PKU MODEL THEORY NOTES

KYLE GANNON

1. QUANTIFIER ELIMINATION

Definition 1.1. Let T be an \mathcal{L} -theory. T admits quantifier elimination if for any formula $\varphi(x_1, ..., x_n)$, there exists a quantifier free formula $\psi_{\varphi}(x_1, ..., x_n)$ such that $T \vdash \forall x_1 ... \forall x_n (\varphi(x_1, ..., x_n) \leftrightarrow \psi_{\varphi}(x_1, ..., x_n)).$

Definition 1.2. A literal is an atomic formula or the negation of an atomic formula.

Fact 1.3. Let T be an \mathcal{L} -theory and $\psi(x_1, ..., x_n)$ be a quantifier free formula. Then $\psi(x_1, ..., x_n)$ is equivalent to $\bigvee_{i=1}^n \bigwedge_{j_i=1}^{m_i} \alpha_{j_i}$ where each α_i is a literal.

Lemma 1.4. Let T be an \mathcal{L} -theory. Suppose that for every quantifier free formula $\psi(x, y_1, ..., y_n)$ of the form $(\alpha_1 \wedge ... \wedge \alpha_m)$ where each α_i is a literal, there exists a quantifier free formula $\psi_{\varphi}(y_1, ..., y_n)$ such that $T \vdash \forall y_1, ..., y_n(\exists x \varphi(x, y_1, ..., y_n) \leftrightarrow \psi_{\varphi}(y_1, ..., y_n))$. Then T admits quantifier elimination.

Proof. We want to show that all formulas are equivalent to quantifier free formulas, given the hypothesis above. Base Case: Every atomic formula is equivalent to a quantifier free formula (namely itself).

Induction Hypothesis: Suppose that $\theta(x_1, ..., x_n)$ and $\chi(x_1, ..., x_n)$ are formulas such that

$$T \vdash \forall x_1 \dots \forall x_n (\theta(x_1, \dots, x_n) \leftrightarrow \psi_{\theta}(x_1, \dots, x_n)),$$

and,

$$T \vdash \forall x_1 \dots \forall x_n (\chi(x_1, \dots, x_n) \leftrightarrow \psi_{\chi}(x_1, \dots, x_n))$$

where ψ_{θ} and ψ_{χ} are quantifier free.

Induction step:

1. Negation: $\neg \theta(x_1, ..., x_n)$ is equivalent to $\neg \psi_{\theta}(x_1, ..., x_n)$.

2. Conjunction: $\theta(x_1, ..., x_n) \land \chi(x_1, ..., x_n)$ is equivalent to $\psi_{\theta}(x_1, ..., x_n) \land \psi_{\chi}(x_1, ..., x_n)$.

3. Existential quantification: Consider $\exists x_1 \theta(x_1, ..., x_n)$. Notice that

$$\exists x_1 \theta(x_1, ..., x_n) \stackrel{(a)}{\equiv} \exists x_1 \psi_\theta(x_1, ..., x_n) \stackrel{(b)}{\equiv} \exists x_1 \left(\bigvee_{i=1}^n \bigwedge_{j_i=1}^{m_i} \alpha_{j_i} \right)$$
$$\stackrel{(c)}{\equiv} \left(\bigvee_{i=1}^n \exists x_1 \bigwedge_{j_i=1}^{m_i} \alpha_{j_i} \right) \stackrel{(d)}{\equiv} \bigvee_{i=1}^n \gamma_i$$

We provide the following details/justifications:

(a) Induction hypothesis.

KYLE GANNON

- (b) Fact 1.3, $\psi_{\theta}(x_1, ..., x_n)$ is equivalent to $\bigvee_{i=1}^n \bigwedge_{j_i=1}^{m_i} \alpha_{j_i}$ where each α_i is a literal.
- (c) Existential quantification commutes with disjunction.
- (d) By our assumption, $\exists x_1 \bigwedge_{j=1}^{m_i} \alpha_i$ is equivalent to γ_i where γ_i is a quantifier free formula.

Proposition 1.5. Suppose M is a substructure of N. For any quantifier-free formula, $\varphi(x_1, ..., x_n)$ and $a_1, ..., a_n \in M$, $M \models \varphi(a_1, ..., a_n) \iff N \models \varphi(a_1, ..., a_n)$.

Proof. For any term $t = t(x_1, ..., x_n)$ where the variable of t are among $\{x_1, ..., x_n\}$, we let $t^M(a_1, ..., a_n)$ be the unique element in M given by plugging a_i in for x_i for each variable in t. We claim that $t^M(a_1, ..., a_n) = t^N(a_1, ..., a_n)$ for any $a_1, ..., a_n \in M$.

- (1) If t is x, then $t^{M}(a) = a = t^{N}(a)$.
- (2) If t is c, then $c^M = c^N$ (by substructure).
- (3) Suppose that $t_1, ..., t_m$ are terms and $t_i^M(a_1, ..., a_n) = t_i^N(a_1, ..., a_n)$ for each $i \leq m$. Let f be an m-ary function and consider $t = f(t_1, ..., t_m)(x_1, ..., x_n)$. Then

$$\begin{aligned} t^{M}(a_{1},...,a_{n}) &= f^{M}(t_{1}^{M}(a_{1},...,a_{n}),...,t_{m}^{M}(a_{1},...,a_{n})) \\ &= f^{N}(t_{1}^{M}(a_{1},...,a_{n}),...,t_{m}^{M}(a_{1},...,a_{n})) \\ &= f^{N}(t_{1}^{N}(a_{1},...,a_{n}),...,t_{m}^{N}(a_{1},...,a_{n})) = t^{N}(a_{1},...,a_{n}). \end{aligned}$$

where the second equality follows from the definition of substructure.

Base Case: Let $\varphi(x_1, ..., x_n)$ be an atomic formula. So $\varphi(x_1, ..., x_n)$ is $R(t_1, ..., t_m)(x_1, ..., x_n)$. Now

$$\begin{split} M &\models \varphi(a_1, ..., a_n) \iff M \models R(t_1, ..., t_m)(a_1, ..., a_n) \\ \iff (t_1^M(a_1, ..., a_n), ..., t_m^M(a_1, ..., a_n)) \in R^M \\ \iff (t_1^M(a_1, ..., a_n), ..., t_m^M(a_1, ..., a_n)) \in R^N \\ \iff (t_1^N(a_1, ..., a_n), ..., t_m^N(a_1, ..., a_n)) \in R^N \\ \iff N \models R(t_1, ..., t_m)(a_1, ..., a_n) \iff N \models \varphi(a_1, ..., a_n). \end{split}$$

Induction Hypothesis: Suppose that $\theta(x_1, ..., x_n)$ and $\chi(x_1, ..., x_n)$ are quantifier free formulas such that for any $a_1, ..., a_n \in M$, $M \models \theta(a_1, ..., a_n) \iff N \models \theta(a_1, ..., a_n)$ and $M \models \chi(a_1, ..., a_n) \iff N \models \chi(a_1, ..., a_n)$.

Induction Step: Need to check only negation and conjunction. Both cases are straightforward. $\hfill \Box$

Theorem 1.6. Suppose that $M, N \models T$, M is a substructure of N and T admits quantifier elimination. Then $M \preceq N$.

Proof. Fix a formula $\varphi(x_1, ..., x_n)$ and $a_1, ..., a_n \in M$. By quantifier elimination, we have that $T \vdash \forall x_1, ..., x_n(\varphi(\bar{x}) \leftrightarrow \psi_{\varphi}(\bar{x}))$ where $\psi_{\varphi}(\bar{x})$ is quantifier free. Then we have that

$$N \models \varphi(a_1, ..., a_n) \implies N \models \psi_{\varphi}(a_1, ..., a_n)$$
$$\implies M \models \psi_{\varphi}(a_1, ..., a_n)$$
$$\implies M \models \varphi(a_1, ..., a_n),$$

where the first and third implication follows from the fact that $N, M \models T$. The second implication follows from the fact that M is a substructure of N.

 $\mathbf{2}$

Example 1.7. Let T be the theory of dense linear orderings without endpoints in the language $\mathcal{L} = \{<\}$. Then T admits quantifier elimination.

Proof. Consider the formula φ which is $\exists x(\beta_1 \land ... \land \beta_n)$ where each β_i is a literal. Notice that each atomic formula is of the form u = v or u < v.

- (1) Negation elimination:
 - (a) If $\beta_j = \neg(u < v)$, replace with $(u = v) \lor (v < u)$. (b) If $\beta_j = \neg(u = v)$, replace with $(u < v) \lor (v < u)$.
- (2) (check): After replacing the β_i 's above, we can rewrite $\exists x(\beta_1 \land \ldots \land \beta_n)$ as $\exists x \bigvee_{i=1}^n \bigwedge_{j_i=1}^n \alpha_{i_j}$ where each α_{i_j} is an atomic formula. This formula is equivalent to $\bigvee_{i=1}^n \exists x(\bigwedge_{j_i=1}^{m_i} \alpha_{i_j})$. Hence it suffices to show that $\exists x(\bigwedge_{j_i} \alpha_{i_j})$ is equivalent to a quantifier free formula.
- (3) Let $\gamma_i = (\bigwedge_{j_i=1}^{m_i} \alpha_{i_j})$. By the previous bullet, it suffices to show that $\exists x \gamma_i$ is equivalent to a quantifier free formula. We re-index γ and write it simply as $\bigwedge_{i=1}^{m} \alpha_i$. We now give an algorithm to convert γ to a quantifier free formula.
 - (a) Check each α_i : If α_i is of the form x = x, we can remove it. Then move to the next step.
 - (b) Check each α_i . If α_i does does not contain x, we can move it outside the quantifier. If no α_i contains x, we can simply remove the quantifier and return "finished". If we are not finished, move to the next step.
 - (c) Check each α_i : If there exists α_i of the form x = y, we can replace every instance of x in γ_i with y and return "finished". If we are not finished, move to the next step.
 - (d) After doing the above, the remaining literals under the scope of our quantifier are of the form x < x, y < x and x < y.
 - (i) If there exists some α_i which is of the form x < x, we replace γ with $\bigwedge_{y \in F(\gamma)} y \neq y$ where $F(\gamma)$ are the free variables which occur in γ .
 - (ii) We are left with the case where $\gamma = \bigwedge \eta \land \exists x (\bigwedge_{j \leq t} y_j < x \land \bigwedge_{l \leq k} x < y_l)$ where η is a collection of atomic formulas without any instance of x (this is the portion we move outside the quantifier from step (b)). We claim that

$$\exists x \gamma \equiv \bigwedge \eta \land (\bigwedge_{j \le t, l \le k} y_j < y_l).$$

Theorem 1.8. $(\mathbb{Q}; <) \prec (\mathbb{R}; <)$.

Proof. Both $(\mathbb{Q}; <)$ and $(\mathbb{R}; <)$ are models of DLO, DLO admits quantifier elimination, and $(\mathbb{Q}, <)$ is a substructure of $(\mathbb{R} <)$. Hence $(\mathbb{Q}, <)$ is an elementary substructure of $(\mathbb{R}, <)$.

Example 1.9. Let $\mathcal{L} = \{+, 0\}$, $M = (\mathbb{Z}, +, 0)$ with the standard interpretations and $T = Th_{\mathcal{L}}(M)$. T does not admit quantifier elimination.