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1. Quantifier Elimination

Definition 1.1. Let T be an L-theory. T admits quantifier elimination if for any
formula ϕ(x1, ..., xn), there exists a quantifier free formula ψϕ(x1, ..., xn) such that
T ` ∀x1...∀xn(ϕ(x1, ..., xn)↔ ψϕ(x1, ..., xn)).

Definition 1.2. A literal is an atomic formula or the negation of an atomic formula.

Fact 1.3. Let T be an L-theory and ψ(x1, ..., xn) be a quantifier free formula. Then
ψ(x1, ..., xn) is equivalent to

∨n
i=1

∧mi

ji=1 αji where each αi is a literal.

Lemma 1.4. Let T be an L-theory. Suppose that for every quantifier free formula
ψ(x, y1, ..., yn) of the form (α1 ∧ ... ∧ αm) where each αi is a literal, there exists a
quantifier free formula ψϕ(y1, ..., yn) such that T ` ∀y1, ..., yn(∃xϕ(x, y1, ..., yn) ↔
ψϕ(y1, ..., yn)). Then T admits quantifier elimination.

Proof. We want to show that all formulas are equivalent to quantifier free formulas,
given the hypothesis above. Base Case: Every atomic formula is equivalent to a
quantifier free formula (namely itself).

Induction Hypothesis: Suppose that θ(x1, ..., xn) and χ(x1, ..., xn) are formulas
such that

T ` ∀x1...∀xn(θ(x1, ..., xn)↔ ψθ(x1, ..., xn)),

and,
T ` ∀x1...∀xn(χ(x1, .., xn)↔ ψχ(x1, ..., xn))

where ψθ and ψχ are quantifier free.

Induction step:

1. Negation: ¬θ(x1, ..., xn) is equivalent to ¬ψθ(x1, ..., xn).

2. Conjunction: θ(x1, ..., xn)∧χ(x1, ..., xn) is equivalent to ψθ(x1, ..., xn)∧ψχ(x1, ..., xn).

3. Existential quantification: Consider ∃x1θ(x1, ..., xn). Notice that

∃x1θ(x1, ..., xn)
(a)
≡ ∃x1ψθ(x1, ..., xn)

(b)
≡ ∃x1

 n∨
i=1

mi∧
ji=1

αji


(c)
≡

 n∨
i=1

∃x1
mi∧
ji=1

αji

 (d)
≡

n∨
i=1

γi

We provide the following details/justifications:

(a) Induction hypothesis.
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(b) Fact 1.3, ψθ(x1, ..., xn) is equivalent to
∨n
i=1

∧mi

ji=1 αji where each αi is a literal.

(c) Existential quantification commutes with disjunction.
(d) By our assumption, ∃x1

∧mi

j=1 αi is equivalent to γi where γi is a quantifier free
formula. �

Proposition 1.5. Suppose M is a substructure of N . For any quantifier-free for-
mula, ϕ(x1, ..., xn) and a1, ..., an ∈M , M |= ϕ(a1, ..., an) ⇐⇒ N |= ϕ(a1, ..., an).

Proof. For any term t = t(x1, ..., xn) where the variable of t are among {x1, ..., xn},
we let tM (a1, ..., an) be the unique element in M given by plugging ai in for xi for
each variable in t. We claim that tM (a1, ..., an) = tN (a1, ..., an) for any a1, ..., an ∈
M .

(1) If t is x, then tM (a) = a = tN (a).
(2) If t is c, then cM = cN (by substructure).
(3) Suppose that t1, ..., tm are terms and tMi (a1, ..., an) = tNi (a1, ..., an) for each

i ≤ m. Let f be an m-ary function and consider t = f(t1, ..., tm)(x1, ..., xn).
Then

tM (a1, ..., an) = fM (tM1 (a1, ..., an), ..., tMm (a1, ..., an))

= fN (tM1 (a1, ..., an), ..., tMm (a1, ..., an))

= fN (tN1 (a1, ..., an), ..., tNm(a1, ..., an)) = tN (a1, ..., an).

where the second equality follows from the definition of substructure.

Base Case: Let ϕ(x1, ..., xn) be an atomic formula. So ϕ(x1, ..., xn) isR(t1, ..., tm)(x1, ..., xn).
Now

M |= ϕ(a1, ..., an) ⇐⇒ M |= R(t1, ..., tm)(a1, ..., an)

⇐⇒ (tM1 (a1, ..., an), ..., tMm (a1, ..., an)) ∈ RM

⇐⇒ (tM1 (a1, ..., an), ..., tMm (a1, ..., an)) ∈ RN

⇐⇒ (tN1 (a1, ..., an), ..., tNm(a1, ..., an)) ∈ RN

⇐⇒ N |= R(t1, ..., tm)(a1, ..., an) ⇐⇒ N |= ϕ(a1, ..., an).

Induction Hypothesis: Suppose that θ(x1, ..., xn) and χ(x1, ..., xn) are quantifier
free formulas such that for any a1, ..., an ∈ M , M |= θ(a1, ..., an) ⇐⇒ N |=
θ(a1, ..., an) and M |= χ(a1, ..., an) ⇐⇒ N |= χ(a1, ..., an).

Induction Step: Need to check only negation and conjunction. Both cases are
straightforward. �

Theorem 1.6. Suppose that M,N |= T , M is a substructure of N and T admits
quantifier elimination. Then M � N .

Proof. Fix a formula ϕ(x1, ..., xn) and a1, ..., an ∈ M . By quantifier elimination,
we have that T ` ∀x1, ..., xn(ϕ(x̄) ↔ ψϕ(x̄)) where ψϕ(x̄) is quantifier free. Then
we have that

N |= ϕ(a1, ..., an) =⇒ N |= ψϕ(a1, ..., an)

=⇒ M |= ψϕ(a1, ..., an)

=⇒ M |= ϕ(a1, ..., an),

where the first and third implication follows from the fact that N,M |= T . The
second implication follows from the fact that M is a substructure of N . �
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Example 1.7. Let T be the theory of dense linear orderings without endpoints in
the language L = {<}. Then T admits quantifier elimination.

Proof. Consider the formula ϕ which is ∃x(β1 ∧ ... ∧ βn) where each βi is a literal.
Notice that each atomic formula is of the form u = v or u < v.

(1) Negation elimination:
(a) If βj = ¬(u < v), replace with (u = v) ∨ (v < u).
(b) If βj = ¬(u = v), replace with (u < v) ∨ (v < u).

(2) (check): After replacing the βi’s above, we can rewrite ∃x(β1 ∧ ... ∧ βn)
as ∃x

∨n
i=1

∧n
ji=1 αij where each αij is an atomic formula. This formula is

equivalent to
∨n
i=1 ∃x(

∧mi

ji=1 αij ). Hence it suffices to show that ∃x(
∧
ji
αij )

is equivalent to a quantifier free formula.
(3) Let γi = (

∧mi

ji=1 αij ). By the previous bullet, it suffices to show that ∃xγi
is equivalent to a quantifier free formula. We re-index γ and write it simply
as

∧m
i=1 αi. We now give an algorithm to convert γ to a quantifier free

formula.
(a) Check each αi: If αi is of the form x = x, we can remove it. Then

move to the next step.
(b) Check each αi. If αi does does not contain x, we can move it outside

the quantifier. If no αi contains x, we can simply remove the quantifier
and return “finished”. If we are not finished, move to the next step.

(c) Check each αi: If there exists αi of the form x = y, we can replace
every instance of x in γi with y and return “finished”. If we are not
finished, move to the next step.

(d) After doing the above, the remaining literals under the scope of our
quantifier are of the form x < x, y < x and x < y.

(i) If there exists some αi which is of the form x < x, we replace
γ with

∧
y∈F (γ) y 6= y where F (γ) are the free variables which

occur in γ.
(ii) We are left with the case where γ =

∧
η ∧ ∃x(

∧
j≤t yj < x ∧∧

l≤k x < yl) where η is a collection of atomic formulas with-

out any instance of x (this is the portion we move outside the
quantifier from step (b)). We claim that

∃xγ ≡
∧
η ∧ (

∧
j≤t,l≤k

yj < yl).

�

Theorem 1.8. (Q;<) ≺ (R;<).

Proof. Both (Q;<) and (R;<) are models of DLO, DLO admits quantifier elim-
ination, and (Q, <) is a substructure of (R <). Hence (Q, <) is an elementary
substructure of (R, <). �

Example 1.9. Let L = {+, 0}, M = (Z,+, 0) with the standard interpretations
and T = ThL(M). T does not admit quantifier elimination.


