilter if there exists some ¢ € I such that D = D; = {X C
I:4i € X}. Otherwise, we say that D is non-principle.

Proposition 1.8. Suppose that I is finite. Then every ultrafilter on I is principle.

Proposition 1.9. Suppose that I is infinite. Then there exists a non-principle
ultrafilter on I. Moreover, if D is a non-principle ultrafilter on I, then D contains
every cofinite set, i.e. for any X C I such that |[I\X| < Ng, X € D.

2. ULTRAPRODUCTS

Definition 2.1. Let I be an indexing set and (M;);c; an indexed family of £-
structures. We consider the product [];,.; M;. Notice that every element in
[I;c; M; can be thought of as a function f : I — J;c; M; where f(i) € M;.
Elements of J],.; M; can also be thought of as sequences of points (a1, as,as, ...)
where each a; € M,;.

Now let D be a filter on I. We define a relation ~p on []

if and only if {i € I : f(i) =g(i)} € D.

el M; where f ~p g

Proposition 2.2. Let I be an indexing set, (M;)ic; an indexed family of L-

structures, and D be a filter on I. Then ~p is an equivalence relation on [[;c; M;.

Proof. Exercise. U

Definition 2.3. Let I be an indexing set, (M;);cs an indexed family of L-structures,
and D be an ultrafilter on I. We let [, M; = [[,c; Mi/ ~p. In other words, if
[flp ={g9 € ILie; Mi : f ~p g}, then [T My = {[f]p : f € [1;¢; Mi}- [Ip M is
an L-structure with the following interpretations of £-symbols (for ease of notation,
we let N =], M;):
(1) Let R be an n-ary relation symbol. Then ([fi]p,...,[fn]p) € RN if and
only if {i € I : (fi(i),..., fn(i)) € RMi} € D.
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(2) Let G be an n-ary function symbols. Then GV ([filp, ..., [fulp) = [hlD
where h(i) = GMi(f1(i), ..., fa(i)).
(3) Let ¢ be a constant symbol. Then ¢V = [f.]p where f.(i) = ¢M:.

The structure [[,, M; is called an ultraproduct.

Theorem 2.4 (Lo$’s Theorem). . Let I be an indexing set, D an ultrafilter on I,
(M;)ier an indexved family of L-structures, and fi, ..., fn € [[;c; Ms. Then for any
L-formula o(x1, ..., ),

[1Mi Ee(filp, - [fulp) == {i € 1: MiFE o(fi(0), ... fu(i))} € D.

Moreover, for any L-sentence ¢, we have that

[[MiEe < {icl:ME=y}eD.
D

Proof. Induction hypothesis: Suppose the condition holds for ¥(x1,...,x,) and
0(x1, ..y ).

Conjunction: Follows from intersection part.

[ M Ew((filp, - [falp) A6, s [fulD)
D

= [IM: oAl [falp) and [T Mi 0 fi]ps s [falD)
D D

e {0 €T My O(fi(), oo fu@)} € D and {i € T2 M; = (fi(0), o fu(i))} € D
= [ €T My = G(Fu), oo fuD)} N {i € T2 My = (f1(0)s s Juli))} € D
= [ €1 My = (1), e fulD) AG(F1()s o fuli))} € D

Negation: Check.

Existential quantifier: We want to show that the statement holds for Iz1¢(x1, ..., ).

110 = 3w (@, [folps o [falp) <= [ Mi = ¢(lg]ps (2l s [fal D)

= {iel: Mil=y(9(i), fa(i), .. fuli))} € D
— {iel: M; Iz, fo(i), ..., fu(i)} € D.

Last if and only if forward direction is trivial, backwards direction “relies on the
Axiom of choice”. O

Definition 2.5. Let I be an indexing set, M; = M for every ¢ € I, and D be an
ultrafilter on I. Then [],, M; is called an ultrapower and there is a natural map
A M — [, M via A(a) = [(ao,a1,a2,...)]p. In other words, an element a in
M is mapped to equivalence class of the constant function f, where for any ¢ € I,

fa(i) = a.
Example 2.6. Let [ =w, M; = (N, <) for each i < w, and D be an ultrafilter on
I which extends the confinite filter. Then

(1) We notice that there are elements in [], M; which are larger than every
standard natural numbers, e.g. [(0,1,2,3,4,...)]p.
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(2) TIp M; has no greatest elements since {i € I : M; = Va3y(xz < y)} € D.
(3) We notice that [[, M; is not well-ordered: Consider the sequence

[(0,1,2,3,4,5,...)]p > [(0,0,1,2,3,4,...)]p > [(0,0,0,1,2,3)]p...
Example 2.7. Consider the theory of algebraically closed fields of characteristic p
(ACF,) in the language L,y = {+, x,0,1}. These theories say

(1) The structure is a field.

(2) The structure is algebraically closed (i.e., every polynomial has a solution).
3)1+...41=0
—_———
p—times
For each prime p, we let F, = ACF,. Then [[,F, = ACF,. More generically,
one can prove that [[, F, = (C;+, x,0,1).



