HOMEWORK 3: DUE MARCH 19TH, IN CLASS.

KYLE GANNON

Try to prove the following fact on your own. You can use it in your computations throughout this assignment.

Fact 0.1. Let κ be an infinite cardinal. Consider $\{A_i : i \in I\}$ where $|I| \leq \kappa$ and for each $i \in I$, $|A_i| \leq \kappa$. Then $|\bigcup_{i \in I} A_i| \leq \kappa$. Moreover,

(1) if $A_i = \kappa$ for some $i \in I$, then $|\bigcup_{i \in I} A_i| = \kappa$. (2) If $|I| = \kappa$ and each $i \in I$, $A_i \neq \emptyset$, then $|\bigcup_{i \in I} A_i| = \kappa$.

1. Homework problems

Exercise 1.1. Let (A, <) be a total ordering. Prove the following are equivalent:

(1) Every non-empty subset of A has a least element.

(2) (A, <) has no infinite descending chain.

Exercise 1.2. Let C be any set. Using Zorn's lemma, prove that C can be wellordered, i.e. there exists an ordering < such that (C, <) is well-ordered.

Exercise 1.3. Let A, B be sets. If there exists $f : A \to B$ and $g : B \to A$ which are injections, prove that there exists a bijection $h: A \to B$.

Exercise 1.4. When κ and λ are cardinals, the notation κ^{λ} is the cardinality of the set of all functions from λ to κ , i.e. $\kappa^{\lambda} = |\{f | f : \lambda \to \kappa\}|$. Prove the following. (a) If A is a set, then $|\mathcal{P}(A)| = 2^{|A|}$.

- (b) (Do not turn in) For any infinite set A, $2^{|A|} = 3^{|A|}$.
- (c) $|\mathbb{R}| = 2^{\aleph_0}$. \aleph_0 is just a fancy name for ω or $|\mathbb{N}|$.

Exercise 1.5. Let $\mathcal{L} = \{E\}$ where E is a binary relation. Let T_E be the first order theory consisting of the following sentences.

- (1) E is an equivalence relation.
- (2) E has infinitely many equivalence classes.
- (3) E each equivalence class has infinitely many elements.

Write T_E as a collection of first order sentences.

Exercise 1.6. Consider T_E from above. Compute the following:

(a)
$$I(T_E, \aleph_0).$$

(b) $I(T_E, \aleph_n)$ for $n \in \mathbb{N}.$
(c) $I(T_E, \aleph_\omega).$

Exercise 1.7. Give an example of a complete theory T (with no finite models) which is not \aleph_0 -categorical but is \aleph_1 -categorical. Prove your claim.

Exercise 1.8. Determine if the following structures are countably categorical. Justify.

KYLE GANNON

- (1) The theory of $(\mathbb{Z}; S)$ where S is the successor function.
- (2) The theory of $(\mathbb{N}; \leq)$.
- (3) The theory T which is constructed as follows: Let $\mathcal{L} = \{P_i : i \in \mathbb{N}/\{0\}\}$ where each P_i is a unary relation symbol. Suppose that T says that
 - (a) Each P_i is infinite.
 - (b) For each $i \neq j$, P_j and P_i are disjoint.
- $\mathbf{2}$