HOMEWORK 4 - DUE MARCH 26, IN CLASS.

Exercise 0.1. Consider the language $\mathcal{L}=\left\{\leq,\left(c_{i}\right)_{i \in \mathbb{N}}\right\}$. Let $T=T_{\leq} \cup\left\{c_{i}<c_{j}\right.$: $i<j\}$ where T_{\leq}is the theory of dense linear orderings without endpoints. Prove that $I\left(T, \aleph_{0}\right) \geq \overline{3}$.

Exercise 0.2. Let $\mathcal{L}=\{R\}$ where R is a binary relation symbol. Let T_{R} be the theory of the random graph, i.e. T_{R} is the theory of a graph along with the family of sentences, for $n, m \geq 0$,

$$
\begin{gathered}
\forall x_{1}, \ldots, x_{n} \forall y_{1}, \ldots y_{m}\left(\left\{x_{1}, \ldots, x_{n}\right\} \cap\left\{y_{1}, \ldots, y_{m}\right\}=\emptyset\right. \\
\left.\rightarrow \exists z\left(\bigwedge_{i=1}^{n} z \neq x_{i} \wedge \bigwedge_{i=1}^{m} z \neq y_{i} \wedge \bigwedge_{i=1}^{n} R\left(z, x_{i}\right) \wedge \bigwedge_{i=1}^{m} \neg R\left(z, y_{i}\right)\right)\right) .
\end{gathered}
$$

Prove that T_{R} is consistent. Hint: Build a model T_{R} in countably many stages.
Exercise 0.3. Prove that if $M \models T_{R}$, and if a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{m} are in M such that $\left\{a_{1}, \ldots, a_{n}\right\} \cap\left\{b_{1}, \ldots, b_{m}\right\}=\emptyset$, then there exists and infinite set $D \subset M$ such that for any $d \in D, M \models \bigwedge_{i=1}^{n} R\left(a_{i}, d\right) \wedge \bigwedge_{i=1}^{m} \neg R\left(b_{i}, d\right)$.

Exercise 0.4. Prove that T_{R} is countably categorical. Conclude that T_{R} is complete. Hint: Use the back-and-forth method (similar to DLO).
Exercise 0.5. Let M be an \mathcal{L}-structure and $B \subseteq M$. Let π be a type in variable x over B. Prove that there exists a complete type p (i.e. $p \in S_{x}(B)$) such that $\pi \subseteq p$.

Exercise 0.6. Let M be an \mathcal{L}-structure and fix a variable x. Prove that there exists a model N such that
(1) $M \preceq N$.
(2) For any $p \in S_{x}(M)$, there exists some $b \in N$ such that $b \models p$.

Exercise 0.7. Let $\left(\omega_{1}, \in\right)$ be the first uncountable ordinal. Prove that there exists a countable ordinal α such that $(\alpha, \in) \prec\left(\omega_{1}, \in\right)$. Hint: Think about the proof of downward Lowenheim-Skolem.

Exercise 0.8. Student's choice: Only prove one of the following (one is harder than the other):
(1) Prove that if $N \preceq M$ and $M \preceq K$, then $N \preceq K$.
(2) Determine (and provide a proof of your decision) if $(\{(r, 0): r \in \mathbb{R}\} ;+, 0) \prec$ $\left(\mathbb{R}^{2} ;+, 0\right)$.

