HOMEWORK 6 - DUE APRIL 16TH, IN CLASS.

Exercise 0.1. Read the proof of the Omitting types theorem in Marker's Model theory: An Introduction, *i.e.* Theorem 4.2.3.

Exercise 0.2. Let \mathcal{L} be a countable language and κ an infinite cardinal. Let M be an \mathcal{L} -structure such that $|M| > \kappa$. Prove that the following are equivalent:

- (1) For every $A \subseteq M$ such that $|A| < \kappa$ and $p \in S_1(A)$, there exists some $a \in M$ such that $a \models p$.
- (2) For every $A \subseteq M$ such that $|A| < \kappa$ and $n \ge 1$ where $p \in S_n(A)$, there exists some $\bar{a} \in M^n$ such that $\bar{a} \models p$.

Exercise 0.3. Let \mathcal{L} be a countable language and M an infinite \mathcal{L} -structure and $A \subseteq M$ such that $|A| \leq \aleph_0$. Prove that for any finite tuple $\bar{x} = (x_1, ..., x_n)$, $|A| \leq |S_{\bar{x}}(A)| \leq 2^{\aleph_0}$.

Exercise 0.4. Does there exists a countable \mathcal{L} -structure M such that $|S_1(\emptyset)| = 1$ while $|S_2(\emptyset)| \ge \aleph_0$? If yes, provide example and justify. If no, prove.

Exercise 0.5. Let \mathcal{L} be a countable language and M an infinite \mathcal{L} -structure. Suppose that for every $M \prec N$ and $a, b \in N \setminus M$, there exists an automorphism $\sigma : N \to N$ such that $\sigma(a) = b$ and which fixes M pointwise (i.e. for every $c \in M$, $\sigma(c) = c$). Determine $|S_1(M)|$ and prove your claim.

Exercise 0.6. *Here we count types. You need some type of justification for each answer.*

- (1) Consider $M = (\mathbb{Q}, <)$. Find the size of $S_1(\mathbb{Q})$ and $S_1(\emptyset)$. Justify your claim.
- (2) Consider $M = (\mathbb{N}, \langle S \rangle)$. Find the size of $S_1(\mathbb{N})$. Justify your claim.
- (3) Consider $M = (\mathbb{Z}; 0, +)$. Find the size of $S_1(\emptyset)$. Justify your claim.
- (4) Consider $M = (\mathbb{G}; R)$ be a model of the random graph. Find the size of $S_1(A)$ where A is any countable set. Justify your claim.

Exercise 0.7. If you have time, read The recent history of model theory by Enrique Casanovas. See http://www.ub.edu/modeltheory/documentos/HistoryMT.pdf