HOMEWORK 2: DUE MARCH 12, IN CLASS.

1. Homework Problems

Exercise 1.1. Consider $M:=(\mathbb{R} ;+, \times)$. Write down the following formulas:
(1) $M \models \varphi(r)$ iff $r=0$.
(2) $M \models \varphi(r)$ iff $r=1$.
(3) $M \models \psi(r, s)$ iff $r<s$.
(4) $M \models \varphi(r)$ iff $\sqrt{2}<r<10.3$.
(5) $M \models \gamma(r, s, t)$ iff $(r, s) \in \mathbb{R}^{2}$ lie on the circle with origin $(0,0)$, radius t.
(6) $M \models \varphi\left(r_{1}, \ldots, r_{n}\right)$ iff $r_{1}<\ldots<r_{n}$.
(7) $M \models \phi(a, b, c, d, e, f)$ iff the points $(a, b),(c, d),(e, f) \in \mathbb{R}^{2}$ are non-collinear.

Exercise 1.2. Let $\mathcal{L}=\{+, 0\}$. Consider
(1) $M_{1}=(\mathbb{Z} ;+, 0)$, standard interpretation.
(2) $M_{2}=(\mathbb{R},+, 0)$, standard interpretation.
(3) $M_{3}=(\mathbb{N},+, 0)$, standard interpretation.
(4) $M_{4}=\left(\mathbb{Z}^{2},+, 0\right)$ where $(a, b)+(c, d)=(a+c, b+d)$ and $0=(0,0)$

Find \mathcal{L}-sentences which do the following.
(1) Find φ such that $M_{1} \models \varphi$ and $M_{2} \not \models \varphi$.
(2) Find φ such that $M_{1} \models \varphi$ and $M_{3} \not \vDash \varphi$.
(3) Find φ such that $M_{2} \models \varphi$ and $M_{3} \not \vDash \varphi$.
(4) Find φ such that $M_{2} \models \varphi$ and $M_{4} \not \models \varphi$.
(5) Find φ such that $M_{1} \models \varphi$ and $M_{4} \not \models \varphi$.

Exercise 1.3. Consider the structures $M_{1}=(\mathbb{Z},+), M_{2}=(\mathbb{Q}, \leq)$ with the standard interpretations. Keep in mind that these are structures in separate languages.
(1) Prove that \mathbb{N} is not a definable subset of M_{1}.
(2) Prove that \mathbb{N} is not a definable subset of M_{2}.

Exercise 1.4. Let M and N be \mathcal{L}-structures.
(1) Prove that if $M \cong N$ then $M \equiv N$.
(2) Prove that if $M=(A ; \ldots), N=(B ; \ldots)$ and $|A|$ is finite and $|A| \neq|B|$, then $M \not \equiv N$. Notice that we do not require $|B|$ to be finite.

Exercise 1.5. Fix $\mathcal{L}=\{E\}$. Let $\mathcal{G}=(G, E)$ be a graph. We say that two distinct points a and b are 1-connected if $(a, b) \in E$. For $n \geq 2$, we say that a pair of distinct points a and b in G are n-connected if there exists a path of length n between a and b, i.e. there exists elements c_{1}, \ldots, c_{n-1} in G such that $\left\{\left(a, c_{1}\right),\left(c_{1}, c_{2}\right), \ldots,\left(c_{n-1}, b\right)\right\} \subseteq E$.

We say that \mathcal{G} is n-connected if every pair of distinct points is m-connected for some m such that $1 \leq m \leq n$.

Do the following:
(1) For each $n \geq 2$, give an example of a graph which is $(n+1)$-connected but not n-connected.
(2) Prove that for each $n \geq 2$, the collection of n-connected graphs forms an \mathcal{L}-elementary class.
(3) We say that \mathcal{G} is connected if it is n-connected for some n. Prove that the collection of connected graphs does not form an elementary class.
Exercise 1.6. Let $\mathcal{L}=\{\leq,+, \times, 0,1\}$. Let $M=(\mathbb{N} ; \leq,+, \times, 0,1)$ with the standard interpretations. By the extra problems, we notice that the relations ' x divides y ' and ' x is prime' are definable in this language and so we let $D(x, y)$ and $T(x)$ denote these relations respectively. Let \mathbb{P} be the collection of primes in \mathbb{N} and $P \subseteq \mathbb{P}$.
(1) Prove that there exists an \mathcal{L}-structure $N=(A ; \leq,+, \times, 0,1)$ such that $N \equiv M$ and there exists some $a \in A$ such that for any $p \in \mathbb{P}, N \models$ $D(\underbrace{1+\ldots+1}_{p-\text { times }}, a)$ if and only if $p \in P$.
(2) The twin prime conjecture states that there exists infinitely many pairs of primes $\left(p_{1}, p_{2}\right)$ such that $p_{2}=p_{1}+2$. Prove that if the twin prime conjecture is true, then there exists an \mathcal{L}-structure $N=(A ; \leq,+, \times, 0,1)$ such that $N \equiv M$ and there exists p_{1} and p_{2} in A with the following properties:
(a) $N \models T\left(p_{1}\right) \wedge T\left(p_{2}\right)$.
(b) $N \models \underbrace{1+\ldots+1}_{n-\text { times }}<p_{1}$ for each $n \in \mathbb{N}$.
(c) $N \models p_{2}=p_{1}+1+1$

Exercise 1.7. Let φ be an \mathcal{L}-sentence and suppose that φ is true in all infinite models of an \mathcal{L}-theory Σ. Show that there exists a finite number k such that φ is true in all models M of Σ which have k or more elements.

Exercise 1.8. Let \mathcal{K}_{1} and \mathcal{K}_{2} be \mathcal{L}-elementary classes. Prove that $\mathcal{K}_{1} \cup \mathcal{K}_{2}$ is an \mathcal{L}-elementary class.

2. Extra Problems

Do not turn in.
Exercise 2.1. Consider $M:=(\mathbb{N} ;+, \times)$. Write down a formula $\varphi(x)$ such that
(1) $M \models \varphi(n)$ iff $n=0$.
(2) $M \models \varphi(n)$ iff $n=1$.
(3) $M \models \varphi(n)$ iff n is prime.
(4) $M \models \varphi(n)$ iff n is the sum of two primes.
(5) $M \models \varphi(n)$ iff n is a perfect square.
(6) $M \models \varphi(n)$ iff n is a perfect number.
(7) $M \models \varphi(n)$ iff $n=37$ or $n=100$.

Write down a formula $\psi(x, y)$ in the language $\mathcal{L}=\{+, \times\}$ such that
(1) $M \models \psi(n, m)$ iff $n<m$.
(2) $M \models \psi(n, m)$ iff $n=m+1$.
(3) $M \models \psi(n, m)$ iff n divides m.
(4) $M \models \psi(n, m)$ iff n and m are consecutive primes.
(5) $M \models \psi(n, m)$ iff $n-m$ is composite.

Exercise 2.2. Consider $M:=(\mathbb{R} ;+, \times)$. Write down the following formulas:
(1) $M \models \phi(a, b, c, d, e, f, g, h)$ iff the points $(a, b),(c, d),(e, f) \in \mathbb{R}^{2}$ are noncollinear and the point (g, h) lies in the interior of the triangle defined by the vertices $(a, b),(c, d),(e, f)$.

