PKU MODEL THEORY NOTES

KYLE GANNON

1. Ultrafilters

Definition 1.1. Let I be an indexing set and $\mathcal{P}(I)$ denote the power set of I. A filter \mathcal{F} (on I) is a non-empty subset of $\mathcal{P}(I)$ with the following properties:
(1) $\emptyset \notin \mathcal{F}$.
(2) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
(3) If $B \supseteq A$ and $A \in \mathcal{F}$, then $B \in \mathcal{F}$.

The following facts are easy to check.
Fact 1.2. Let I be an indexing set and \mathcal{F} is a filter on I.
(1) For any finite collections $A_{1}, \ldots, A_{n} \in \mathcal{F}, \bigcap_{i=1}^{n} A_{i} \in \mathcal{F}$.
(2) $I \in \mathcal{F}$.

Example 1.3. Let $I=\mathbb{N}$.
(1) For any $a \in \mathbb{N}$, we let $D_{a}=\{X \subseteq \mathbb{N}: a \in X\} . D_{a}$ is a filter. Filters of this form are called principal.
(2) Let $\mathcal{F}_{\text {cofinite }}=\left\{X \subseteq \mathbb{N}:|\mathbb{N} \backslash X|<\aleph_{0}\right\}$. This is a filter and is known as the cofinite-filter or the Frechet filter.

Definition 1.4. Let I be an indexing set and let \mathcal{F} be a filter on I. We say that F is an ultrafilter on I if for every $X \subseteq I$, either $X \in \mathcal{F}$ or $I \backslash X \in \mathcal{F}$.

Proposition 1.5. Suppose that \mathcal{F} is a filter on I. Suppose that $A \subset \mathbb{N}$ such that $A \notin \mathcal{F}$ and $I \backslash A \notin \mathcal{F}$. Let $\mathcal{F}_{A}=\{B \cap A: B \in \mathcal{F}\}$. Let $\overline{\mathcal{F}_{A}}=\left\{C: \exists E \in \mathcal{F}_{A}\right.$ such that $C \supseteq E\}$. Then
(1) $F \subset \overline{\mathcal{F}_{A}}$.
(2) $\overline{\mathcal{F}_{A}}$ is a filter on I.

Proof. Suppose that $C \in \mathcal{F}$. Then $C \supseteq C \cap A$ and so $C \in \overline{\mathcal{F}_{A}}$. Moreover, $A \in \overline{\mathcal{F}_{A}}$, but $A \notin F$ by assumption. Hence $F \subsetneq \overline{\mathcal{F}_{A}}$.

We now show that $\overline{\mathcal{F}_{A}}$ is a filter.
(1) Suppose that $\emptyset \in \overline{\mathcal{F}_{A}}$. Then $\emptyset \in \mathcal{F}_{A}$. Hence there exists some $B \in \mathcal{F}$ such that $B \cap A=\emptyset$. Then $I \backslash A \supseteq B$ which implies that $I \backslash A \in F$. This contradicts our assumption.
(2) Suppose that $C_{1}, C_{2} \in \overline{\mathcal{F}_{A}}$. Then there exists $B_{1}, B_{2} \in \mathcal{F}$ such that $C_{1} \supseteq$ $B_{1} \cap A$ and $C_{2} \supseteq B_{2} \cap A$. Then $B_{1} \cap B_{2} \in \mathcal{F}$ and $C_{1} \cap C_{2} \supseteq\left(B_{1} \cap B_{2}\right) \cap A$. By construction, $C_{1} \cap C_{2} \in \overline{\mathcal{F}_{A}}$.
(3) Suppose that $C_{1} \in \overline{\mathcal{F}_{A}}$ and $C_{2} \supseteq C_{1}$. Then there exists $B \in \mathcal{F}$ such that $C_{1} \supseteq B \cap A$. So $C_{2} \supseteq B \cap A$ and therefore $C_{2} \in \overline{\mathcal{F}_{A}}$.
Hence $\overline{\mathcal{F}_{A}}$ is a filter.

Theorem 1.6. Let I be an indexing set and suppose that \mathcal{F} is a filter on I. Then there exists an ultrafilter D on I such that $\mathcal{F} \subseteq D$.
Proof. This follows from an application of Zorn's lemma. Consider (\mathcal{G}, \subseteq) where $\mathcal{G}=\{D: D$ is a filter over I and $D \supseteq \mathcal{F}\}$. Let (\mathcal{C}, \subseteq) be a chain in this partial order. We need to show that this chain has an upper bound. Consider the set $H=\bigcup_{D \in \mathcal{C}} D$. We claim that $H \in \mathcal{G}$ and H is an upper bound for C. It suffices to show that H is a filter.
(1) Suppose that $\emptyset \in H$. Then there exists some $D \in \mathcal{C}$ such that $\emptyset \in D$, but this is a contradiction since D is a filter. Hence $\emptyset \notin H$.
(2) Suppose that $A_{1}, A_{2} \in H$. Then there exists some $D \in \mathcal{C}$ such that $A_{1}, A_{2} \in$ D. Then $A_{1} \cap A_{2} \in D$ which implies $A_{1} \cap A_{2} \in H$.
(3) Suppose that $A_{1} \supseteq A_{2}$ and $A_{2} \in H$. Then there is some $D \in \mathcal{C}$ such that $A_{2} \in D$. So $A_{1} \in D$ and so $A_{1} \in H$.
By Zorn's lemma, there exists a maximal element $K \in \mathcal{G}$. Since $K \in \mathcal{G}$, we know that $F \subseteq K$. We claim that K is an ultrafilter. Assume not. Then there exists some $A \subseteq I$ such that $A \notin K$ and $I \backslash A \notin K$. By the previous proposition $\overline{K_{A}}$ is a filter which properly extends K. Thus K is not maximal and so we have a contradiction.

Definition 1.7. Let I be an indexing set and D be an ultrafilter on I. We say that D is a principle ultrafilter if there exists some $i \in I$ such that $D=D_{i}=\{X \subseteq$ $I: i \in X\}$. Otherwise, we say that D is non-principle.

Proposition 1.8. Suppose that I is finite. Then every ultrafilter on I is principle.
Proposition 1.9. Suppose that I is infinite. Then there exists a non-principle ultrafilter on I. Moreover, if D is a non-principle ultrafilter on I, then D contains every cofinite set, i.e. for any $X \subseteq I$ such that $|I \backslash X|<\aleph_{0}, X \in D$.

2. Ultraproducts

Definition 2.1. Let I be an indexing set and $\left(M_{i}\right)_{i \in I}$ an indexed family of \mathcal{L} structures. We consider the product $\prod_{i \in I} M_{i}$. Notice that every element in $\prod_{i \in I} M_{i}$ can be thought of as a function $f: I \rightarrow \bigcup_{i \in I} M_{i}$ where $f(i) \in M_{i}$. Elements of $\prod_{i \in I} M_{i}$ can also be thought of as sequences of points $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ where each $a_{i} \in M_{i}$.

Now let D be a filter on I. We define a relation \sim_{D} on $\prod_{i \in I} M_{i}$ where $f \sim_{D} g$ if and only if $\{i \in I: f(i)=g(i)\} \in D$.
Proposition 2.2. Let I be an indexing set, $\left(M_{i}\right)_{i \in I}$ an indexed family of \mathcal{L} structures, and D be a filter on I. Then \sim_{D} is an equivalence relation on $\prod_{i \in I} M_{i}$.
Proof. Exercise.
Definition 2.3. Let I be an indexing set, $\left(M_{i}\right)_{i \in I}$ an indexed family of \mathcal{L}-structures, and D be an ultrafilter on I. We let $\prod_{D} M_{i}=\prod_{i \in I} M_{i} / \sim_{D}$. In other words, if $[f]_{D}=\left\{g \in \prod_{i \in I} M_{i}: f \sim_{D} g\right\}$, then $\prod_{D} M_{i}=\left\{[f]_{D}: f \in \prod_{i \in I} M_{i}\right\} . \prod_{D} M_{i}$ is an \mathcal{L}-structure with the following interpretations of \mathcal{L}-symbols (for ease of notation, we let $N=\prod_{D} M_{i}$):
(1) Let R be an n-ary relation symbol. Then $\left(\left[f_{1}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right) \in R^{N}$ if and only if $\left\{i \in I:\left(f_{1}(i), \ldots, f_{n}(i)\right) \in R^{M_{i}}\right\} \in D$.
(2) Let G be an n-ary function symbols. Then $G^{N}\left(\left[f_{1}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right)=[h]_{D}$ where $h(i)=G^{M_{i}}\left(f_{1}(i), \ldots, f_{n}(i)\right)$.
(3) Let c be a constant symbol. Then $c^{N}=\left[f_{c}\right]_{D}$ where $f_{c}(i)=c^{M_{i}}$.

The structure $\prod_{D} M_{i}$ is called an ultraproduct.
Theorem 2.4 (Loś's Theorem). . Let I be an indexing set, D an ultrafilter on I, $\left(M_{i}\right)_{i \in I}$ an indexed family of \mathcal{L}-structures, and $f_{1}, \ldots, f_{n} \in \prod_{i \in I} M_{i}$. Then for any \mathcal{L}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$,

$$
\prod_{D} M_{i} \models \varphi\left(\left[f_{1}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right) \Longleftrightarrow\left\{i \in I: M_{i} \models \varphi\left(f_{1}(i), \ldots, f_{n}(i)\right)\right\} \in D .
$$

Moreover, for any \mathcal{L}-sentence φ, we have that

$$
\prod_{D} M_{i} \models \varphi \Longleftrightarrow\left\{i \in I: M_{i} \models \varphi\right\} \in D .
$$

Proof. Induction hypothesis: Suppose the condition holds for $\psi\left(x_{1}, \ldots, x_{n}\right)$ and $\theta\left(x_{1}, \ldots, x_{n}\right)$.

Conjunction: Follows from intersection part.

$$
\begin{aligned}
& \prod_{D} M_{i} \models \psi\left(\left[f_{1}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right) \wedge \theta\left(\left[f_{1}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right) \\
& \Longleftrightarrow \prod_{D} M_{i} \models \psi\left(\left[f_{1}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right) \text { and } \prod_{D} M_{i} \models \theta\left(\left[f_{1}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right) \\
& \Longleftrightarrow\left\{i \in I: M_{i} \models \psi\left(f_{1}(i), \ldots, f_{n}(i)\right)\right\} \in D \text { and }\left\{i \in I: M_{i} \models \psi\left(f_{1}(i), \ldots, f_{n}(i)\right)\right\} \in D \\
& \Longleftrightarrow\left\{i \in I: M_{i} \models \psi\left(f_{1}(i), \ldots, f_{n}(i)\right)\right\} \cap\left\{i \in I: M_{i}=\psi\left(f_{1}(i), \ldots, f_{n}(i)\right)\right\} \in D \\
& \Longleftrightarrow\left\{i \in I: M_{i} \models \psi\left(f_{1}(i), \ldots, f_{n}(i)\right) \wedge \psi\left(f_{1}(i), \ldots, f_{n}(i)\right)\right\} \in D
\end{aligned}
$$

Negation: Check.

Existential quantifier: We want to show that the statement holds for $\exists x_{1} \psi\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{aligned}
& \prod_{D} M_{i} \models \exists x_{1} \psi\left(x_{1},\left[f_{2}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right) \Longleftrightarrow \prod_{D} M_{i} \models \psi\left([g]_{D},\left[f_{2}\right]_{D}, \ldots,\left[f_{n}\right]_{D}\right) \\
& \Longleftrightarrow\left\{i \in I: M_{i} \models \psi\left(g(i), f_{2}(i), \ldots, f_{n}(i)\right)\right\} \in D \\
& \Longleftrightarrow\left\{i \in I: M_{i} \models \exists x \psi\left(x, f_{2}(i), \ldots, f_{n}(i)\right)\right\} \in D
\end{aligned}
$$

Last if and only if forward direction is trivial, backwards direction "relies on the Axiom of choice".

Definition 2.5. Let I be an indexing set, $M_{i}=M$ for every $i \in I$, and D be an ultrafilter on I. Then $\prod_{D} M_{i}$ is called an ultrapower and there is a natural map $\Delta: M \rightarrow \prod_{D} M$ via $\Delta(a)=\left[\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right]_{D}$. In other words, an element a in M is mapped to equivalence class of the constant function f_{a} where for any $i \in I$, $f_{a}(i)=a$.
Example 2.6. Let $I=\omega, M_{i}=(\mathbb{N},<)$ for each $i<\omega$, and D be an ultrafilter on I which extends the confinite filter. Then
(1) We notice that there are elements in $\prod_{D} M_{i}$ which are larger than every standard natural numbers, e.g. $[(0,1,2,3,4, \ldots)]_{D}$.
(2) $\prod_{D} M_{i}$ has no greatest elements since $\left\{i \in I: M_{i} \models \forall x \exists y(x<y)\right\} \in D$.
(3) We notice that $\prod_{D} M_{i}$ is not well-ordered: Consider the sequence

$$
[(0,1,2,3,4,5, \ldots)]_{D}>[(0,0,1,2,3,4, \ldots)]_{D}>[(0,0,0,1,2,3)]_{D} \ldots
$$

Example 2.7. Consider the theory of algebraically closed fields of characteristic p $\left(A C F_{p}\right)$ in the language $\mathcal{L}_{\text {ring }}=\{+, \times, 0,1\}$. These theories say
(1) The structure is a field.
(2) The structure is algebraically closed (i.e., every polynomial has a solution).
(3) $\underbrace{1+\ldots+1}_{p-\text { times }}=0$

For each prime p, we let $\mathbf{F}_{p} \models A C F_{p}$. Then $\prod_{D} \mathbf{F}_{p} \models A C F_{0}$. More generically, one can prove that $\prod_{D} \mathbf{F}_{p} \equiv(\mathbb{C} ;+, \times, 0,1)$.

