HOMEWORK 1: DUE MARCH 5, IN CLASS.

1. Homework Problems

- 1. Let \mathcal{L} be a propositional language and φ an \mathcal{L} -sentence.
 - (i) Let $C(\varphi)$ be the total number of instance of logical connective which occur in φ , i.e. instances of $\lor, \land, \rightarrow \neg$.
- (*ii*) Let $S(\varphi)$ be the total number of symbols which occur in φ .
- (iii) Let $D(\varphi)$ be the total number of instance of binary connectives which occur in φ , i.e. instances of \lor, \land, \rightarrow .
- (*iv*) Let $E(\varphi)$ be the total number of instances of atomic propositions which occur in φ .

E.g. if $\varphi = ((A_1 \wedge A_1) \vee (\neg A_1))$, then $S(\varphi) = 12$, $C(\varphi) = 3$, $D(\varphi) = 2$, and $E(\varphi) = 3$.

- (1) Prove via structural induction that $D(\varphi) + 1 = E(\varphi)$
- (2) Prove via structural induction that $S(\varphi) \ge 3C(\varphi)$.

2. Let \mathcal{L} be a propositional language φ and θ be \mathcal{L} -formulas. We say that φ is **logically equivalent** to θ and write $\varphi \equiv \theta$ if for any \mathcal{L} -model $M, M \models \varphi$ if and only if $M \models \theta$.

- (1) Prove (via structural induction) that any \mathcal{L} -sentence φ is logically equivalent to an \mathcal{L} -sentence θ where the only logical connectives occurring in θ are '¬', ' \wedge '.
- (2) Prove (via structural induction) that any \mathcal{L} -sentence φ is logically equivalent to an \mathcal{L} -sentence θ where the only logical connectives occurring in θ are '¬', ' \lor '.

3. Let $\mathcal{L} = \{A_i : i \in \mathbb{N}\}$. Determine if the following sentences are valid, satisfiable, or not satisfiable. Justify your answer (a truth table is justification).

- (1) $((\neg (A_1 \to A_2)) \to A_1).$
- (2) $((\neg (A_1 \to A_2)) \to A_2).$
- (3) $((A_1 \rightarrow (\neg A_2)) \rightarrow (A_1 \land A_2)).$
- (4) $(((A_1 \lor A_2) \to (A_3 \land A_2)) \lor (A_2 \to A_3)).$

4. Let $\mathcal{L} = \{A_i : i \in \mathbb{N}\}$. Let $\Sigma = \{A_i \to A_{i+2} : i \in \mathbb{N}\} \cup \{A_1\}$.

- (1) Find M_1 and M_2 such that $M_1 \neq M_2$ and both $M_1 \models \Sigma$ and $M_2 \models \Sigma$. Justify.
- (2) Prove that Σ has no finite models.

Let $\Gamma = \{A_j \to A_{j \cdot n} : j \ge 2, n \ge 1\} \cup \{\neg A_0 \land \neg A_1\}.$

- (1) Find M_1 and M_2 such that $M_1 \neq M_2$, both M_1 and M_2 are non-empty, and both $M_1 \models \Gamma$ and $M_2 \models \Gamma$. Justify.
- (2) Prove that if $M_1 \models \Gamma$ and $M_2 \models \Gamma$, then $M_1 \cap M_2 \models \Gamma$.

5. Let *E* be a binary relation on the set $\{1, ..., n\}$. Let $A_{i,j}$ for $1 \leq i, j \leq n$ be distinct atomic sentences. The intended interpretation of these propositional sentences is

$$A_{i,j} := "E$$
 holds on (i,j) "

Express the following statements in propositional logic.

- (1) E is a graph on $\{1, 2, ..., n\}$, i.e. E is symmetric and anti-reflexive.
- (2) E is a graph on $\{1, 2, ..., n\}$ and there is at least one vertex which is not adjacent to any other vertex.
- (3) E is a graph on $\{1, 2, ...n\}$ and every vertex in the graph is adjacent to at least two other vertices.

In problems 6 & 7, you may not use the completeness theorem.

6. Let $\mathcal{L} = \{A_i : i \in \mathbb{N}\}$. Show that for any integer $n \geq 2$, there exists a collection of \mathcal{L} -sentences $\Sigma = \{\varphi_1, ..., \varphi_n\}$ such that for any proper subset $\Sigma' \subsetneq \Sigma, \Sigma'$ is satisfiable but Σ is not satisfiable.

7. Let Σ and Γ be \mathcal{L} -theories.

- (1) Argue that for any \mathcal{L} -sentences φ and ψ , $\varphi \to (\psi \to \varphi)$ is a valid sentence.
- (2) Suppose that φ, ψ are \mathcal{L} -sentences. Prove that $\Sigma \vdash \varphi \land \psi$ if and only if $\Sigma \vdash \varphi$ and $\Sigma \vdash \psi$.
- (3) If $\Sigma \vdash \varphi$ for every $\varphi \in \Gamma$ and $\Sigma \cup \Gamma \vdash \theta$, prove that $\Sigma \vdash \theta$.

8. We say that an \mathcal{L} -theory Γ is complete if for any \mathcal{L} -sentence φ , precisely one of the following holds: either $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$. Prove that the following are equivalent:

- (1) The deductive closure of Γ is maximally consistent, i.e. $\{\varphi : \Gamma \vdash \varphi\}$ is maximally consistent.
- (2) Γ is complete.
- (3) Γ has exactly one model.
- (4) There is a model M such that $M \models \varphi$ if and only if $\Gamma \vdash \varphi$.

2. Extra problems

You should complete these problems, but you do not have to turn them in.

9. Prove the deduction theorem. In particular, if $\Sigma \cup \{\psi\} \vdash \varphi$, then $\Sigma \vdash \psi \rightarrow \varphi$.

10. Let $\mathcal{L} = \{A_1, ..., A_n\}$. Let \mathcal{M} be the collection of \mathcal{L} -models. We define a map $\mu : \{\mathcal{L}\text{-sentences}\} \to [0, 1]$ via $\mu(\varphi) = \frac{|\{M \in \mathcal{M}: M \models \varphi\}|}{|\mathcal{M}|}$. Intuitively, $\mu(\varphi)$ gives the probability that given a random model of \mathcal{L} , the sentence φ is true in M. Compute the following and prove your answers.

 $\begin{array}{ll} (1) & \mu(A_1 \wedge A_2). \\ (2) & \mu(A_1 \to A_2). \\ (3) & \mu((A_1 \to A_2) \wedge (A_2 \to A_1)). \\ (4) & \mu(A_1 \wedge \ldots \wedge A_n). \\ (5) & \mu(A_1 \vee \ldots \vee A_n). \end{array}$