HOMEWORK 4 - DUE MARCH 26, IN CLASS.

Exercise 0.1. Consider the language $\mathcal{L} = \{\leq, (c_i)_{i \in \mathbb{N}}\}$. Let $T = T_{\leq} \cup \{c_i < c_j : i < j\}$ where T_{\leq} is the theory of dense linear orderings without endpoints. Prove that $I(T,\aleph_0) \geq 3$.

Exercise 0.2. Let $\mathcal{L} = \{R\}$ where R is a binary relation symbol. Let T_R be the theory of the random graph, i.e. T_R is the theory of a graph along with the family of sentences, for $n, m \ge 0$,

$$\forall x_1, \dots, x_n \forall y_1, \dots y_m(\{x_1, \dots, x_n\} \cap \{y_1, \dots, y_m\} = \emptyset$$

$$\Rightarrow \exists z (\bigwedge_{i=1}^n z \neq x_i \land \bigwedge_{i=1}^m z \neq y_i \land \bigwedge_{i=1}^n R(z, x_i) \land \bigwedge_{i=1}^m \neg R(z, y_i))).$$

Prove that T_R is consistent. Hint: Build a model T_R in countably many stages.

Exercise 0.3. Prove that if $M \models T_R$, and if $a_1, ..., a_n$ and $b_1, ..., b_m$ are in M such that $\{a_1, ..., a_n\} \cap \{b_1, ..., b_m\} = \emptyset$, then there exists and infinite set $D \subset M$ such that for any $d \in D$, $M \models \bigwedge_{i=1}^n R(a_i, d) \land \bigwedge_{i=1}^m \neg R(b_i, d)$.

Exercise 0.4. Prove that T_R is countably categorical. Conclude that T_R is complete. Hint: Use the back-and-forth method (similar to DLO).

Exercise 0.5. Let M be an \mathcal{L} -structure and $B \subseteq M$. Let π be a type in variable x over B. Prove that there exists a complete type p (i.e. $p \in S_x(B)$) such that $\pi \subseteq p$.

Exercise 0.6. Let M be an \mathcal{L} -structure and fix a variable x. Prove that there exists a model N such that

- (1) $M \preceq N$.
- (2) For any $p \in S_x(M)$, there exists some $b \in N$ such that $b \models p$.

Exercise 0.7. Let (ω_1, \in) be the first uncountable ordinal. Prove that there exists a countable ordinal α such that $(\alpha, \in) \prec (\omega_1, \in)$. Hint: Think about the proof of downward Lowenheim-Skolem.

Exercise 0.8. Student's choice: Only prove one of the following (one is harder than the other):

- (1) Prove that if $N \leq M$ and $M \leq K$, then $N \leq K$.
- (2) Determine (and provide a proof of your decision) if $(\{(r,0): r \in \mathbb{R}\}; +, 0) \prec (\mathbb{R}^2; +, 0)$.