HOMEWORK 3: DUE MARCH 19TH, IN CLASS.

KYLE GANNON

Try to prove the following fact on your own. You can use it in your computations throughout this assignment.

Fact 0.1. Let κ be an infinite cardinal. Consider $\left\{A_{i}: i \in I\right\}$ where $|I| \leq \kappa$ and for each $i \in I,\left|A_{i}\right| \leq \kappa$. Then $\left|\bigcup_{i \in I} A_{i}\right| \leq \kappa$. Moreover,
(1) if $A_{i}=\kappa$ for some $i \in I$, then $\left|\bigcup_{i \in I} A_{i}\right|=\kappa$.
(2) If $|I|=\kappa$ and each $i \in I, A_{i} \neq \emptyset$, then $\left|\bigcup_{i \in I} A_{i}\right|=\kappa$.

1. Homework problems

Exercise 1.1. Let $(A,<)$ be a total ordering. Prove the following are equivalent:
(1) Every non-empty subset of A has a least element.
(2) $(A,<)$ has no infinite descending chain.

Exercise 1.2. Let C be any set. Using Zorn's lemma, prove that C can be wellordered, i.e. there exists an ordering $<$ such that $(C,<)$ is well-ordered.

Exercise 1.3. Let A, B be sets. If there exists $f: A \rightarrow B$ and $g: B \rightarrow A$ which are injections, prove that there exists a bijection $h: A \rightarrow B$.
Exercise 1.4. When κ and λ are cardinals, the notation κ^{λ} is the cardinality of the set of all functions from λ to κ, i.e. $\kappa^{\lambda}=|\{f \mid f: \lambda \rightarrow \kappa\}|$. Prove the following.
(a) If A is a set, then $|\mathcal{P}(A)|=2^{|A|}$.
(b) (Do not turn in) For any infinite set $A, 2^{|A|}=3^{|A|}$.
(c) $|\mathbb{R}|=2^{\aleph_{0}} . \aleph_{0}$ is just a fancy name for ω or $|\mathbb{N}|$.

Exercise 1.5. Let $\mathcal{L}=\{E\}$ where E is a binary relation. Let T_{E} be the first order theory consisting of the following sentences.
(1) E is an equivalence relation.
(2) E has infinitely many equivalence classes.
(3) E each equivalence class has infinitely many elements.

Write T_{E} as a collection of first order sentences.
Exercise 1.6. Consider T_{E} from above. Compute the following:
(a) $I\left(T_{E}, \aleph_{0}\right)$.
(b) $I\left(T_{E}, \aleph_{n}\right)$ for $n \in \mathbb{N}$.
(c) $I\left(T_{E}, \aleph_{\omega}\right)$.

Exercise 1.7. Give an example of a complete theory T (with no finite models) which is not \aleph_{0}-categorical but is \aleph_{1}-categorical. Prove your claim.

Exercise 1.8. Determine if the following structures are countably categorical. Justify.
(1) The theory of $(\mathbb{Z} ; S)$ where S is the successor function.
(2) The theory of $(\mathbb{N} ; \leq)$.
(3) The theory T which is constructed as follows: Let $\mathcal{L}=\left\{P_{i}: i \in \mathbb{N} /\{0\}\right\}$ where each P_{i} is a unary relation symbol. Suppose that T says that (a) Each P_{i} is infinite.
(b) For each $i \neq j, P_{j}$ and P_{i} are disjoint.

