HOMEWORK 1: DUE MARCH 5, IN CLASS.

1. Homework Problems

1. Let \mathcal{L} be a propositional language and φ an \mathcal{L}-sentence.
(i) Let $C(\varphi)$ be the total number of instance of logical connective which occur in φ, i.e. instances of $\vee, \wedge, \rightarrow \neg$.
(ii) Let $S(\varphi)$ be the total number of symbols which occur in φ.
(iii) Let $D(\varphi)$ be the total number of instance of binary connectives which occur in φ, i.e. instances of $\vee, \wedge, \rightarrow$.
(iv) Let $E(\varphi)$ be the total number of instances of atomic propositions which occur in φ.
E.g. if $\varphi=\left(\left(A_{1} \wedge A_{1}\right) \vee\left(\neg A_{1}\right)\right)$, then $S(\varphi)=12, C(\varphi)=3, D(\varphi)=2$, and $E(\varphi)=3$.
(1) Prove via structural induction that $D(\varphi)+1=E(\varphi)$
(2) Prove via structural induction that $S(\varphi) \geq 3 C(\varphi)$.
2. Let \mathcal{L} be a propositional language φ and θ be \mathcal{L}-formulas. We say that φ is logically equivalent to θ and write $\varphi \equiv \theta$ if for any \mathcal{L}-model $M, M \models \varphi$ if and only if $M \models \theta$.
(1) Prove (via structural induction) that any \mathcal{L}-sentence φ is logically equivalent to an \mathcal{L}-sentence θ where the only logical connectives occurring in θ are ' \neg ', ' \wedge '.
(2) Prove (via structural induction) that any \mathcal{L}-sentence φ is logically equivalent to an \mathcal{L}-sentence θ where the only logical connectives occurring in θ are ' \neg ', ' V '.
3. Let $\mathcal{L}=\left\{A_{i}: i \in \mathbb{N}\right\}$. Determine if the following sentences are valid, satisfiable, or not satisfiable. Justify your answer (a truth table is justification).
(1) $\left(\left(\neg\left(A_{1} \rightarrow A_{2}\right)\right) \rightarrow A_{1}\right)$.
(2) $\left(\left(\neg\left(A_{1} \rightarrow A_{2}\right)\right) \rightarrow A_{2}\right)$.
(3) $\left(\left(A_{1} \rightarrow\left(\neg A_{2}\right)\right) \rightarrow\left(A_{1} \wedge A_{2}\right)\right)$.
(4) $\left(\left(\left(A_{1} \vee A_{2}\right) \rightarrow\left(A_{3} \wedge A_{2}\right)\right) \vee\left(A_{2} \rightarrow A_{3}\right)\right)$.
4. Let $\mathcal{L}=\left\{A_{i}: i \in \mathbb{N}\right\}$. Let $\Sigma=\left\{A_{i} \rightarrow A_{i+2}: i \in \mathbb{N}\right\} \cup\left\{A_{1}\right\}$.
(1) Find M_{1} and M_{2} such that $M_{1} \neq M_{2}$ and both $M_{1} \models \Sigma$ and $M_{2} \models \Sigma$. Justify.
(2) Prove that Σ has no finite models.

Let $\Gamma=\left\{A_{j} \rightarrow A_{j \cdot n}: j \geq 2, n \geq 1\right\} \cup\left\{\neg A_{0} \wedge \neg A_{1}\right\}$.
(1) Find M_{1} and M_{2} such that $M_{1} \neq M_{2}$, both M_{1} and M_{2} are non-empty, and both $M_{1} \models \Gamma$ and $M_{2} \models \Gamma$. Justify.
(2) Prove that if $M_{1} \models \Gamma$ and $M_{2} \models \Gamma$, then $M_{1} \cap M_{2} \models \Gamma$.
5. Let E be a binary relation on the set $\{1, \ldots, n\}$. Let $A_{i, j}$ for $1 \leq i, j \leq n$ be distinct atomic sentences. The intended interpretation of these propositional sentences is

$$
A_{i, j}:=\text { " } E \text { holds on }(i, j) "
$$

Express the following statements in propositional logic.
(1) E is a graph on $\{1,2, \ldots n\}$, i.e. E is symmetric and anti-reflexive.
(2) E is a graph on $\{1,2, \ldots, n\}$ and there is at least one vertex which is not adjacent to any other vertex.
(3) E is a graph on $\{1,2, \ldots n\}$ and every vertex in the graph is adjacent to at least two other vertices.

In problems $6 \& 7$, you may not use the completeness theorem.
6. Let $\mathcal{L}=\left\{A_{i}: i \in \mathbb{N}\right\}$. Show that for any integer $n \geq 2$, there exists a collection of \mathcal{L}-sentences $\Sigma=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ such that for any proper subset $\Sigma^{\prime} \subsetneq \Sigma, \Sigma^{\prime}$ is satisfiable but Σ is not satisfiable.
7. Let Σ and Γ be \mathcal{L}-theories.
(1) Argue that for any \mathcal{L}-sentences φ and $\psi, \varphi \rightarrow(\psi \rightarrow \varphi)$ is a valid sentence.
(2) Suppose that φ, ψ are \mathcal{L}-sentences. Prove that $\Sigma \vdash \varphi \wedge \psi$ if and only if $\Sigma \vdash \varphi$ and $\Sigma \vdash \psi$.
(3) If $\Sigma \vdash \varphi$ for every $\varphi \in \Gamma$ and $\Sigma \cup \Gamma \vdash \theta$, prove that $\Sigma \vdash \theta$.
8. We say that an \mathcal{L}-theory Γ is complete if for any \mathcal{L}-sentence φ, precisely one of the following holds: either $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$. Prove that the following are equivalent:
(1) The deductive closure of Γ is maximally consistent, i.e. $\{\varphi: \Gamma \vdash \varphi\}$ is maximally consistent.
(2) Γ is complete.
(3) Γ has exactly one model.
(4) There is a model M such that $M \models \varphi$ if and only if $\Gamma \vdash \varphi$.

2. Extra problems

You should complete these problems, but you do not have to turn them in.
9. Prove the deduction theorem. In particular, if $\Sigma \cup\{\psi\} \vdash \varphi$, then $\Sigma \vdash \psi \rightarrow \varphi$.
10. Let $\mathcal{L}=\left\{A_{1}, \ldots, A_{n}\right\}$. Let \mathcal{M} be the collection of \mathcal{L}-models. We define a map $\mu:\{\mathcal{L}$-sentences $\} \rightarrow[0,1]$ via $\mu(\varphi)=\frac{|\{M \in \mathcal{M}: M \models \varphi\}|}{|\mathcal{M}|}$. Intuitively, $\mu(\varphi)$ gives the probability that given a random model of \mathcal{L}, the sentence φ is true in M. Compute the following and prove your answers.
(1) $\mu\left(A_{1} \wedge A_{2}\right)$.
(2) $\mu\left(A_{1} \rightarrow A_{2}\right)$.
(3) $\mu\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{2} \rightarrow A_{1}\right)\right)$.
(4) $\mu\left(A_{1} \wedge \ldots \wedge A_{n}\right)$.
(5) $\mu\left(A_{1} \vee \ldots \vee A_{n}\right)$.

