HOMEWORK 8 - DUE MAY 21ST, IN CLASS.

Exercise 0.1. Do not turn in: Prove that ACF_0 admits quantifier elimination.

Exercise 0.2. Prove that ACF_0 is strongly minimal.

Exercise 0.3. Suppose that $RM(\psi(x)) = \infty$. Prove that there exists $\psi_1(x)$ and $\psi_2(x)$ such that

- (1) $\psi_1(x) \subseteq \psi(x), \ \psi_2(x) \subseteq \psi(x).$
- (2) $\psi_1(x) \cap \psi_2(x) = \emptyset$.
- (3) $RM(\psi_1(x)) = RM(\psi_2(x)) = \infty.$

Definition 0.4. Let $\varphi(x, y)$ be a formula in $\mathcal{L}_{xy}(M)$. We say that $\varphi(x, y)$ is "k-stable relative to M" if there does not exists finite sequences $(a_i)_{1 \le i \le k}$ and $(b_j)_{1 \le j \le k}$ such that

$$M \models \varphi(a_i, b_j) \iff i \le j.$$

Exercise 0.5. Let $M \prec \mathcal{U}$ and $\varphi(x, y) \in \mathcal{L}_{xy}(M)$ and \mathcal{U} is a monster model. Prove the following:

- (1) If $\varphi(x, y)$ is k-stable relative to M, then $\varphi(x, y)$ is k-stable relative to U.
- (2) If $\varphi(x, y) \in \mathcal{L}_{xy}(\emptyset)$, and $\varphi(x, y)$ is k-stable to some model of M, then $\varphi(x, y)$ is k-stable relative to any model of $Th_{\mathcal{L}}(M)$.
- (3) If $\varphi(x, y)$ is not stable relative to M, then there exists $(a_i)_{i < \omega}$ and $(b_j)_{j < \omega}$ in \mathcal{U} such that

$$\mathcal{U} \models \varphi(a_i, b_j) \iff i < j.$$

Example 0.6. Determine whether the following formulas are stable. If yes, find the smallest k such that the formula is k-stable.

- (1) $\varphi(x,y) := \exists z(x \cdot z = y) \text{ in } (\mathbb{Z}; \cdot).$
- (2) $\varphi(x,y) := \exists z(x \cdot z = y) \text{ in } (\mathbb{R}; \cdot).$
- (3) $\varphi(x,y) := \exists z(x-y=z \cdot z) \text{ in } (\mathbb{R};+,\cdot,-).$
- (4) $\varphi(x,y) := \exists z(x-y=z \cdot z) \text{ in } (\mathbb{C};+,\cdot,-).$

Exercise 0.7. Let $[\mathbb{Z}]^n$ be the collection of unordered subsets of \mathbb{Z} with precisely n elements. Consider the relation R where for $A_1, A_2 \in [\mathbb{Z}]^n$, we have that $[\mathbb{Z}]^n \models R(A_1, A_2)$ if and only if $A_1 \cap A_2 \neq \emptyset$. Is the formula R(x, y) stable?

What about the same formula defined in the structure $[\mathbb{Z}]^{\omega}$?

Exercise 0.8. Consider X = [0,1] as a topological space. Let Hom(X) be the collection of homeomorphisms from X to itself. Find a formula in the language \mathcal{L}_{qrp} which is unstable.

Exercise 0.9. Let K be any field and consider the formula

$$\varphi(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4) := det\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \begin{bmatrix} y_1 & y_2 \\ y_3 & y_4 \end{bmatrix} \right) \neq 0.$$

Argue that

- (1) The formula is definable.
- (2) The formula is stable.