HOMEWORK 9 - DUE BEFORE JUNE 4TH IN CLASS

Exercise 0.1. Let $D=\left\{(a, b) \in \mathbb{R}^{2}: a^{2}+b^{2} \leq 1\right\}$ and $B=\left\{(a, b) \in \mathbb{R}^{2}: a^{2}+b^{2}=\right.$ $1\}$. We define a relation $R(x, y) \subseteq D \times \mathcal{P}_{\text {fin }}(B)$ where $\models R(b, A)$ if and only if b is in the convex hull of A, i.e. $b=\sum_{a \in A} t_{a} a$ where for each $a \in A, t_{a} \in[0,1]$ and $\sum_{a \in A} t_{a}=1$. Determine if this relation is stable.
Exercise 0.2. Suppose that $\left(a_{i}\right)_{i \in I}$ and $\left(b_{i}\right)_{i \in I}$ are indiscernible over A. Does this imply that $\left(a_{i}, b_{i}\right)_{i \in I}$ is indiscernible over A ?

Exercise 0.3. Fix a field K and consider the language of K-vector spaces, $\mathcal{L}=$ $\left\{\left(r_{\alpha}\right)_{\alpha \in K},+, 0\right\}$ where r_{α} is a unary function symbol for each $\alpha \in K$. Now, let $K=\mathbb{Q}$ and consider $V=\mathbb{R}$ as a \mathbb{Q}-vector space in this language.
(1) Give an explicit indiscernible sequence from V.
(2) Prove your choice of sequence works.

Exercise 0.4. Suppose that T is t.t. Let $\left(X_{i}\right)_{i \in I}$ be an infinite collection of definable sets of \mathcal{U}^{x} such that for each i, we have $R M\left(X_{i}\right) \geq \alpha$ and additionally, the rank of the intersection of any n sets is strictly less than α. Then there exists an infinite subcollection $(Y)_{j \in J}$ and an integer $2 \leq k \leq n-1$ such that the rank of the intersection of any k-many sets has rank α but the rank of the intersection of any $k+1$ sets has rank strictly less than α. Hint: Ramsey.

Exercise 0.5. Consider the theory T_{2} which is the theory of two infinite equivalence classes in the language $\mathcal{L}=E$. We usually consider the theory of infinitely many equivalence relations all with infinitely many class, but here we really just mean 2 . Now, there is a unique type $p_{0} \in S_{x}(\emptyset)$. Let $M \subseteq \mathcal{U}$ be a model of T. Determine the Morley degree of p_{0} and the number of non-forking extension of q_{0} in $S_{x}(M)$ and be careful.

Exercise 0.6. Suppose that T is t.t. Let $M \subseteq \mathcal{U}$ and suppose that $p \in S_{x}(M)$ where M is a model of T. Prove that $M d(p)=1$.

Exercise 0.7. Suppose that T is t.t. Show that

$$
\left|\left\{p \in S_{x}(\mathcal{U}): M R(p)=M R(T)\right\}\right|<\aleph_{0}
$$

Exercise 0.8. Go to https: //www.forkinganddividing. com and find a section/example from the map that you find interesting. Write a little summary about it.

