HOMEWORK 5 - DUE APRIL 2ND, IN CLASS.

Exercise 0.1. Prove that $I(DLO, \aleph_1) \geq 2^{\aleph_0}$.

Exercise 0.2. Prove that the evens are not a definable subset of (\mathbb{N}, S) . Hint: Suppose the evens are definable. Construct automorphism in an elementary extension to get a contradiction.

Exercise 0.3. Let I be finite and suppose that D is an ultrafilter on I. Prove that D is principle, i.e. there exists some $i \in I$ such that $D = \{X \subseteq I : i \in X\}$.

Definition 0.4. Let M and N be \mathcal{L} -structures. We say that $G: M \to N$ is an elementary embedding if

- (1) G is injective.
- (2) For any formula $\varphi(x_1, ..., x_n)$, we have

 $M \models \varphi(a_1, ..., a_n) \iff N \models \varphi(G(a_1), ..., G(a_n)).$

Exercise 0.5. Let $I = \omega$ and D be an ultrafilter on I. Let M be an \mathcal{L} -structure and consider $(M_i)_{i \in I}$ where for each $i \in I$, $M_i = M$. Then $\prod_D M_i$ is called an ultrapower. Let $\Delta : M \to \prod_D M_i$ via $\Delta(a) = [f_a]_D$ where $f_a(i) = a$ for every $i \in I$. Prove that this map is an elementary embedding. Δ is called the diagonal map. Hint: Don't use induction.

Exercise 0.6. Let I be an infinite indexing set, $(M_i)_{i \in I}$ a sequence of \mathcal{L} -structures, and D be an ultrafilter on I. Determine if the following statements are true or false. Justify your claims:

- (1) If \mathcal{L} is the language of graphs and M_i are connected graphs (i.e. between any two points, there exists a path), then $\prod_D M_i$ is connected.
- (2) If D is principle, then there exists some $i \in I$ such that $M_i \cong \prod_D M_i$.
- (3) If D_1 and D_2 are non-principle ultrafilters on I then $\prod_{D_1} M_i \equiv \prod_{D_2} M_i$.

Definition 0.7. We say that an \mathcal{L} -structure M is pseudofinite if there exists an indexing set I, and ultrafilter D, and a family of **finite** \mathcal{L} -structures $(M_i)_{i \in I}$ such that $\prod_D M_i \equiv M$. We say that a complete theory

Exercise 0.8. Determine if the following are pseudofinite. Justify your claims.

(1) $(\mathbb{Q}; \leq)$.

- (2) $(\mathbb{N}; f)$ where $f(n) = \lceil n/2 \rceil$.
- (3) The theory of infinitely many equivalence classes all with infinitely many elements (complete by Vaught's test).

Exercise 0.9. Do not need to write the proofs; Determine if the following admit quantifier elimination:

- (1) The theory of $(\mathbb{N}; S)$.
- (2) The theory of $(\mathbb{N}; S, 0)$.
- (3) The theory of $(\mathbb{N}; \leq)$.
- (4) The theory of $(\mathbb{N}; \leq, 0)$.

Exercise 0.10. Let $\mathcal{L} = \{<\}$, $I = \omega$, and M_i be a collection of total orderings which are not well-ordered, and D be a non-principle ultrafilter on I. Is it necessarily true that $\prod_D M_i$ is not well-ordered? Prove you claim.